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EXECUTIVE SUMMARY 
The U.S. Department of Energy (DOE) and the commercial nuclear power 

industry are exploring alternatives to meet energy demands in the United States. 
As part of this mission, they are looking at small modular reactors (SMRs) and 
advanced small modular reactors (aSMRs). The DOE, and in particular, the 
Office of Nuclear Energy (NE) is sponsoring research and development (R&D) 
on small reactors, as evidenced by NE’s 2010 Report to Congress, Nuclear 
Energy Research and Development Roadmap. In short, DOE-NE’s mission is to 
assist in revitalization of the U.S. nuclear industry, including development of 
advanced designs, through R&D. By doing so, NE can help accelerate 
deployment of new plants in the short term, support development of advanced 
concepts for the medium term, and promote design of revolutionary systems for 
the long term. 

All aSMR designs will employ advanced digital instrumentation, controls, 
and human-machine interfaces (ICHMI), technology that is significantly more 
advanced that existing analog systems in the light water reactor fleet.  The U.S. 
DOE recognizes that ICHMI research, development, and demonstration is needed 
to address the specific technical challenges and technological gaps of ICHMI for 
aSMR designs.  The new aSMRs will be designed to utilize new automation and 
instrumentation and control technologies, and there are a number of concerns 
about how those technologies will affect human performance and the overall 
safety of the plant. It is expected that aSMRs will rely on automation to a greater 
extent than the current nuclear power plant fleet. However, there are many issues 
and concerns that still need to be addressed related to how automation should be 
designed and implemented. For example, further researcher is needed to address 
how humans and automation will collaborate under various operational 
conditions. 

The Human-Automation Collaboration (HAC) research project is one of 
three research efforts related to investigating how the advanced technologies 
planned for aSMR designs will affect human factors and human performance.  
Given the increased use of automation in aSMR designs, the HAC research 
project is investigating the consequences of allocating functions between the 
operators and automated systems. The research effort addresses the questions of 
what the collaboration level should be and how it should be implemented to have 
the greatest positive impact on overall plant performance and safety. The 
research project is also developing a model of HAC, which will support aSMR 
designers when evaluating their proposed approach for conduct of operations in 
terms of how humans and automation collaborate. The research results will 
inform the integration and cooperation between plant staff and automation, with 
the purpose of maximizing productivity and safe operations of aSMRs. One key 
research goal is providing a technical basis to support the reduction in aSMR 
operations and maintenance costs through reduced staffing per unit, which is 
made possible by greater integration and cooperation between plant staff and 
automation. Additionally, aSMR vendors will be able to use the results of this 
research effort to inform development of the technical basis for their licensing 
case in submittals to the Nuclear Regulatory Commission. 

This report documents the work conducted to date in this research effort.  
The research team conducted a review of the human factors, psychological, and 
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automation literature to identify and characterize the current state-of-practice in 
human-automation interaction, and to identify factors that influence HAC.  
Additionally, current standards that are applicable to HAC were reviewed.  

While conducting the review of human factors literature regarding 
automation and human performance, the research team identified and analyzed 
key contributing factors, such as levels of automation, reliability, the cognitive 
functions that the automation is responsible for, and how those aspects of 
automation affect operator performance (e.g., the out-of-the-loop phenomenon) 
and system performance. These activities combined provided critical information 
for better understanding of the current HAC state-of-practice and the means to 
construct the initial framework for HAC.  

While human factors and psychological research has gone a long way in 
identifying the factors that influence HAC, there are clear gaps in the current 
state of knowledge for addressing the needs of aSMRs. First, the majority of the 
human factors literature (with a few exceptions) defines performance problems 
associated with certain HAC configurations, but the literature does not 
necessarily illuminate the circumstances that lead to successful HAC. 

Second, taken together, findings from the existing literature would 
recommend using intermediate levels of automation for most functions in order 
to keep the operator in the loop. However, aSMRs will employ much higher 
levels of automation to meet the need of reducing operations and maintenance 
costs to a per kilowatt cost that is comparable to the existing fleet of reactors. 
Therefore, extensive research needs to be conducted to investigate how to enable 
higher levels of automation, while still keeping the operator actively engaged in 
operation of the plant. 

