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1 Executive Summary 

In response to real world challenges at the Glacier Wind project in Northern Montana, WINData LLC, of 
Great Falls, MT (“WINData”), NaturEner USA, of San Francisco, CA (“NaturEner”) and OSIsoft Inc., of San 
Leandro, CA (“OSIsoft”) initiated work in Q4 of 2009 under funding from United States Department of 
Energy and the American Recovery and Reinvestment Act of 2009 to investigate the use of high fidelity, 
real-time off-site meteorological sensor data to improve short term wind forecasting and improve wind 
plant operations. The work was conducted to provide greater insight into the surrounding area’s 
meteorological characteristics and to help create increased situational awareness for the system 
operators, power forecasters/schedulers and the wind plant owner. 
 
This research project involved the development, design, deployment and evaluation of improved 
observing sensor networks, new display tools and enhanced numerical weather forecasting techniques 
that aid utility operations for short-term (0-6 hour ahead) wind power integration, especially during 
periods of significant wind power ramping.  
 
At the Glacier Wind site in Northern Montana, NaturEner operates its wind projects as merchant plants 
and acts as its own balancing authority.  NaturEner has an obligation to deliver firm energy schedules 75 
minutes ahead of the delivery hour.  All energy must be delivered as scheduled in order to meet market 
and regulatory requirements.  Once the power is scheduled, it is traded into the electricity market.  
Energy scheduled less than 75-minutes ahead of the delivery hour decreases the value of the product.   
 
When the delivery is over the schedule (forecast), NaturEner is sometimes required to curtail or “cap” 
the windparks’ output.  When the delivery is under the schedule (again forecast), NaturEner employs 
reserves to in order to meet the schedule.  Due to current forecasting error in and around ramping 
events, this creates a fair amount of inefficiency in commercial operations.  NaturEner has narrowed the 
initial efficiency gap, but needs substantial forecasting improvement to continue to improve the model.   
 
While this revenue model is not optimal, it was believed to be the only option to bring additional wind 
generation to Montana.  NaturEner believes strongly that their success, as evidenced by a working 
model with progressive changes, could stand as an example to larger, traditional balancing authorities.  
Continued forecasting improvement is crucial to efficient operations and to reducing the significant cost 
of wind integration. 
 
Ramping events are the primary cause of disruptive forecast error in the operation of large wind power 
plants. Current wind power forecasts methods have not achieved the desired level of accuracy in 
predicting the magnitude and timing of ramping events, which leads to difficulty integrating wind power 
into the grid.  
 
Improved temporal and spatial information on the local wind field, measured wind profiles at several 
carefully selected locations and the monitoring of the local atmospheric stability were hypothesized to 
potentially improve the detection and prediction of ramping events. To achieve this end, an array of 
advanced sensor technology was combined with state of the art data collection methods and integrated 
into newly developed advanced wind power ramp forecasting techniques. These new techniques were 
evaluated as to effectiveness in forecasting on an operational wind farm. 
 
Substantial savings in annual system production costs can be achieved with improved wind forecasting 
accuracy, particularly if prediction of the magnitude and timing of ramp events in the 0 to 6 hour range 
can be improved. Accuracy of commercial wind energy forecasting services has been limited to a large 
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degree by core meteorological and forecast products available from the National Oceanic and 
Atmospheric Administration’s (NOAA) National Weather Service, which to date has not focused on 
providing foundational meteorological information optimized for wind energy at or near hub-height.  
Improved techniques to provide economic and reliable operations for utilities will be required for unit 
commitment, transmission scheduling and generation control strategies as the amount of wind energy 
penetration increases. 
 
The project work implemented and leveraged the significant power of the OSIsoft PI System which 
facilitated intelligent lay techniques and experiments conducted by WINData in parallel with the 
development of sophisticated modeling techniques by internationally known wind forecaster Garrad 
Hassan America, Inc. (“GH”) to assimilate data from met masts and several surface pressure devices for 
adjusted sea level pressure, temperature, and wind speed into the WRF model. Performance evaluations 
were conducted internally by NaturEner and by 3TIER Inc. of Seattle, Washington (“3Tier”). 
 
The technical effectiveness of using real-time sensors and a PI system was demonstrated by WINData by 
detecting the onset of indicative regional patterns and weather conditions that subsequently predicted 
ramp events on a 1-3 hour advanced time horizon. GH also validated the fundamental hypothesis of the 
project: that offsite meteorological data has value in wind generation forecasts for sites in complicated 
terrain.  It was demonstrated that forecasts which utilize strategically located offsite observations 
generally performed better than persistence of onsite generation measurements.  
 
WINData collaborated with GH to devise and deploy a real-time pattern matching algorithm to rapidly 
augment the WRF forecasts for short-horizon ramp predictions.  Improvements over persistence were 
seen in many of the traditional and ramp-tracking metrics over several horizons, independently in both 
the GH and NaturEner evaluations. It was concluded that these improvements would not have been 
possible without the use of the real-time data observations.   
 
In using the offsite measurements, GH moved beyond traditional data assimilation (i.e. nudging of NWP) 
and used machine learning to train and inform a pattern matching algorithm to provide additional short 
term ramp information. GH acknowledges there are still drawbacks to this type of data utilization, but 
suggests that there are basic improvements that can be made simply by adding more strategic sensor 
locations.  Many of the drawbacks in the techniques developed were manifested in, and masked by, the 
validation statistics which may obscure the true value of the offsite data during times when the impulses 
arrived from sectors in which observation systems were deployed.  GH suggested several solutions to 
improve the accuracy, the most simple involving the installation of more data collection sources in high 
risk areas to add visibility of wind patterns in sectors sensitive to types of ramps towards which the 
algorithm was essentially blind.   
 
The commercial value of the array and its efficacy in improving forecaster models was opined to be 
somewhat marginal by both NaturEner and their forecaster, 3Tier in its current state of development. 
NaturEner’s evaluation suggested that although a significant improvement in ramp detections were 
observed, this improvement was marginalized by a companion increase in false ramp predictions. 3Tier 
likewise concluded that the inclusion of WINData observations into 3TIER's forecast system acts as an 
improvement in some periods and a degradation in others.  In 3Tier’s evaluation, the summary statistics 
show performance that is, at best, equivalent to the control forecasts.  Further that there is a small 
increase in the probability of detection, but also a commensurate increase in the false alarm ratio which 
acts to negate the improved detection of true positives.  Overall, the threat score for ramp event 
detection is about the same when the real-time observations are included.  
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3Tier concluded that the real-time observations, as they are currently sited, do not add significant 
benefits to their current forecast system.  The 3TIER forecasts already incorporate the existing off-site 
meteorological data from tower “BR-1” and public weather stations in the region.  3Tier concluded that 
the real-time observations do not add enough new information that is independent of the data already 
sampled by 3Tier using the existing off-site sensors.  3Tier notes that this was not anticipated in 
advance, since there are relatively few observations in the region near the Glacier Wind facility; 3Tier 
had speculated that significant improvements were possible with deployment of just a few sensors in 
key areas.   
 
The primary objective of the project was to demonstrate the value of well-located off-site real-time met 
sensors in reducing the uncertainty in the short-term forecasting of ramp events.  The second objective 
was to demonstrate the advantages of leveraging OSIsoft PI System data infrastructure into next 
generation met data retrieval and its subsequent integration into power system operations centers. The 
third objective was to assess the amount of improvement in ramp forecasting skill that can be obtained 
through the use of this site specific off-site measurement network and to determine which forecast 
methods can extract the maximum value from this type of network. 
 
Under this project, participants, a) developed a better understanding of next generation wind 
forecasting methodologies, requirements and possibilities in the hour-ahead and day-ahead time 
frames, b) developed a better understanding of operations planning requirements, and c) added to the 
ongoing dialog between the wind forecasting research, development, methodologies, applications and 
user communities.  
 
The enhanced prediction methods developed under this research funding were presented in 2012 at 
both UVIG and at the OSIsoft User Conference and are being marketed as “WINDataNOW! TM 
Technology”.  The system was also proposed to NOAA/DOE in response to the DE-FOA-0000343 RFP and 
was titled “Enhancing Short Term Wind Energy Forecasting for Improved Utility Operations”. 

2 Project Overview 

The goal of the work was to seek improvement in the forecasting, scheduling and operational efficiency 
of the Glacier Wind project in Montana through the deployment of an array of off-site real-time met 
sensors feeding data into an OSIsoft PI System.  
 
Available meteorological data and net power production information was aggregated, collected, and 
backfilled from the beginning of 2010 into WINData’s central PI Server.  All available met data, ASOS / 
METAR data from the surrounding region were collected and automatically fed into the central PI 
Server. The met data sets were reviewed for quality and accuracy and used to determine the primary 
sources of wind events and power production at the plant. 
 
In the Figure below a map of the data sources in PI are shown in a Transpara KPI.  These readings are 
taken at 15 minute intervals and are incorporated into the WINData PI System. In 2010 NaturEner 
purchased both an OSIsoft PI system and the Transpara KPI product.  
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FIGURE 1 TRANSPARA KPI OF WINDATA SITES 

2.1 Analysis of Regional Data to Determine Source of Ramping Events 

Analysis of the initial data provided a preliminary regional climatology and a sense of the directionality 
of wind events at the Glacier Wind facility. Analysis of the data demonstrated that the wind at the plant 
is most frequently from the WSW (265°), but that the wind from both WSW and from the NNW may 
have significant influence on the variability of plant production. This phenomenon is shown in the wind 
rose from NaturEner site 4510 in Figures below.  
 

 

 

 
FIGURE 2 WIND FREQUENCY BY DIRECTION  FIGURE 3 MEAN WIND SPEED BY DIRECTION 

 
In the above figures it can be seen that the wind most frequently comes from the Marias pass at a 
heading of 265° from the plant and the majority of total energy production of the plant is from this 
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direction. Infrequent but significant wind events also are seen to emanate from the NNW. A depiction of 
the Glacier Wind plant wind rose’s indicating primary wind directions is shown in the Figure below. 

 
FIGURE 4 WIND ROSES AT SIX GLACIER WIND SITE WIND RESOURCE ASSESSMENT MET TOWERS 

2.2 WINData Experiments Data Using OSIsoft PI Data Tools 

2.2.1 Cardinal Directions 

Examination of the regional met data and the enhanced data base on the PI Server assisted workers in 
identification of two cardinal directions that appear to interplay to create the variability and ramping 
events at the wind farm.  
 