Based on the literature review, the research team developed an initial HAC 
model, with a focus on the conceptual interaction between humans and 
automation. The model is a means of identifying the gaps that need to be bridged 
by new research in order to establish a technically sound future state of practice 
for aSMR plants. The HAC model defines (1) the important design dimensions of 
automation that impact automation’s use by personnel and integrated 
human-automation performance, and (2) what aspects of human cognition, 
behavior, and performance mediate automation’s use by personnel (i.e., the 
model identifies how human cognition and behavior interact with the design 
dimensions of automation to affect overall human-system performance).  

The initial HAC model (presented in this report) will be updated as 
additional research is conducted, and will ultimately inform the development of 
procedures and guidance that will support aSMR designers when evaluating their 
proposed design of the human-system interaction in terms of HAC.   

The research team concluded, based on the activities described in this report, 
that aSMR designs will benefit from more empirical research on how to 
maximize the use of automation to achieve cost savings, but at the same time 
avoid an adverse effect on safety or performance. The team proposes three main 
topics for further research; (1) Impact of Highly Automated Advanced Small 
Modular Reactors on Operator Awareness, (2) Regaining/Reacquisition of 
Operator Awareness, and (3) Effect of Human-Automation Collaboration 
Characteristics on Operator’s Use of Automation. 
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Development of an Initial Model of Human Automation 
Collaboration – Results from a Needs Analysis  

1. INTRODUCTION 
1.1 Background 

Small nuclear reactors were first employed in the late 1940s and 1950s by the U.S. military to power 
military operations and naval vessels. The U.S. Navy launched the first nuclear-powered submarine, the 
U.S.S. Nautilus, in 1955 and today operates 82 vessels powered by small reactors. During a period of 
experimentation, the U.S. Army used small reactors to power military bases and provide electricity to 
remote areas before ceasing exploratory use in the mid 1970s. New proposals for small modular reactors 
(SMRs), an emerging category of new nuclear power plant (NPP) design, which contribute to future 
energy needs, are very similar to these early reactors and the naval reactors still in use today (U.S. 
Department of Commerce, 2011). 

Unlike typical, current U.S. NPPs that may generate over 1,000 megawatts electricity (MWe), SMRs 
generate far fewer MWe per unit, many producing less than 100 MWe. According to the classification 
adopted by the International Atomic Energy Agency, a “small reactor” is one with a total possible 
electrical power of 300 MWe or less (IAEA, 2005, 2006). The U.S. Department of Energy (DOE) also 
has used the “300-MWe or less” threshold to define SMRs. In addition to their ability to serve as a source 
of energy for electricity generation, the new reactor types also can carry out other critical functions, 
including hydrogen production and industrial process heat applications such as desalination, water 
purification, and production of both liquid transportation fuels and petrochemicals. According to recent 
estimates from the International Atomic Energy Agency, more than 45 SMR designs currently are being 
developed (IAEA, 2009). 

DOE divides SMR designs into two major technology classes: designs based on existing light water 
reactors, such as integral pressurized water reactors, and designs that are not based on existing light water 
reactor technologies. This second class is known as advanced SMR (aSMR) designs and includes designs 
that rely on a coolant other than water (such as helium, sodium, lead-bismuth, or molten salt) or have 
fuels other than uranium oxide (such as metallic or triso fuels). 

DOE and the commercial nuclear power industry are exploring alternatives to meet the energy 
demands in the United States. As part of this mission, they are looking at SMRs and aSMRs. DOE and, in 
particular, the Office of Nuclear Energy (NE) is sponsoring research and development (R&D) on small 
reactors, as evidenced by NE’s 2010 Report to Congress, Nuclear Energy Research and Development 
Roadmap. The report states, “NE’s objective is to assist in the revitalization of the U.S. industry through 
R&D. By advancing technologies through R&D, NE can help accelerate deployment of new plants in the 
short term, support development of advanced concepts for the medium term, and promote design of 
revolutionary systems for the long term.”  

Regardless of the specific reactor design, all aSMR designs will employ advanced digital 
instrumentation, controls, and human-machine interfaces (ICHMI), which consists of technology 
significantly more advanced than existing analog systems in the light water reactor fleet. DOE recognizes 
that ICHMI research, development, and demonstration is needed to address the specific technical 
challenges and technological gaps of ICHMI for aSMR designs. Consequently, the DOE aSMR Program 
has established a critical ICHMI research pathway, consisting of research projects in the following five 
technical areas (Wood, 2012): 

 SMR assessment methods 

 SMR ICHMI 
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 SMR materials, fuels, and fabrication 

 SMR licensing support 

 SMR advanced concepts evaluation. 

In the ICHMI research pathway, a particular focus of the R&D effort for aSMRs is in the area of 
human factors. Given the plans for using new technologies in aSMRs, there are a number of concerns 
about how these technologies will affect human performance. As will be explained in Section 1.2 of this 
report, it is expected that in order to be cost-competitive, aSMRs will utilize automation to a greater 
extent than is presently employed in the current fleet of U.S. NPPs. However, aSMR plants will not be 
fully automated, which raises the unanswered question of how to best design and implement automation 
to ensure optimal interaction of automation and human operators. Collaboration between humans and 
automation will be necessary to operate the advanced controls of aSMR plants, but the specific manner in 
which the collaboration occurs and the way to optimize both human and system performance are 
unresolved issues that need further research before any aSMR control technologies are implemented. 

To address these issues, the DOE ICHMI research pathway includes three related research efforts that 
investigate separate but related building blocks needed for the design and operation of a highly automated 
plant. These three research projects are as follows: 

 aSMR Concepts of Operations: A plant’s concept of operations generally is understood to be a 
high-level description of the plant, its systems and their functions, and how operating personnel will 
work and interact with the system to achieve their responsibilities. SMR and aSMR plants will require 
defining non-traditional concepts of operations to address the unique operating scenarios that aSMRs 
will involve, all of which are expected to have an effect on human performance, staffing, training, and 
reliability. The aSMR Concept of Operations Project is investigating the impact of new operational 
concepts on human performance and responsibilities and the implications for effective aSMR plant 
operations and safety. Specifically, this project will involve research activities encompassing analysis 
of operational scenarios based on prospective plant configurations, functional analysis of operational 
tasks, evaluation of function allocation options, simulator-based testing for analysis and verification 
of operational concepts, assessment of minimal staffing requirements for a multi-module design, and 
assessment of the impact on human performance and reliability. 

 aSMR Human-Automation Collaboration (HAC): Given the increased use of automation in aSMR 
designs, the HAC Project is developing a framework for integrating humans with automation to 
maximize the productive and safe operations of aSMRs. Automation that is all-or-none, or that is 
implemented without consideration to the impact on human operators, often produces problems of 
overall system performance. This project is investigating how to best employ a modern approach that 
uses collaboration of personnel and automation, thereby capitalizing on the strengths of each. The 
HAC Project will produce guidance on how to define levels and implementation of automation in a 
way that support successful aSMR operations. 

 aSMR Supervisory Control: This project addresses supervisory control capabilities that enable high 
levels of automation to help ensure the economic viability of SMRs through optimal staffing. The 
research involves development of fundamental capabilities (such as control, decision, diagnostics and 
prognostics) coupled with demonstration within an architectural framework suitable for integrating 
these capabilities. The first-phase development involves definition of a supervisory control strategy 
and establishment of an architecture that allows implementation of hierarchical hybrid control of 
multi-modular plant systems. In addition, foundational modules and architectural structures will be 
generated to enable initial demonstration of supervisory control capabilities in the next phase of 
research. The demonstration focus will involve plant configurations based on near-term SMR designs, 
in which multiple units are coupled through common balance of plant systems (e.g., multiple reactors 
feeding a single turbine generator). In subsequent phases of the research, the supervisory control 
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architectural framework will be adapted to multi-unit plants with more complex architectures (e.g., 
reconfigurable product streams), based on other SMR designs. 

Together, these three efforts set the context, determine the impact and consequences, and define the 
capabilities related to collaboration between human operators and automated systems. See Figure 1 for an 
illustration of the relationships between these three research efforts. Specifically, the Concept of 
Operations Project sets the context by identifying plant functions and defining operating scenarios, 
strategies, and requirements that establish operational functions and staffing requirements to inform 
function allocation and human-machine collaboration. The Supervisory Control Project identifies and 
develops the technological capabilities to enable necessary automation given the input from HAC. 

 
Figure 1. Interrelationships between advanced small modular reactor research efforts. 