This analysis examined the pressure differentials between, a) Glacier Park (Kalispell) Airport ASOS and 
Havre ASOS and, b) Lethbridge Airport ASOS and Great Falls ASOS. The pressure gradients along these 
directions seem to drive the wind events and the change in dominance of one cardinal direction to the 
other seemed to coincide with the timing and propagation direction of significant ramp events.  
 

 
FIGURE 5 PRESSURE DIFFERENTIAL ANALYSIS FOR GRADIENTS CENTERED AROUND GLACIER WIND 
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Sixty miles to the west of the plant is the Marias pass, which is a good example of a Gap Wind type 
resource which occurs when a mountain barrier effectively separates two air masses of different 
densities. This results in a strong pressure gradient across the mountain barrier causing air to flow 
through the gaps in the terrain from high to low pressure, and since the terrain channels the winds, they 
are accelerated along the pressure gradient instead of becoming geostrophic.1  
 
Winds from the North and Northwest seem to interrupt the otherwise predictable and stable westerly 
winds from the Marias Pass. The interruptions are infrequent but energetic and, although linear 
pressure gradients also seem to drive the NW winds, there is evidence of counterclockwise cyclonic 
cycling, which causes very unpredictable wind directions at the plant and in the region. 
 
These cyclonic events may be associated with low pressure centers that move from the north in Canada, 
into the Glacier Wind plant area and then move off to the south east. Once the low pressure systems 
have moved off, the west wind from the pass is reestablished and more predictable power production 
resumes. In light of the identification of the cardinal directions of wind influence, sensor arrays were 
installed to augment existing instrumentation and capture additional data to describe this climatology. 
 
Locations were determined to install two 60-meter off-site met towers, 1401 and 1402, for maximum 
positive impact. Wind speed, Wind direction, Pressure, temp and relative humidity data were gathered 
to provide the largest impact on forecast accuracy for the most significant ramp events.  
 

 
 

FIGURE 6 WINDATA 60 METER MET TOWER WITH 3G REALTIME LOGGER - SITE 1401 EAST GLACIER, MT 

2.2.2 Marias Pass 

It was determined that regularly spaced pressure readings across the Marias pass could potentially 
provide a method of anticipating wind events at the 1401 met tower in East Glacier and, later, at the 
Glacier Wind plant. It was hypothesized that, if this sensor set could track the propagation of events 

                                                           
1
 Washington County High Winds, by Mark Struthwolf and Ed Carle, November 1997 

 



10 | P a g e  
 

through the pass to East Glacier, then this information could provide 1-3 hour advance warning of 
events emanating through the pass that later hit Glacier Wind It was also noted that the existing BR-1 
met tower currently in use by forecasters missed the Marias Pass events and the disturbances from the 
NW. 
 
As a means to gain access to sites and existing infrastructure across the remote and wild Marias Pass 
and to avoid siting challenges, it was decided that collocation could be accomplished using commercial 
sites, like bars and hotels, which had both internet (satellite in many cases) and a useful location in the 
pass that would provide suitable pressure readings.  
 
WINData determined that the Davis Vantage Pro2 weather station would provide a zero footprint, near 
scientific quality method to collect NIST traceable data across the pass, and also in other non-critical 
directions to the south and east of the GW plant. Also, it was felt that the proprietors of these 
establishments would welcome the installation of a weather station and display for their local use.  
 
Three stations were located west of the East Glacier 1401 site, at commercial establishments through 
the pass - WS200 was located at the Snow Slip Inn; 15 miles east of Essex, MT, WS300 at the Izaak 
Walton Inn, in Essex, MT, and WS400 at the Packers Roost Bar, in Coram, MT. Davis stations were 
installed on rooftops within wifi range of the internet router, at about 6M above ground. Pressure data 
were collected from these Davis devices via a wireless transmitter and fed to Weather Underground and 
imported into the WINData PI Server. 

 
FIGURE 7 TOPOGRAPHY PROFILE SHOWING THE RELATIVE ELEVATIONS OF THE SENSOR SITE LOCATIONS ACROSS THE MARIAS PASS 

 

Pack
WS400 

WS300 

WS200 1401 

GW 
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The Davis weather display was mounted in a useful way for the proprietor’s use, and was connected to 
the proprietor’s router using a Davis weatherlink device. The data stations located across the pass are 
linked to the internet through Davis’ weatherlink site which collects 15 minute data via IP protocol and 
then posts the data to weather underground2. From Weather Underground, the WINData PI Server can 
collect all data from a single interface. Data collected using this technique is seen in the following 
graphic. 
 

 
FIGURE 8 DAVIS PRESSURE READINGS COLLECTED IN PI DATA BASE 

 

2.2.3 North South Flows 

Site BR1 is an existing 60 meter tower that was also incorporated into the sensor array and the PI Server. 
In October of 2010 WINData finalized permitting and installed met tower 1402 as far to the north as 
possible whilst still remaining in the USA. Figure 9 below shows, the respective locations of the project 
sensors and the Glacier Wind plant - met towers 1401, 1402, and BR1 and the four Davis Weather 
Stations collecting pressure data across the Marias Pass. 
 
An automated procedure was implemented to gather data the array data and data from regional ASOS / 
METAR stations into the WINData central PI Server.  Additionally, meteorological observations were 
collected from NaturEner’s Glacier 1 and Glacier 2 wind farms.  This data was backfilled and 
incorporated into the PI Server.  Data from all these sources was collected and updated on a regular 
basis.   
 
Available data from existing data sources within NaturEner’s meteorological systems and net-power-
production information were aggregated, collected, and backfilled from the beginning of 2010 into 
WINData’s central PI Server.  New data from these sources is automatically gathered on an “as 
frequently-as-possible” periodic basis, down to a 1 Hz real-time standard.   
 

                                                           
2
 http://www.wunderground.com/wundermap/ 

http://www.wunderground.com/wundermap/
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FIGURE 9 LOCATION MAP OF WINDATA MET TOWERS AND THE DAVIS WEATHER STATIONS WITH RESPECT TO GLACIER WIND 
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A screen shot of the WINData PI ProcessBook desktop for the project is shown in the Figure below. 
 

 
FIGURE 10 SCREEN SHOT OF WINDATA PI PROCESSBOOK DESKTOP DISPLAY 
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2.3 Ramp Prediction by WINData Using the PI System’s Real-Time Data Tools 

It was hypothesized that through collecting and reviewing a series of pressure measurements from 
geographically aligned sites and correlating the fluctuations in pressure readings with wind speed (and 
therefore power production), an “early warning” indicator could be developed to help forecasters and 
NaturEner better anticipate both timing and magnitude of future wind ramp events.   
 
NaturEner provided a list of dates for ramp events that they regarded as “significant misses” in order to 
narrow the relevant dataset. This was used to narrow down the dates for back-casting analysis. The 
initial methodology consisted of observing how pressure disturbances in the Marias Pass manifest at the 
East Glacier 1401 met tower. Figure 11 shows that there can be a strong correlation between measured 
pressure events that propagate sequentially through the measurement stations along the Marias Pass 
and an eventual change in the wind speed at the East Glacier met tower.   
 
In the figure, the traces displayed as Green, Cyan, and Yellow are geographically distributed from West 
to East along the Marias Pass.  The White trace is the measured wind speed at 60 meters at the East 
Glacier 1401 met tower.  It can be clearly seen that as the pressures at three upstream stations 
(presented in their geographic order from west to east) present a pressure gradient with a clear phase 
separation, which in turn drives a wind speed ramp event at the East Glacier met tower.   
 

 
FIGURE 11 UPSTREAM PRESSURES IN MARIAS PASS’ EFFECT ON EAST GLACIER MET TOWER WIND SPEED 

 
It was also observed that the significance of the behavior at the met tower was governed by the 
pressure influence to the East of the met tower.  If the pressure change in the Marias Pass was not 
significantly different than the pressure at the met tower, the effect of the pressure change was 
minimal. 
 
Using the correlation developed from the data from these stations and the East Glacier met tower as a 
basis, analysis proceeded into how this behavior might manifest at the Glacier Wind plant.  Because the 
point of interest was the actual wind plant and not necessarily the barometric pressure value at each 
site, it was determined that using the pressure measurements available at the Glacier Wind plant as a 
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reference would create a data set that classified each offsite pressure measurement as a deviation from 
the current Glacier Wind plant’s pressure, or a “driving force”. 
 
When the plant’s barometric pressure was lower than the surrounding areas, the plant would act as a 
“well” and the directionality of a wind disturbance (or steady-state flow) would be determined by the 
measurement stations that reported higher pressures.  What’s more, measurement stations that were 
significantly further away from the plant that showed dramatic pressure variations with respect to other 
pressure observations closer to the plant might indicate impending climatological changes. 
 
By creating calculations in the PI Server to continuously calculate “pressure differences” between the 
measurements at the various instrument sites and the Glacier Wind plant, variations in pressure along 
the West to East cardinal direction were easier to visually detect and flag for further analyze in Excel.  
 
Figure 13 illustrates how the pressure differences along the West to East cardinal direction correspond 
subsequently to both a wind speed increase at the East Glacier met tower and a wind speed increase at 
the Glacier Wind plant. 
 

 
FIGURE 12 EXAMPLE PRESSURE WAVE PROPAGATION PRECEDING A RAMP EVENT 

 
Note that the order of the traces from West to East is Green, Cyan, Yellow, and Magenta.  The wind 
speed at the Glacier Wind Plant is designated in Red and the wind speed at the East Glacier met tower is 
designated in Blue.  The pressure gradient traces above the center line of the trend are positive (i.e. 
pushing toward the Glacier Wind plant from West to East). The important point to note in this figure is 
the phase shift between the first observation of a pressure “wave” propagating through the Marias Pass 
and the eventual wind speed event at the Glacier Wind plant.   
 
To further develop these correlations, two specific cases were chosen from the plant “missed” ramp 
data where all measurements appeared to be valid and significant phenomena were captured.  The first 
was during the time period of July 31st, 2010 and the second was September 4th, 2010. 
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2.3.1 July 31st, 2010 Ramp 

On July 31st, 2010 a ramp-up event was detected at the plant, classified as a “miss” by NaturEner.  
Analysis of plotted sensor data against the Glacier Wind plant’s normalized, reference “combined unit 
power production” during that time period provided insight into how this direction influences the 
plant’s operation. By plotting the relative pressure driving forces from the Marias Pass against the wind 
speed at the East Glacier met tower (in orange) and the power production at the Glacier Wind plant (in 
cyan), it can be clearly seen that there is a correlation between upstream pressure observations and 
subsequent wind phenomena at the plant. This wind regime happened to be one of the “best possible” 
cases in that there were no northerly disruptive climatological effects present during this time period.  
This allowed for clear analysis of the West to East cardinal direction. 
 
The first local maximum pressure anomaly was observed at around 9:30AM.  The first wind speed local 
maximum at the East Glacier met tower was observed around 10:30AM.  The first wind power local 
maximum anomaly at the Glacier Wind plant was observed at 12:00PM (noon). It is thought that with 
more analysis of cases such as this that an “early warning” trigger could be developed to both alert the 
plant of incoming disturbances and to assist forecasters in refining their near-term forecasts for the site. 
 
Additionally, the subsequent subsidence of the ramp event appears to be illustrated by the upstream 
pressure differences as well.  It has been observed frequently at the Glacier Wind plant that often a 
disturbance than originates from one cardinal direction may be disrupted by a disturbance originating 
from the orthogonal cardinal direction. WINData believes that installing upstream pressure 
measurements at greater distances to the North of the Glacier Wind plant would likewise assist in early 
detection of ramping conditions from the North. 
 

 
FIGURE 13 DETAILED EXCEL ANALYSIS OF JULY 31ST, 2010 RAMP EVENT 
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2.3.2 September 4th, 2010 Ramp 

Another wind phenomena event that was captured by WINData using the PI tool illustrates how 
upstream pressure measurements can indicate the subsidence of the wind speed’s driving force.  As the 
Marias Pass is a fairly narrow “channel” through which wind passes, it has very few influences from the 
North and South.  However, when the outlet of the pass (near the East Glacier 1401 met tower) comes 
under the influence of a pressure event from another direction, it can effectively “shunt” the driving 
force out of the Marias Pass and indicate that the wind out of the West to East cardinal direction will 
subside. 
 
Figure 15 shows the time period from September 4th, 2010 where the upstream driving force in the 
Marias Pass was interrupted by pressure phenomena detected at East Glacier.  This disruption (indicated 
by the green arrow) resulted in a wind speed subsidence at the East Glacier met tower and a subsequent 
power production loss at the Glacier Wind plant. 
 

 
FIGURE 14 EAST GLACIER PRESSURE DRIVING FORCE EXCEEDING MARIAS PASS DRIVING FORCE INDICATING SUBSEQUENT WIND POWER 
EVENT AT GLACIER WIND PLANT 

 
The pressure disruption detected at 1401 preceded the subsequent power drop-off (negative ramp 
event) at the Glacier Wind plant due to the fact that it originated from the South or South East.   
 
Typically disruptions such as this originate from the Northwest and would be detected by instruments 
north of the Canada border.  Because the East Glacier pressure driving force (with respect to the Marias 
Pass and with respect to Glacier Wind) rises ahead of the wind power production subsidence, it is 
possible that the point where the driving forces become equal (at the green arrow) could indicate an 
early warning of a pending down ramp event. 
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Further study of similar phenomena would be required to develop a better understanding of this 
behavior.  Also, due to the fact that these types of disruptions originate predominantly from the 
Northwest, it is estimated that a better understanding will be developed using upstream 
instrumentation in that cardinal direction. 

2.3.3 November 16th, 2010 Ramp 

On November 16th, 2010 a significant ramp event originating from the Northwest direction was detected 
and recorded by all available measurement points.  In order to better understand the correspondence 
between the propagation of disruptive Northerly wind phenomena, the data has been aligned, analyzed 
and is presented graphically below. 
 
Figure 16 below shows a detailed analysis of this time period, specifically from the Northwesterly 
direction. 
 

 
FIGURE 15 DETAILED EXCEL ANALYSIS OF NOVEMBER 16TH, 2010 RAMP EVENT  

 
The relative pressure driving force between the upstream location and the Glacier Wind plant in millibar 
is illustrated as the purple trace - as the pressure “well” develops at the Glacier Wind plant, the wind 
speed at the upstream site increases.  This indicates that a high pressure system has moved into the 
Northwest.  The peak wind speed (yellow trace) and power production (cyan trace) shows that an early 
warning of this ramp event was possible.  If upstream pressure measurements were available further to 
the North (i.e. in Canada), it is expected that a larger early warning time frame would be available as 
evidence of the pressure well would become apparent sooner. 
 
Figure 17 shows the pressure driving force and the wind regime change in the West-to-East cardinal 
direction during the same time frame.  Due to the fact that the measurement stations for this cardinal 
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direction are essentially parallel to the Glacier Wind plant, the ramp detection time frame is significantly 
shorter compared to the measurements in the North-to-South cardinal direction. 
 

 
FIGURE 16 EAST GLACIER PRESSURE DRIVING FORCE THROUGH MARIAS PASS INDICATING SUBSEQUENT WIND POWER EVENT AT GLACIER 
WIND PLANT DURING NOVEMBER 16TH, 2010 

 
The upstream pressure driving forces, as indicated in the Figure 17, illustrate a reversal of airflow 
through the Marias Pass.  The spatial progression corresponds to the trace colors as follows: red, green, 
and finally dark blue. The flow reversal starts at the inflection point at 5AM. 
 
A comparison of all the upstream measurement stations’ wind speeds is illustrated in Figure 18. 
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FIGURE 17 ILLUSTRATION OF ALL WIND SPEEDS, PRESSURE DRIVING FORCES, AND POWER PRODUCTION DURING NOVEMBER 16TH, 2010 
RAMP EVENT 

2.4 Development of Modeling Approach and Preliminary Models with Garrad Hassan 

WINData contracted with Garrad Hassan America, Inc. (GH) under a Memorandum of Agreement setting 
forth the subcontract terms under which WINData and GH agreed to accomplish the goal of providing an 
enhanced accurate, one to two hour-ahead forecasts of substantial changes in wind speed and direction 
at the Glacier Wind Project.   
 
During Q211, the WINData PI Server was successfully linked with the GH network for Mesoscale Model 
Integration of the data to facilitate the development of forecasting operations.  Initially, due to 
computational and network limitations, only small subsets of data could be acquired at a time, 
necessitating staggered queries to the PI Server.   
 
The numerical weather prediction model used by GH in this project is the Weather Research and 
Forecasting (WRF) model, developed at the National Center for Atmospheric Research (NCAR). The 
hypothesis that WRF nudged with observation should perform better than WRF without nudging was 
validated.  GH ran WRF with and without nudging and compared the bias and mean absolute error 
(MAE), specifically at the first six horizon hours.   
 
In the Figure below3 it can be seen that, for 20-m winds at tower 1401, the nudged simulation (dashed) 
results in a reduced MAE for early look-ahead times with only negligible effect on bias, although the 
time series used is limited (we used only a week of concurrent model and quality observations).  These 

                                                           
3
 Bias and Mean Absolute Error (MAE) between observed and modeled 20m wind speed by horizon hour for site 

1401.  Statistics were aggregated for the time period of July 1 to July 11, 2010.  Aggregate statistics for nudged 
runs are shown in dashed lines while the statistics for non-nudged runs are in solid.   
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initial results confirm that the model is making use of the observational data to generate a unique 
solution, but work remains to optimize its use for further reduction of error and event detection.  
 
When the observations are of high quality it is expected that the forecast accuracy can improve.  As 
methodology using the offsite observations evolves and is further tested, validations will increasingly 
focus on the Glacier Wind plant site.  
 

 
FIGURE 18 BIAS AND MEAN ABSOLUTE ERROR (MAE) BETWEEN OBSERVED AND MODELED 20M WIND SPEED BY HORIZON HOUR FOR SITE 
1401 

 
The above point validation confirms that efforts toward integrating the tower and station data with the 
numerical weather prediction model have been successful.   
 
This also can be visualized in the flow differences between the nudged and un-nudged domains.  The 
following Figure shows a difference map of the wind speed simulations for forecast 10-m wind on 2010-
07-12 12:10 (Nudged WRF – non-nudged WRF).  This visualization method demonstrates that the offsite 
data not only influence the collocated forecast but also perturb the flow surrounding the mast.  We 
have highlighted the areas where we see the most change, which also correspond to areas closest to the 
Marias pass as well as the 1401 tower.  If the flow though the pass can be better simulated with the aid 
of the 1401 tower, then there is benefit to the offsite towers at the downwind Glacier wind farm.        
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FIGURE 19 DIFFERENCE IN WIND SPEED AND WIND DIRECTION (INDICATED BY ARROWS) BETWEEN A NUDGED AND NON-NUDGED 
FORECAST FOR A SNAPSHOT OF 12:10 GMT FOR JULY 12, 2010. 

 
 
This figure has been imported into Google Earth to show the location of the WINData tower, the 
NaturEner Glacier wind farm and their relation to the Marias Pass.   
 
WINData/GH performed cluster and factor analysis using the offsite data.  In this way, ensembles of 
observations were collected in categories that can serve as indicators to ramp events.  This technique 
operates independently of data assimilation techniques by using leading indicators from the offsite 
measurements to alert and/or adjust the forecast for events.   
 
The benefits of each technique will be measured against their computational costs.  GH experimented 
with so-called Ward clustering and other hierarchical algorithms to intelligently organize the data into 
subgroups that share commonalities.   The following figures are examples of such an exercise in data 
grouping. 
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FIGURE 20 TIME SERIES OF WIND SPEED AT GLACIER WIND FARM (IN SOLID BLACK LINE), WITH COLORED POINTS OVERPLOTTED TO 
REPRESENT ONE OF 8 K-MEANS CLUSTERING CATEGORIES. 

 
In the Figure above, each cluster has a characteristic center to its distribution whose mean variables are 
displayed by color in the Table below. In the Table, each row is a separate cluster, as indicated by the 
colors that correspond to the coded markers in the above plot.  Each cluster has a unique mean value 
for each variable. 
 
TABLE 1 THE MEANS OF MEASUREMENTS OF EACH CENTROID IN THE 8-MEMBER K-MEANS CLUSTERING. 