Between the context of collaboration and the capabilities available to support collaboration is an 
integration layer (i.e., the HAC Project). The HAC research effort determines the impact of using 
automation (given the aSMR context and the automation’s capabilities) on human and system 
performance. In making this determination, questions (such as what should be automated and how and 
what are the consequences) will be answered. 

The above discussion provided a high-level overview of the HAC Project. Before discussing the 
details of the project, it is essential to document the reasons why automation is necessary for aSMR 
designs and what the consequences of such high levels of automaton are for human performance. The 
remainder of Section 1 will detail the reasons why high levels of automation are required for aSMR 
designs (Section 1.2), provide an overview of the impact of automation on human performance in 
complex systems (Section 1.3), and detail the specific scope and goals of the HAC Project (Section 1.4). 
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1.2 Automation as an Economic Requirement for Advanced Small 
Modular Reactor Plants 

As mentioned above, it is expected that aSMR plants will be highly automated. For example, 
NUREG-1368 states that the Power Reactor Innovative Small Module (PRISM) liquid-metal (sodium) 
cooled reactor will be highly automated.  The primary reason  this automation is necessary to reduce 
staffing costs. One of the goals of the new aSMR designs is more economical electrical power generation. 
One approach to making aSMRs more economical in comparison to current plants is to reduce operations 
and maintenance (O&M) costs. In existing light water reactors, O&M costs are significantly higher than 
fuel costs and labor is over 50% of that cost (Thomas, 2012). Thomas noted: 

Nuclear power could be at a considerable disadvantage if it continues to rely on 
an operating model that requires a large plant staff. The largest component [of] a 
typical nuclear plant’s operating and maintenance (O&M) cost is labor, 
representing well over 50% of the cost structure. Labor will continue to be a 
rising cost over time while technology will generally be a falling cost. Thus, 
generation sources that are more technology-based could significantly erode the 
cost advantage that the nuclear power industry has enjoyed. Digital technology 
provides the opportunity to transform the operating model of the nuclear power 
plants (NPPs) from one based on a large staff performing mostly manual 
activities to an operating model based on highly integrated technology operated 
by a smaller staff (p. 883). 

One approach to achieving an “operating model based on highly integrated technology operated by a 
smaller staff” is by increasing automation. O&M costs can be reduced significantly if fewer personnel are 
needed to achieve production and safety goals. 

The aSMR designs feature a number of characteristics that are vastly different from traditional power 
plant designs. These features have substantial consequences for the economic viability of the plant and for 
the design of HAC. aSMR plants are modular and scalable (i.e., the plant can be constructed module-by-
module and is scalable to different sizes). Economically, the advantage to doing this is that completed 
modules may operate while other modules are still in construction and capital investment costs can be 
recovered more quickly. However, having multiple modules could impose an economic consequence that 
may be unsustainable if staffing and instrumentation and controls do not scale with size. In other words, 
for example, if each module or unit must be operated by a four-person crew, the O&M costs for multiple 
modules will be far greater than the O&M costs of traditional light water plant designs. If aSMR plants 
are required to maintain the same level of staffing per reactor as the traditional light water plants (i.e., are 
not granted a waiver from 10 CFR 50.54(m)(2)(iii)), then the aSMR design becomes economically 
unviable. For this reason, it is economically necessary to increase automation and reduce staffing. 

However, it should be noted that reduction in aSMR plant staffing, whether through automation or 
other means, has been identified as a potential safety issue by the U.S. Nuclear Regulatory Commission 
(NRC), following an Issue Identification and Ranking Program the NRC used to independently assess and 
identify potential technical and regulatory issues (Smith & Moore, 2009), and in NRC’s report to 
Congress on advanced reactor licensing (NRC, 2012). For NRC to consider waivers to staffing 
requirements in 10 CFR 50.54(m)(2)(iii), SMR vendors must be able to present technical data 
demonstrating how reactors could be safely and securely operated with fewer control room operators and 
security personnel. The aSMR Concepts of Operations Project is addressing the appropriate level of 
staffing for aSMR designs and the regulatory guidance for reduced staffing; the HAC research effort is 
focused on developing a framework for HAC within the context of increased automation and reduced 
staffing. 
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The next section will provide a brief overview of some of the issues that are raised by high levels of 
automation1. 