  Glacier  
wind  
speed (m/s) 

1401 
pressure 
(mbar) 

1401 wind  
speed 
(m/s) 

1401  
direction 
(deg) 

1402 
pressure 
(mbar) 

1402 wind 
speed 
(m/s) 

1402 
direction 
(deg) 

1 5.21 1025.8 4.99 253.9 1022.3 3.64 155.8 

2 6.59 1024.2 4.14 218.4 1021.4 3.50 12.4 

3 7.81 1019.9 9.64 228.1 1016.5 9.77 250.4 

4 4.16 1023.4 2.11 109.0 1020.3 3.95 168.3 

5 8.77 1024.4 8.38 235.3 1021.3 4.97 324.9 

6 10.27 1025.5 3.01 21.5 1016.6 9.49 257.7 

7 6.25 1027.5 3.27 44.3 1023.1 4.62 1.8 

8 6.27 1016.7 7.22 219.6 1013.9 6.40 200.7 

 
GH used the k-means algorithm to cluster into 8 unique groups.  When plotted in time, we see several 
ramps in the time Glacier wind speed time series, many with a different colored cluster responsible for 
it.  Cluster 6 (pink) has the highest average wind speed at Glacier.  Interestingly, this cluster provides the 
strongest pressure gradient between 1401 and 1402:   1026 mbar – 1017 mbar = 9 mbar difference, with 
strong northerly flow at 1401.   
 
The model can be trained to search for such a pattern within the forecast and/or the observational data.  
If this pattern is detected at East Glacier (1401) before the next forecast, we would adapt our forecast to 
expect a ramp ahead of time.  Clusters 4 and 8 also appear to lead to ramps, and if their pressures and 
wind characteristics at the met masts were know prior to the forecast, we could adjust them 
accordingly.  The choice of cluster number is arbitrary at the moment and requires formalization to 
make rigorous quality control logic in real time.   
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GH ran WRF with and without nudging and compared the bias and mean absolute error (MAE), 
specifically at the first six horizon hours.  In Q311, GH tested this hypothesis at Glacier wind farm for 
hub-height power.   
 
In the Figure below4 it can be seen that for the site hub-height power, the nudged simulation (dashed) 
results in a reduced MAE for early look-ahead times with only negligible effect on bias, although the 
time series used is limited (GH used approximately 7 weeks of concurrent model and quality 
observations).  These results confirmed that the model was making use of the observational data to 
generate a unique solution.     
 

 
FIGURE 21 BIAS AND MEAN ABSOLUTE ERROR (MAE) BETWEEN OBSERVED AND MODELED HUB-HEIGHT POWER  WIND SPEED BY HORIZON 
HOUR FOR THE GLACIER I WIND FARM.   

 
Beyond error reduction, GH was also concerned with event detection and in Q311 focused their 
performance validation on metrics that track ramps.  To do so, a ramp definition was established as a +/- 
15% change in production relative to the farm capacity over the course of three hours.  This is arbitrary 
but necessary to track ramps and their statistics, and also in accordance with industry definitions (e.g. 
NaturEner).  Then binary flags are applied to the time series of both observations and modeled power 
output, to create a dichotomous contingency table.  The four quadrants of this table are ‘correct hits’, 
‘correct misses’, ‘false negatives’ and ‘false positives’.  These categories are then rearranged to give 
metrics such as Probability of Detection (POD), False Alarm Ratio (FAR) and Critical Success Index (CSI).   
 
POD is mathematically defined as the number of correct hits (H) over the number of correct hits plus 
false negatives (FN).    POD = H/(H + FN)    It gives the fraction of occasions that a predicted ramp 
occurred relative to the amount of times any ramp was predicted.   A POD value of 1 is ideal; a value of 0 
is poor. 
 
FAR is likewise defined as the number of false positives (FP) relative to the total amount of non-event 
correct misses (CM).    FAR = FP/(FP + CM)   It gives the frequency of forecasts that are wrong in 
predicting ramps when they actually do not occur.   An FAR value of 0 is ideal; a value of 1 is poor. 
 

                                                           
4
 Bias and Mean Absolute Error (MAE) between observed and modeled 20m wind speed by horizon hour for site 

1401.  Statistics were aggregated for the time period of July 1 to July 11, 2010.  Aggregate statistics for nudged 
runs are shown in dashed lines while the statistics for non-nudged runs are in solid.   
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CSI is defined as the number of hits over all events (N), such that it scores only correctly predicted 
ramps.  CSI = H/N is the proportion of correct critical forecasts to all forecasts.  The higher the CSI score, 
the better the forecast skill.  The initial goal was set for scores in the 0.3 to 0.4 range. 
 
GH used POD, FAR and CSI to assess how well the nudged NWP performs at ramp prediction at horizons 
outward.  When the observations are of high quality it is expected that the forecast accuracy can 
improve.  As methodology using the offsite observations evolves and is further tested, validations will 
increasingly focus on the Glacier Wind plant site.  
 
To improve the forecast’s performance in ramp detection metrics, GH proceeded with cluster and factor 
analysis using the offsite data.  In this way, ensembles of observations were collected in categories that 
served as indicators to ramp events.  This technique operated independently of numerical weather 
prediction data assimilation techniques by using leading indicators from the offsite measurements to 
alert and/or adjust the forecast for events.   
 
Clustering requires a training period that aggregates the historic data into representative cluster and 
builds histograms of the types and magnitudes or ramps that occur between given cluster transitions.  A 
sample training set and the histograms of ramps plotted on the power production times series is 
presented in the following figure.   
 
As a set of observations arrives, is assigned to the cluster whose mean it most closely resembles.  The 
GH algorithm assigns ramp forecasts by adding a range of possible ramp magnitude to the most recently 
reported power.  The range of this magnitude is given by the ramp magnitude historically associated 
with the newly assigned cluster.   The last Figure portrays the subsequent forecast in real-time of the 
training data set parameters from the first Figure. 
 

 
FIGURE 22 TRAINING PERIOD OF CLUSTER ALGORITHM. 

 
Blue time series indicated plant power and grey shading corresponds to the probability in percent that 
the range of ramps occurred immediately afterwards.  The legend indicates the magnitude of the 
shaded ramps. 



26 | P a g e  
 

 
 

 
FIGURE 23 FORECASTS OPERATING IN REAL TIME ON THE CLUSTER ALGORITHM APPLIED FOR THE GLACIER WIND FARM 

 
In the above Figure again, blue time series indicates power production and shaded boxes indicate ramps 
shaded by the likelihood given in the legend. Also worth considering is how many clusters are needed to 
characterize the regimes of the forecast of interest.  If for instance only four types of weather states 
occur in the training, then only four clusters would ideally be needed to propagate the forecasts in real 
time.  However, GH had no a priori knowledge of either how long or how many clusters stay ‘fresh’, and 
so performed a suite of experimental forecasts.   
 
GH used the same training set length and period as the control, but varied the number of clusters and 
length of time the original solution was persisted as a parameter to the model.  The intervals varied 
between 1 and 20 clusters and 1 to 8 weeks post-training window.  In the graphic below GH combines 
the results in image plots to assess how the POD, FAR and CSI performed across “number of training 
cluster” experiments as seen below in the three Figures below, respectively.   

 
FIGURE 24 PROBABILITY OF DETECTION (FRACTION) AS A FUNCTION OF NUMBER OF TRAINING CLUSTERS AND NUMBER OF WEEKS SINCE 
TRAINING 
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FIGURE 25 FALSE ALARM RATIO (FRACTION) AS A FUNCTION OF NUMBER OF TRAINING CLUSTERS AND NUMBER OF WEEKS SINCE TRAINING 

 
 

 
Figure 26 critical success index (csi) as a function of number of training clusters and number of weeks since training 

 
In each figure, the x axis denotes the number of clusters used in the experiment, and the y-axis denotes 
the number of weeks elapsed since the end of the cluster training period (i.e., representing the 
“freshness” of the solution.  From this experiment, it can be seen that maximizing CSI while minimizing 
FAR suggests that the ideal setup for best ramp tracking would be to require 4 to 8 clusters for training 
and to re-train the cluster algorithm every 2 to 4 weeks with additional data.    
 
What remained as the ultimate goal was to take these two separate techniques and merge them into 
one single ramp forecast.  GH formulated plans for augmenting NWP with the cluster-defined ramps and 
set-up a more robust method of providing this type of forecast in real time. GH commenced with the 
integration of the regional offsite data into the forecast model and compared standard and enhanced 
model outputs side by side.  
 
Routine archive data review was performed on a daily and weekly basis in order to ensure the validity of 
the data set being recorded. Periodic investigations into data flow and communications outages were 
performed during the quarter. During the quarter, intermittent failures at 1401 led to replacement of 
the AppSrv CE through component procurement and provisioning of a mini PC running PI, as alternate 
collection means. 
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A replacement of the existing logger infrastructure at 1401 was configured and deployed for a short 
time at the site. It indicated a similar, unpredictable, intermittent failure pattern to that of 1402. This 
indicated a potential hardware defect from the manufacturer. Two alternate paths for collecting high 
resolution data were already in place. A second logger infrastructure was configured and deployed at 
1401 based on a low-powered computer. Once all the data sources were in place, then the consumers 
were updated to use this new data infrastructure. 
 
WINData prepared new data investigation queries for mesoscale modeling activities during this period 
as well. By using the PI System’s OLEDB gateway (a SQL-based database connectivity standard) and 
creating a set of “linked tables” with “stored procedures” additional tables are now available to the 
mesoscale model on-demand, at an appropriate resolution. These data are structured in equally spaced 
intervals in SQL Server tables and can be processed using typical SQL language commands. Further, this 
setup allowed the data to be accessed securely, on a self-service approach without the use of text files 
and FTP sites – a significant objective of this grant. 
 
After the success of linking the WINData PI Server with the GH network, rather than amassing a large 
historical data set, routines were written to query for only the most recent observations to couple with 
only the most recent NWP. All data required for the forecasting model including pressure, temperature, 
wind speed, and wind direction, were obtained from the PI Server in real-time and ingested into the 
forecast system.   
 
New plant data connections to meteorological data were established in Q2 2011 from four turbine 
nacelle anemometer/wind vane sensors from distributed plant locations were tested and also then 
shared via similar SQL Server linked table methods as meteorological data from sites 1401 and 1402. 
These data also include power production data from the two production plants and the number of 
pieces of equipment in service.  

2.5 Development of Enhanced Forecast Models Employing Real-Time Data 

Trials were completed with the integration of the regional offsite data into the GH forecast model and 
preliminary results were assessed to compare standard NWP and enhanced model outputs side by side. 
Cluster forecast training was conducted on over a year of historical data to obtain a theoretical yield of 
the improvements that could be expected for a configuration in forecast mode.  The improved metrics 
were compared to the baseline values that a stand-alone persistence model would achieve.  The value 
of the offsite observations were thus measured in terms of percent improvement over persistence.   
 
The forecast performance was evaluated through a comparison of the traditional metrics of bias and 
mean absolute error (MAE), but with a focus more on horizon specific values for the Critical Success 
Index (CSI), Probability of Detection (POD), overall event accuracy (ACC) and the False Alarm Rate (FAR)5.  
For bias, MAE, and FAR, a reduction at all horizons was sought, and for CSI, POD and ACC an increase 
relative to persistence at all horizons was sought. 
 
GH conducted an internal statistical investigation of the forecast accuracy, in which it was sought to 
compare ongoing results against a null hypothesis of simple persistence model (simply applying the last 
measurement as the next forecast value).  The results demonstrated improvement in all metrics, but not 

                                                           
5
 Metric parameters are used by NaturEner in evaluation of forecast performance and were contributed for 

evaluation of this work by Devon Yates at NaturEner. 
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at all horizons. The following figures summarize the results calculated over the forecast data delivered 
to date: 
 

 
FIGURE 27 THE CHANGE IN THE GIVEN METRIC OF GH MODEL RELATIVE TO PERSISTENCE.   

 
In the figure above, positive values of CSI imply that percentage increase over the same horizon’s CSI as 
calculated for persistence.  CSI improves rather dramatically for horizons 3 thru 6 as does probability of 
detection (POD) and accuracy (ACC).  The false alarm ratio (FAR) was reduced, as indicated by the 
negative percentages, which is also what a superior forecast is supposed to produce in terms of 
deviation from a persistence model. 
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FIGURE 28 – GREEN SOLID LINE INDICATES MAE FOR PERSISTENCE, AND RED SOLID INDICATES MAE FOR OUR MODEL.  APPLYING THE SAME 
COLORS, DASHED LINES INDICATE MEAN BIAS.  BOTH MAE AND BIAS ARE CALCULATED RELATIVE TO CAPACITY OF GLACIER I WIND FARM.   

 
The model was allowed to operate into additional seasons and weather regimes to test its applicability 
and effectiveness.  The major finding of the operational results is that the offsite measurements can and 
do add value to short term ramp forecasts.  For the length of the trial period in the internal analysis, the 
bias and MAE were better than or at least mimicked those scores of persistence at all horizons.  Beyond 
horizon 4, the enhanced model outperformed simple persistence in MAE.   The improvement in ramp 
metrics is not seen over all horizons, however, but we do see the most improvement beginning at hour 3 
and onward to hour 6.  It seems this particular configuration is limited at predicting ramps at 1 to 2 
hours ahead better than persistence.   

2.6 NaturEner Analysis and GH Commentary on trial model 

After the initial trial period, the analysts of NaturEner provided valuable feedback in the form of a 
rigorous retrospective statistical analysis of the forecasts that were provided.   The results of that 
analysis are included as an appendix to this final report.  The key points will be presented and addressed 
herein. 
 
Analysts from NaturEner were interested in a 90-minute-ahead forecast product, and as such computed 
statistics for this horizon value.  The following table from the attached report compares the NaturEner 
persistence model with the WINData/GH forecasts at this horizon. 
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TABLE 2 SUMMARY OF RESULTS (FROM ATTACHED NATURENER APPENDIX) 

 
 
This table illustrates several key elements of the model, both positive and negative.  First, the CSI score 
was improved by an increment of 6.3% and the probability of detection improved by an increment of 
25.8%.  These two metrics are quite encouraging because they track ramp capturing ability, which is 
precisely what the pattern matching algorithm is supposed to improve.  These are sizeable gains that 
would not be possible without the use of WINDataNOW! measurements.   
 
The model more than doubled the amount of ramp ‘hits’ (94 hits compared to 45 persistence events, 
when the forecast captured an actual ramp event) and reduced the ‘misses’ (implying the model agreed 
more often than persistence did for non-ramp events) over the same time window.  The model achieved 
comparable values for the amount of correct negatives as well.   
 
This table also highlights where the model can be improved.  For instance, the amount of ‘false 
positives’ is much higher than persistence (192 compared to 16), which is likely the cause of the higher 
MAE (16.4% compared to 11.2%) and a more negative bias.  Additionally, the metric that tracks false 
positives (False Alarm Ratio) was too high (67.1% compared to 20.5% for persistence).  This is a value 
that is considered as perfect when it is 0%.    
 
The scores in which the enhanced forecast performed poorly reflect the configurations which were 
trained and tuned for more frequent 3-hour ramp events.  This statistical analysis by NaturEner did not 
distinguish and separately assess the entire trial period into three distinct events, and the bulk statistics 
are likely skewed by Configuration I and II.  Nevertheless, despite the propensity for predicting too many 
ramps, these results support our hypothesis that the performance statistics of a model using the offsite 
measurements would possess better skill at ramp prediction than would an onsite persistence model.   
 
The model itself needs refinement at reducing false alarms that were likely the cause of insufficient 
coverage in sectors prone to calm air.  Suggestions are made in later sections how to improve this model 
deficiency.   
 
Another powerful graphic from the NaturEner analysis will benefit the forecasters in future model 
deployments.  It portrays conditions when the model did well and likewise when it did poorly.  It is also 
included in the appendix and copied here for the discussion. 

Persistence WINData

Critical Success Index 20.1% 26.4%

False Alarm Ratio 26.2% 67.1%

Probability of Detection 20.5% 46.3%

Frequency Bias 27.7% 130.0%

MAE 11.2% 16.4%

Bias -0.1% -7.2%

HIT 45                  94                  

MISS 175                109                

CORRECT NEGATIVE 590                581                

FALSE POSITIVE 16                  192                
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FIGURE 5:  (COPY OF FIGURE 6 FROM APPENDIX 1) COMPARISON OF ACTUAL CATEGORY AGAINST FORECAST CATEGORY 

  
This set of pie charts shows how the forecast system generates more false positive in ‘calm’ and 
‘constant’ events than does persistence, demonstrated by the yellow wedges in columns one and two.   
 
The majority of the performance issues with regards to false alarms can be explained by forecasts during 
these non-varying wind regimes.  It is not surprising that persistence would perform quite well when the 
wind stayed constant for hours at a time or when winds were calm.  The forecast system was trained to 
be especially sensitive to ramps; and this figure highlights that it may have been hyperactive.   As 
expected, the forecast system demonstrated fewer missed ramps and more captured ramps than 
persistence.   
 
It is evident that the number of hits for up and down ramps is increased with the model compared to 
persistence (green wedges in columns three and four), but overall (column 5) these relative 
improvements are overshadowed by the large number of false positives from columns one and two.     
 
Clearly, the new forecast system performs well for ramp periods, highlighting the value of the offsite 
measurements, but the predictive components need to improve for calm periods or non-varying periods 
to be a reliable tool for operators.  The suggestions that follow will address this shortcoming. 
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2.7 Finalized GH Enhanced Forecast Model 

The finalized model consisted of three approaches that utilize offsite and onsite:  persistence, data 
assimilation, and pattern matching.  GH intelligently combined and blended the three techniques 
specific to each horizon of the 6-hour forecasts.   
 
GH conducted comprehensive modeling system calibrations twice throughout the test period, which 
consisted of modifying the relative weights of the forecast sources to the final prediction, as well as 
adjusting the characteristics of the physical ramp pre-cursors on which the pattern recognition model 
relies.  Accuracy can be assessed in three phases of the trial period, each preceded by a modeling 
system calibration.  The following Figure shows the entire time series of the trial period, with boxes 
indicating the time periods of interest. 
 

 
FIGURE 29 TIME SERIES OF FORECASTS (GREY) AND OBSERVATIONS OF GLACIER I GENERATION (BLACK).  EACH GREY LINE INDICATES A 6 
HOUR FORECAST.  THE COLORED BOXES SEPARATE THE STUDY PERIOD INTO THE 3 TEST CONFIGURATIONS AND ABOUT 3 DAYS TO 
DISREGARD FOR A DST GLITCH. 

 

2.7.1 Configuration I 

The first trial period relied heavily on persistence as well as unsupervised training upon distinct 
meteorological patterns for ramp events.  The offline training was performed on actual data with a 
variety of statistical and machine learning techniques.  The designation of the training as ‘unsupervised’ 
implies that the algorithms were allowed to run freely and automatically without any a priori inputs.  In 
later configurations, GH performed ‘supervised’ training in which analysts played more active roles in 
the initialization of the machine learning by supplying statistical criteria for the training to follow.   
 
The particular training for Configuration I resulted in ramp patterns that favored matching on 6 hour 
ramps.  This is seen most when we compare 3-hour and 6-hour Critical Success Index (CSI), a metric 
which quantifies the skill of forecast at a particular event.  The event in question for this test is whether 
or not a ramp occurred over a given time period.   
 
We define a ramp as a change in observed generation that is greater than 15% of capacity.  We tracked 
both up and down ramps over the two durations.  Configuration I demonstrated better skill for 6-hour 
duration ramps (6-hour CSI =0.39), than it did for 3-hour ramps (CSI = 0.14).  This is consistent with the 
settings of Configuration I, which was trained without any a priori criteria to favor 3-hour ramps.  
Training based purely on automated machine learning favored patterns of 6-hour ramps.   
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FIGURE 30 SUBSET OF TIME SERIES FOR CONFIGURATION I FROM FIGURE 31.   

 

2.7.2 Configuration II 

The second test period follows a forecast system calibration on March 14, 2012, in which supervised 
training was performed to provide patterns for real-time matching.   In the Figure below, each individual 
forecast is plotted in grey out to 6 hours and the observations are shown in black.  This type of 
visualization shows the evolution of forecasts at all horizons relative to the actual generation values.    
 
Training of the pattern recognition for Configuration II was supervised, in that analysts seeded the 
model with specific criteria for 3-hour ramps.   Examples of the criteria include changes in surface 
pressure among the stations in the Marias Pass, and changes in tower wind speed and concomitant wind 
direction that triggered specifically 3-hour ramps.  This supervised pattern recognition resulted in 
improved skill at the 3-hour horizon (CSI = 0.17, compared to 0.14 from Configuration I).  However, at 
the same time, Configuration II performed less favorably at the 6-hour horizon (CSI = 0.25, compared to 
0.39 from Configuration I).   
 
Additionally, there were a relatively larger number of false alarms at the 6-hour horizon seen in 
Configuration II than with Configuration I.  This was due to the shift towards a pattern matching scheme 
more prone to predicting 3-hour ramps.  Such tendency means 3-hour ramps often carried on their 
upward or downward trend out to 6 hours instead of leveling out.  While the 3-hour ramps were 
captured better, the inadequate detail of the forecasts after 3-hours led to many false alarms.   
 
Configuration II was also prone to predicting ‘up’ ramps, rather than ‘down’ ramps.   While the training 
was focused on the meteorological triggers for 3-hour ramps in general, it was specifically tuned to 
recognize the surrounding meteorological that resulted in 3-hour ‘up’ ramps.  In other words, the 
training was not tuned to recognize as much of the patterns in the meteorology for ‘down’ ramps. This 
configuration was more robust at capturing and translating downstream the impulses that led resulted 
in wind and power increases.   
 
As later sections will explain, the events that led to decreases in wind occurred in sectors in which there 
were no observations.  Therefore the training did a poor job at discriminating the type of conditions that 
led to sudden wind decreases, and the real-time model did a poor job at predicting power ramps for 
such conditions. Significant effort was focused on improvement of down ramp prediction in 
Configuration III.   
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Overall, due to the large number of false alarms, reduced fidelity with down ramps, and lower capture 
rate of 6-hour ramps, Configuration II performed the most poorly of the three distinct configurations.     
 
 

 
FIGURE 31 SUBSET OF TIME SERIES FOR CONFIGURATION II FROM FIGURE 1.   

2.7.3 Configuration III 

The final configuration GH tested is the most evolved.  Not only does it incorporate all previous analysts’ 
learning but also its pattern recognition is trained (supervised) on the largest time history which was 
obtained over the course of the trial period to date.  The use of ramp patterns that were focused at 3-
hour ramps of both directions was maintained.   
 
In response to degraded forecasts at the longer horizons during Configuration II, there was a renewed 
focus on the 6-hour time frame.  This was accomplished by the analysts’ more thorough a priori input 
for the training, in which an equal amount of criteria were used to make a more balanced pattern 
matching on both 3- and 6-hour ramps. CSI scores improved for each duration window from the 
previous configurations (3-hour CSI = 0.27; 6-hour CSI = 0.31).   
 
GH concluded that this was the best performing configuration of the experiment period, with the fewest 
false alarms and most captured ramps.  The Figure below qualitatively shows fewer false alarms 
occurred than for the period in which Configuration II was active.  Compared to the Figure for 
Configuration II, in which many more false up ramps were observed, the time series of Configuration III 
shows a better balance between up ramps and down ramps. 
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FIGURE 32 SUBSET OF TIME SERIES FOR CONFIGURATION III FROM FIGURE 1.   

2.8 Problems and changes to Approach 

In early 2010, Site 1401’s data logger suffered several data communications losses due to Verizon’s 
communication tower issues.  These issues were resolved by the service provider. Power system issues 
at 1401 also impaired data collection for some period of time.  It is thought that a manufacturing defect 
in the wind turbine used for power generation could not withstand temperatures below -20 C.  The wind 
turbine’s blades completely snapped off during a powerful wind storm that propagated through the 
Marias Pass. 
 
Data from the 1401 and 1402 met towers have been high quality when the temperatures have remained 
above -20 C.  At temperatures below -20 C, some of the wind vanes have a tendency to freeze in place.  
Other instruments remain unaffected. 
 
Significant study and development was performed on the power system for the 1402 site installation.  
An entirely new charging and power generation system was created to ensure more reliable data logger 
and communications operations. Site 1401 was partially retrofitted with this new power system design. 
 
In mid-2010, a 6 month freeze of funding resulting from the DOE audit Work was halted during this 
period. Accounting system changes were implemented to satisfy DOE. Technical work was halted while 
the funding was frozen, although troubleshooting and configuration support at site 1402 was performed 
remotely to ensure proper operation and data integrity since the location becomes permanently 
snowbound in winter 
 
During Q1and Q2 of 2011 NEPA review of the met tower installations was conducted and finalized.  
 
During Q4 2011, Verizon cut off communications to 1402 twice due to inaccurate “fraud alerts” on data 
transfers from the tower’s modem. These significant delays in data transmissions caused gaps in the 
data which were partially recovered, but were not due to any mechanical failure on WINData’s part. It 
was also discovered during these outages that Verizon was also allowing WINData’s data plan to “roam” 
onto Canadian (international) data towers at a significantly higher data transfer price. WINData 
reconfigured its hardware to specifically disallow this behavior. During the transition to the new data 
delivery pathway, it was observed that a 50m anemometer at site 1401 had started to behave 
erratically. This is most likely due to the freezing temperatures or a wiring fault. This behavior was 
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reported to all parties but will not impact the project as there is a redundant instrument already in 
place. 
 
The project term was extended through Q312 to accommodate the final phases of the work, which 
included the forecasting tasks and evaluation of results. 

3 Evaluation of Enhanced Forecast Using Offsite Data 

3.1 Garrad Hassan Evaluation 

WINData and GH were encouraged by the later horizon improvement and hypothesize as follows, after 
the fact, as to why a different configuration might improve at all horizons in the future.  We believe the 
following improvements would result in even better performance in later iterations of the model: 
 

(1) A higher density of upwind observations, both vertically and around the farm, to both nudge 
the model and also on which to perform pattern matching, that would include sectors 
previously unaccounted for and at distances closer to the site to capture shorter range 
ramps  

 
(2) On-site wind speeds in order to convert the offsite patterns’ signals into the on-site wind 

speed response.  Currently the model uses the onsite power response, which is non-linearly 
related to wind speed and thus not a direct mapping of the local meteorological 
surroundings.  The non-linear nature of the power curve model would best be suited to 
running wind speeds obtained from power matching than using power itself. 

 
(3) To reduce seasonal dependence of training clusters, pattern matching would be performed 

untrained on the complete set of historic data.  The algorithm to span the search space has 
proven to be rapid and accurate in offline tests, and if deployed in real time would eliminate 
biases created by using a smaller subset of generic meteorological conditions. 

 
 
With the exception of a software glitch due to the change in day light savings time (DST) that occurred 
on March 13, 2012, the forecasts were otherwise delivered stable and routinely.  The problem with the 
DST changeover resulted in the next few days following the change in time zones having stale NWP; the 
ramp forecasts were still unique, but the NWP was not spun-up correctly.  This was corrected as soon as 
forecasters were aware of it, and the forecasts were produced correctly since.   

3.2 3Tier Evaluation 

The project was extended through September 30th, 2012 to allow 3Tier to conduct data analysis and 
determine whether the met towers and other sensors have an economic value to Glacier Wind in short 
term ramp forecasting. It was decided that depending on the outcome of 3Tiers’ evaluation, either the 
sensor array would be turned over to NaturEner (or 3Tier) or signed over to and decommissioned by 
WINData. 
 
The 3Tier write-up is provided below.  3Tier initially believe that the data quality was such that only a 
small amount of data could be used, they rechecked their QA/QC filtering and were able to make some 
revisions and included analysis using the 1401 E Glacier met tower.   
 
Eric Grimit, Senior Scientist at 3Tier speaking –  
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“Thanks for your patience.  As I alluded, our conclusions are no different - which is certainly 
disappointing.  I know there is value here in this data as we have discussed.  We will be running some 
data assimilation experiments soon and with your permission we would include the WINData 
observations.  Please let me know if that is OK. 
 
Eric” 
 
--- 
“The following figures and tables summarize the forecasting experiments run by 3TIER for the Glacier 
Wind I wind project using the observation data supplied by WINData.  WINData observations included 
two meteorological towers and four surface weather stations located in Montana.  One of the met 
towers (1402 - Babb) was not used in this analysis to due its shorter length of record (available since 
August 2011) compared to the other met tower (1401 - East Glacier) and the four surface weather 
stations, at which consistent data was available as far back as August 2010.   
 
For these experiments, only the wind speed and pressure observations were utilized.  3TIER ran the 
observational data through its standard quality control routines and discarded values that did not pass 
simple range, persistence, and step checks.  These discarded values along with the missing observations 
that were not provided account for approximately 25% of the analyzed time period.  The remaining 75% 
of the data was used for training and testing.  The training period for all models was August 1, 2010 to 
December 31, 2011.  The independent test period over which all results are summarized was January 1, 
2012 - April 30, 2012. 
 
3TIER trained two control forecasting models that mimic its operational forecasts provided to NaturEner 
in real-time for the Glacier Wind I facility.  The first model is trained to minimize the mean-square-error 
(MSE) of standard power forecasts (3TIER, Control).  The second model is trained to maximize the 
equitable threat score (ETS) for two-sided ramp events greater than 15% of installed capacity, within a 
tolerance of 15% (3TIER Ramp, Control).  These thresholds for ramp classification were defined by 
NaturEner.  Both of the control forecasts were developed from a predictor pool that consists of all 
NaturEner observations from on-site and the off-site met tower located near Browning, Montana, as 
well as all regularly reporting public weather stations in the region.  Therefore, the control forecasts 
already include the use of off-site observations, which leads to large improvements over a persistence 
forecast benchmark. 
 
Two additional models were trained with the WINData observations included in the predictor pool.  The 
experimental model trained to minimize the power forecast MSE is denoted "3TIER, WINData Obs" and 
the model trained to maximize the ramp ETS is labeled "3TIER Ramp, WINData Obs".   
 
All forecasts are evaluated for the 1-hour target period with a 75 minute lead starting from 45 minutes 
after each hour.  The forecast horizon for this period is from 75 to 135 minutes into the future.  It was 
assumed that all observations taken at, or prior to, 40 minutes after the hour would have been available 
for use.  The performance of these experimental models compared to the control forecasts shows the 
incremental impact that the WINData observations supply to 3TIER's forecast system as it is currently 
configured. 
 
The inclusion of WINData observations into 3TIER's forecast system acts as an improvement in some 
periods and a degradation in others.  For both forecast types, the summary statistics show performance 
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that is, at best, equivalent to the control forecasts.  Rolling 30-day statistics, shown as time series for the 
February - April 2012 period illustrate the time periods of benefit and degradation.  There is a small 
increase in the probability of detection, but also a commensurate increase in the false alarm ratio which 
acts to negate the improved detection of true positives.  Overall, the threat score for ramp event 
detection is about the same when WINData observations are included.  
 
We conclude that the WINData observations, as they are currently sited, do not add significant benefits 
to 3TIER's current forecast system.  The 3TIER forecasts already incorporate existing off-site 
meteorological data from both NaturEner's private sensors and public weather stations in the 
region.  Evidently, the WINData observations do not add enough new information that is independent of 
the data already sampled by the existing off-site sensors.  This was not anticipated in advance.  Since 
there are relatively few observations in the region near the Glacier Wind facility, we had speculated that 
significant improvements were possible with deployment of just a few sensors in key areas.”6 

                                                           
6
 Evaluation contributed by Eric Grimit, PhD, Senior Scientist, 3TIER Inc., 2001 6th Avenue, Suite 2100, Seattle, 

Washington 98121 
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FIGURE 33 JANUARY - APRIL 2012 FORECAST TIME SERIES @ 75 MIN. LEAD 
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TABLE 3 JANUARY - APRIL 2012 SUMMARY METRICS BY MONTH 

 
3TIER Ramp, Control 3TIER Ramp, WINData Obs 3TIER , Control 3TIER, WINData Obs 

Threat Score 
    

Jan 0.2509 0.244 0.2519 0.2692 

Feb 0.3008 0.2863 0.2919 0.2857 

March 0.3142 0.2902 0.2801 0.2897 

April 0.3227 0.3206 0.3467 0.3255 

     
Prob. Of Detection 

    
Jan 0.3273 0.3318 0.2955 0.3241 

Feb 0.4229 0.4329 0.3446 0.3537 

March 0.3993 0.37 0.3207 0.3394 

April 0.4821 0.5153 0.4083 0.4157 

     
False Alarm Ratio 

    
Jan 0.482 0.5203 0.3689 0.386 

Feb 0.4897 0.5419 0.3441 0.4021 

March 0.4041 0.4261 0.3111 0.3357 

April 0.5061 0.541 0.303 0.4 

     
MAE (MW) 

    
Jan 13.3123 13.8708 12.957 13.4252 

Feb 11.2495 12.0193 10.7483 11.5177 

March 15.1906 15.5746 14.8035 15.2945 

April 11.2327 11.6886 10.5238 11.171 

     
BIAS (MW) 

    
Jan -0.5549 -0.0175 -0.3133 -0.3377 

Feb -1.25 -0.0047 0.8229 1.734 

March -1.4255 -1.1518 -0.5864 -0.2364 

April -1.0734 -1.0131 -0.0099 0.3994 
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FIGURE 34 FEBRUARY - APRIL 2012 ROLLING (TRAILING) 30-DAY METRICS 
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FIGURE 35 FEBRUARY - APRIL 2012 ROLLING (TRAILING) 30-DAY METRICS 
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4 Suggestions for Future Improvements to the Methodology 

 
We are encouraged by much of the ramp detection improvement. However, there is room to grow the 
model to include fair weather, calm and constant predictions.  We believe the following improvements 
would result in even better performance in later iterations of the model: 
 

(1) A higher density of upwind observations, both vertically and around the farm, to nudge the 
model and on which to perform pattern matching, that would include sectors previously 
unaccounted for and at distances closer to the site to capture shorter range ramps.  It is well 
established that use of offsite measurements can improve NWP – several agencies already 
perform this type of data assimilation, both in real-time operations and field campaigns.  We 
know and have demonstrated that the WINData measurements do change the output our 
own internal NWP real-time runs.  The difference between this study and the larger 
studies/operations is the strategic upwind location of the sensors relative to the Glacier 
wind farms.  We know the placement of towers in the sensitive sectors of this unique wind 
regimes improved forecasts, but the improvement was confined to events when the wind 
was in those sectors.  What we lacked was visibility to all sectors upwind and often missed 
down ramps that occurred from the south and east.  A significant amount of events occur 
from these sectors, and our forecasts were inherently ignorant to these types of ramps.  We 
hypothesize that future increased coverage would give more spatial awareness to the 
models and improve accuracy for more types of events.   

 
(2) On-site wind speeds in order to convert the offsite patterns’ signals into the on-site wind 

speed response.  Currently the model uses the onsite power response, which is non-linearly 
related to wind speed and thus not a direct mapping of the local meteorological 
surroundings.  The non-linear nature of the power curve model would best be suited to 
running wind speeds obtained from matching than using power itself.  There is a subtle 
difference in this approach.  For this project, we did not provide a superior wind forecast, 
per se, but rather attempted to provide a superior power forecast relative to on-site power.  
What we claim now is that the better approach is to first make a superior wind forecast, 
calculated against on-site wind speeds, and only then convert the wind speeds to power 
through a power model.  Because curtailment, availability and other considerations that 
may mask biases in wind speed accuracy when validating with power exist, we should seek 
to make the best wind speed forecasts and compare against wind speed measurements.  
The ultimate goals remains to provide the best power forecast that are easily validated with 
onsite power measurements.   At the time that delivery of the forecasts was required for the 
project timeline there were insufficient amounts of on-site wind speeds to use to this end.  
This new understanding will result in future versions of this type of forecast using this wind-
to-power technique.    

 
(3) To reduce seasonal dependence of training clusters, pattern matching could be performed 

untrained on the complete set of historic data.  The algorithm to span the search space has 
proven to be as efficient and more accurate in offline tests, and if deployed in real time 
would eliminate biases created by using a smaller subset of generic meteorological 
conditions.  Originally, the pattern matching was trained on the data that was available from 
the beginning of the project, which only accounted for about 3 months of overlapping 
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observations for all the sites and sensors.  This limited our search space for ramp signatures 
to a single season.  This became problematic as the seasons changed, and the signatures 
which we provided for the forecast pattern matching algorithm did not.  One solution is to 
update the patterns every season.  This would require seasonal calibration of the model by 
analysts.  Another solution is to eliminate the simplification of creating generic subsets of 
ramp events for pattern matching, and instead allow the algorithm to search through any 
and all previous observations.  This will provide much more unique matches and therefore 
much more unique forecasts.  For example, if there are only 10 types of ramps to choose 
from (i.e. 5 up ramps and 5 down ramps), then a forecast can only produce 10 types of 
forecasts.  Having hundreds or thousands of events to search through and choose from, on 
the other hand, means the algorithm can narrow down to specific events or even make an 
ensemble of the closest matches.   Assuming the search space has over a year of data in it, 
the benefit of using the entire history should remove any seasonality biases from a subset of 
patterns. This new understanding will yield better pattern matching routines and also utilize 
much more meteorological for future forecast systems.   

 
We did not test whether the observations could be used to improve physical weather model forecasts, 
which would also act to improve the statistical model predictions.  Assimilation of the observation data 
directly into the NWP model initial state has been shown to dramatically improve 0-6 h physical model 
predictions of the local weather state.  Testing the benefits that data assimilation could have was 
beyond the scope of what 3TIER has committed to under this project.  We also speculate that human 
interpretation of the observations, especially by trained energy meteorologists, could have significant 
benefits well beyond what we have attempted in this objective statistical study and potentially at less 
cost than running an operational NWP data assimilation system. 

5 Conclusions 

In conclusion, WINData successfully completed the tasks that were outlined in the SOW. During the 
duration of the project, towers and sensors were installed and linked to provide real-time data to 
forecasters; the data was analyzed by the forecasters to train a machine learning algorithm and also to 
nudge real-time NWP; the forecasts were refined and routinely delivered to the wind farm operators 
and analysts; the owner-operator analysts performed a validation on several months of delivered 
forecasts.   
 
WINData demonstrated that the OSIsoft PI system is a very powerful tool and is invaluable in effectively 
handling vast amounts of current and historical data and in setting up and conducting regional data 
experiments to determine the significant patterns of events and characteristics of the region around a 
wind plant.  
 
WINData/GH validated the fundamental hypothesis of the project: that offsite meteorological data has 
value in wind generation forecasts for sites in complicated terrain and demonstrated that forecasts 
which utilize strategically located offsite observations generally performed better than persistence of 
onsite generation measurements. Modeling techniques were developed and verified to assimilate data 
from both met masts (1401 and 1402) and several surface pressure devices for adjusted sea level 
pressure, temperature, and wind speed into the WRF model.  Furthermore, GH devised and deployed a 
real-time pattern matching algorithm to rapidly augment the WRF forecasts for short-horizon ramp 
predictions.  The improvement over persistence was seen in many of the traditional and ramp-tracking 
metrics over several horizons, independently in both the GH and NaturEner assessments. These 
improvements would not have been possible without the use of the observations.   
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In using the offsite measurements, GH moved beyond traditional data assimilation (i.e. nudging of NWP) 
and used machine learning to train and inform a pattern matching algorithm to provide additional short 
term ramp information. GH acknowledges there are still drawbacks to this type of data utilization; 
however, they conclude there are basic improvements that can be made simply by adding more 
strategic locations.   
 
Many of the drawbacks in the WINData/GH model are manifested in and masked by validation statistics, 
which can obscure the true value of the offsite data during times when the impulses arrived from 
sectors in which observation systems were deployed.  GH suggested several solutions to improve the 
accuracy, the most simple involving the installation of more data collection sources in high risk areas to 
add visibility of wind patterns in sectors sensitive to types of ramps towards which the algorithm was 
essentially blind.   
 
NaturEner and 3Tier evaluated forecasts which incorporated the sensor data and concluded that the 
commercial value of sensor array was not clearly demonstrated in this project. 
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Appendix 1 -Analysis of Jan-Feb forecast by NaturEner 

  



Ramping Metrics  

WINData– February-March 2011 

Contingency Table 

When evaluating a Dichotomous forecast, the source of the error statistics is a contingency table.  For each category, 

there are 4 categories: 

·0 Hit  - The event was forecast, and then occurred 

·0 Miss - The event occurred, but was not forecasted 

o0 Miss – A ramp occurred, but was not forecasted. 

o0 Misclassification – A ramp up was forecast, but a ramp down occurred, and vice versa. 

o0 Underestimate – The magnitude of the ramp was larger than was forecast 

·0 False Positive - The event was forecast, but did not occur 

o0 False Positive – A ramp was forecast, but no ramp occurred. 

o0 Overestimate – The magnitude of the forecast was much larger than the actual ramp. 

·0 Correct Negative - The event was not forecast, and did not occur 

 

Figure 1: Forecast category sectors.  The x-axis is the forecast ramp and the y-axis is the actual ramp.   

 

Figure 2: Forecast category sectors showing subcategories.   
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Table 1: Contingency Table 
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Metrics 

The following table shows the most applicable metrics which can be calculated using this contingency table.  The 

formula which can be used to calculate them is shown, along with a layman’s description of what the metric means.  

This table borrows liberally from the document provided by for Australian Weather and climate research 

(http://www.cawcr.gov.au/projects/verification/). 

Table 2: Dichotomous metrics 

Accuracy 

  

What fraction of the forecasts was 

correct? 

Frequency Bias 

 

How did the forecast frequency of "yes" 

events compare to the observed 

frequency of "yes" events? 

Probability of 

Detection 

 

What fraction of the observed “yes” 

events was correctly forecast? 

False alarm Ratio 

 

What fraction of the predicted "yes" 

events actually did not occur (i.e., were 

false alarms)? 

Threat Score 

(Critical Success 

Index) 
 

How well did the forecast "yes" events 

correspond to the observed "yes" events? 

Equitable Threat 

Score (ETS) 
 

Where, 

  

How well did the forecast "yes" events 

correspond to the observed "yes" events 

(accounting for hits due to chance)?  

Alternately, account for hits due to a basic 

forecast such as persistence. 

 

Definition of a Ramp 

The beginning of the ramp is the same for the target as it is for the forecast.  The beginning of the ramp is defined as the 

hourly average potential generation for the hour preceding the forecast.  For a forecast made at 6:45, this would 

represent the hourly average from 5:40 to 6:40.  In this case we have rounded to the nearest 10 minute interval in 

deference to our data characteristics. 



 

Figure 3: Definition of 75 minute ahead actual ramp specification  

The end of the ramp is defined as the hourly average value within the hour of interest.  For a T-75 forecast made at 6:45, 

this would be the hourly average value from 8:00 to 9:00.  For the target value, this will be the hourly average measured 

value (adjusted for availability).  For the forecast value, it will be the forecast for the generation in MWH, or the hourly 

average of the forecast power if sub hourly forecasts are used. 

 

Figure 4: Definition of 75 minute ahead 10 minute persistence forecast ramp specification  

In order to have a baseline forecast with which to compare the forecasts a persistent ramp forecast is generated.  This 

persistent ramp is defined as the difference between the last 10 minute average measurement and the hourly average 

measurement at the time that the schedule is made.  The persistent ramp hits are used as the “hits random” value for 

the ETS calculation. 

We define a ramp as the difference between the hourly average values of the wind farm power generation, 

over the duration of approximately 3 hours.  We would like to be able to predict ramps larger than 15% of 

installed capacity, 75 minutes ahead of the period start time. 

Table 3: Ramp Definition 

Time Averaging 1 Hour 

Ramp Duration 3 Hours start to end (T-75 forecast) 

Ramp Magnitude 15% of installed capacity 

6:45 

5:40 

Ramp Start 

6:40 8:00 9:00 

Actual Ramp End 

Actual Ramp Magnitude 

6:45 

5:40 

Ramp 

6:40 8:00 9:00 

 Persistence Ramp 

Persistence Ramp Magnitude 

10 Minute Persistence 



 

Figure 5: Year to Date Primary Metrics for Glacier Wind 1 75 minute ahead forecast 



 

Figure 6: 30 day moving average metrics 
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Figure 7: Comparison of MAE and Bias for forecast error and ramping error by actual ramp size and ramp length 



 



Figure 8: Comparison of Actual Category against Forecast Category 

 

 

 



Figure 9: T-75 Scatter plot with classification detail 

 

 

 



Figure 10: Forecast Time Series  
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Appendix 2 - UWIG 2012 Tucson – WINDataNOW! Presentation 

  



Short-term

Forecasting for 

Glacier Wind Plant

Marty!Wilde

WINDataNOW!Technology

marty.wilde@windata"inc.com

Patrick!Shaw

GL!Garrad!Hassan

Patrick.Shaw@gl"garradhassan.com



Department!of!Energy!Project

Funding!secured!in!2009!by!WINData!LLC!with!cost!sharing!by!

NaturEner!and!OSIsoft,!LLC

Objectives:

1. Demonstrate!value!of!well"located!off"site!met!sensors!in!

reducing!uncertainty!in!short"term!ramp!forecasting.!!

2. Demonstrate!use!of!OSIsoft!PI!System!data!infrastructure!in!

next!generation!met!data!retrieval.!

3. Assess!improvement!in!ramp!forecasting!skill!and!determine!

which!forecast!methods!extract!maximum!value!from!the!

sensor!network.



Situational!awareness



Data!Exchange!Architecture

Offsite, Hub Height 

Measurements

Wind

Operations

PI

Cloud"based

PI!System

Participant!2

Participant!3

SCADA

Web!

access!

&

data!

collection!

node

Distributed!

Observations

Distributed!

Observations

Cloud"based

Hosting!Environment

Cloud"based

Hosting!Environment

PI

Distributed!

Observations

Proposed

SODAR!/!LIDAR!

Observations

PI!to!PI!

Interface

Participant Network

Custom!App
(based!on,!OPC,!Web!

services,!OLEDB,!PI!SDK)

Client!Access

Participant

Proprietary!

Application!

or!Service

PI

Connection
WINData

Hardware

Participant!1



Offsite!data!predicting!power!production



Integration!of!data!network!into!advanced!

forecasting!models



Developing!advanced!forecast!models

Data!mining!provides:

" characteristic!atmospheric!means!and!trends

" unique!off"site!meteorological!signatures!for!certain!events

" associated!ramp!behavior!at!site

Customized!forecast!relies!on:

" training!on!historical!observations

" most!recent!off"site!observations

" reduction!of!original!data!set

" real"time!rapid!pattern!matching

Observations!provide!three!types!of!forecasts:

" Nudged!NWP

" Pattern!matching!of!historical!data

" Persistence!of!on"site!data



NWP!for!Captured!Ramp



NWP!for!Captured!Ramp



NWP!for!Captured!Ramp



NWP!for!Captured!Ramp



Captured!Ramps

Ramp Definition: +/- 15% change in 
production over previous 3 hours, and 
forecast within 15% of capacity to 
observation



dt = 3 hours

dt = 3 hours
dt = 3 hours

dt = 3 hours

Captured Ramps



|dP| > 15% capacity |dP| > 15% capacity

|dP| > 15% capacity

|dP| > 15% capacity

Captured Ramps



Results:!CSI

Metrics show improvement over persistence and bias-corrected NWP with addition of 

pattern matching and nudging



Results:!other!metrics

Other metrics show improvement over bias-corrected NWP with addition of NWP 

nudging and pattern matching augmentation

All +

Mostly +

Mostly -

Mostly +



Conclusions!and!next!steps

Conclusions:

• Offsite!measurements!can!add!value!to!bias"corrected!NWP!and!persistence

Coming!attractions:

• Automation!of!this!technology!in!operational!settings!for!expanded!set!of!seasons!and!

conditions

• Use!of!additional!off"site!data!sets!and!improved!NWP!configurations!

• Deployment!at!different!sites!and!geographic!settings



Bonus!Material



Bonus!Material:!Hind"casting!results

Impact of observations for a given metric:

–

– Raw NWP



Bonus!Material:!Improvement!in!up!ramp!CSI!over!persistence

PLACE!HOLDER!SLIDE!FOR!CSI!IMPROVEMENT!CALENDAR!OVER!

RAW!NWP!FOR!UP!RAMPS



Bonus!Material:!Improvement!in!down!ramp!CSI!over!persistence



Bonus!Material:!Improvement!in!up!ramp!CSI!over!bias"corrected!NWP



Bonus!Material:!Improvement!in!down!ramp!CSI!over!bias"corrected!NWP



Bonus!Material:!Annual!Wind!Rose!(South!Tower)



Bonus!Material:!Sensitivity!to!Direction
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Bonus!Material:!Sensitivity!to!Direction
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Most Improvement in ramps at 

early horizons ! stronger

winds, northerly contribution



Bonus!Material:!Sensitivity!to!

Direction
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Little improvement as early horizons !

weaker winds, little northerly 

components, more easterly 

contributions
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Marty and Gregg’s  

Big “Montana-Wind” 

Adventure 
(using the PI System to help with anticipating 

ramp events at the Glacier Wind Plant) 

Marty Wilde and 

Gregg Le Blanc  

WINDataNOW Technologies LLC 



The Problem  

 
Forecast Uncertainty 

at Glacier Wind  

Plant 

3 



Glacier Wind Plant – “Climate” 

4 



Variable Generation Scheduling 

5 

0



Wind Forecasting Challenge 

6 

T GW schedules output 70-min ahead of 

the production hour. 

T Economic benefits from accuracy 

improvement in forecasting large, rapid 

changes in generation – “Ramps”. 

T Better forecast facilitates more energy 

integration into power system.  



Ramp Forecasts used for Power Scheduling 

7 



The Idea 

 
Better Data from 

Strategic Locations 

8 



To reduce this 

Better Data from Strategic Locations 

T Decrease forecast 

error around 

ramp events 

T Operate less 

conservatively 

Use this 

9 



Historical Met data Locations 

10 



Met Data From Region 

11 

Wind Frequency by Direction Mean Wind Speed by Direction 



Theory and Methodology 

T Sensors located strategically 

T Deploy new logger technology 

T High fidelity data near real-time 

T Use data to detect anomalies 

for better situational awareness 

and study of patterns 

Met 

Tower 

Wind 

Farm 
60 – 180 

minutes 

of  prior 

notice 

“Offsite” Locations 

12 



Cardinal Directions for event tracking 

13 



Live Data + Actual GIS Layout 

14 



Pressure Differential Analysis  

Around Plant 

15 



The Cool 

Experiment 
Use PI to 

determine cause 

and predict Ramps 

16 



17 117

Marty in Montana 

Gregg in Oakland 

Gregg in New York 

or 

Marty / Gregg - WFU  
(Wind Forensics Unit) 



WINDataNOW 

Hardware 

Artist’s Rendering 

Offsite, Hub Height  

Measurements 

W 

Cloud-based 

PI System 

aseCloud baCloud ba

The Cloud 

d 

PI 

18 
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W
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PI



West to East event tracking 

19 

 

Pack
WS400 

WS300 

WS200 1401 

GW 



Forensics in Q2 2011 

20 



Forensics in Q2 2011 

21 

FFooooooo



Cascading pressures 

22 



Wind Speed at Tower 1401 

23 



What the Plant Saw 

24 



Working together to improve forecasts 

T Goal: Design a program that  

results in better  forecasts 

U Operator 

U WINDataNOW 

U Forecast Vendor 

T Team up to  

improve wind  

energy integration 

Utility / 

Operator 

Forecast 

Provider 

WINData 

lity / 

erator 

F

P

27 



Integrating Sensor network with 

Forecasting System 

The PI System 

28 



Brought to you by 

Gregg LeBlanc 

gregg.leblanc@windata-inc.com 

Marty Wilde 

marty.wilde@windata-inc.com 

Greg

Mar
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