1.3 Automation and Human Performance in Complex Systems 
Given the necessity for high levels of automation in aSMR designs, it is imperative that research be 

conducted to develop a comprehensive understanding of how humans interact with automation and what 
the consequences of automation are for human performance. This section provides examples of the 
challenges that automation presents to human operators, which explains why additional research on the 
best way to design and implement automation to avoid performance problems is necessary. 

As the design of human-machine systems became more complex, designers often viewed personnel as 
the “weak link,” or as the most unreliable and unpredictable aspect of the system. From an engineering 
perspective, the solution to making systems more operationally reliable was automation. A prevailing 
philosophy emerged to automate all functions that could be automated, leaving personnel to manage what 
could not be automated. In essence, automation was viewed as a means to make system performance safer 
and more reliable and as a means to reduce operator workload. 

However, research and operating experience soon revealed that simply considering whether humans 
or machines were more capable agents for performing a specific function was not sufficient. Significant 
human performance problems were observed in highly automated systems such as the operator’s loss of 
awareness of the system’s state, the high workload associated with recovering from automation failure, 
and the loss of skills for manually performing tasks usually performed by automation (see Section 2 of 
this report for a detailed discussion of these issues). In a seminal article discussing such issues, 
Bainbridge (1983) referred to this as the “ironies of automation.” 

Further studies have shown that a significant contributing factor to the difficulties operators encounter 
in highly automated systems is that the interfaces between operators and automation are poorly designed 
(Billings, 1997a, 1997b; Endsley, 1996; Funk & Lyall, 2000; Hollnagel, 1999; Lyall & Funk, 1998; 
Parasuraman, Sheridan, & Wickens, 2000; Parasuraman & Riley, 1997; Thurman, Brann, & Mitchell, 
1977; Wiener & Curry, 1980). It is not just a simple high-degree of automation problem, but involves 
human-automation interaction through the human-system interface (HSI). 

The “ironies of automation” are still with us in modern systems, and automation still challenges 
operators, sometime resulting in serious consequences for safety. The 2009 Metrorail accident in 
Washington, D.C. (see Figure 2) occurred when the automatic impact avoidance system failed to detect an 
idle train on the track ahead due to a faulty track circuit; the operator was unable to stop the moving train 
before it collided with the idle train, despite applying the emergency brakes. Following this accident, as 
several accident investigation experts noted, investigators separately focused on either the malfunction of 
the computer system or whether the driver applied the brake on the speeding train, “…the discrete aspects 
of machine or human error; whereas the real problem often lies in the relationship between humans and 
their automation systems” (Vedantam, 2009). Additionally, this accident was subject to intense public 
scrutiny, bringing a high level of public attention to the challenges presented by humans interacting with 
automation. 

                                                      
1 The reader should note that this report includes text that has been previously published in other U.S. Government 
reports written by at least one of the co-authors.  To simplify the formatting of this report, text excerpted from other 
U.S. Government reports (i.e., O’Hara and Higgins, 2010; NUREG/CR-7126) is not quoted or otherwise delineated 
from other text.  This is within the copyright granted to the U.S. Government, which states it has a nonexclusive, 
royalty-free license to publish, republish, or reproduce the work or to allow others to reproduce this work for U.S. 
Government purposes. 
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Figure 2. Washington Post article following 2009 Metrorail Accident, Washington, D.C. 

Another recent example, also in 2009, that has received considerable discussion in the public media is 
the crash of Air France 447in the Atlantic Ocean. This accident typifies many of the problems crews face 
with automation. Icing of the airspeed sensors caused a loss of airspeed information and led to failure of 
the autopilot. Therefore, the pilots had to take over manual control of the aircraft; however, they did not 
have adequate training on manual control at high altitude during turbulence or training on how to use 
procedures for handling unreliable airspeed indications. Additionally, the stall alarm behaved in a manner 
that contradicted actual flight circumstances and confused the pilots. The official accident report stated: 

The occurrence of the failure in the context of flight in cruise completely 
surprised the pilots of flight AF 447. The apparent difficulties with aeroplane 
handling at high altitude in turbulence led to excessive handling inputs in roll and 
a sharp nose-up input by the PF. The destabilisation that resulted from the 
climbing flight path and the evolution in the pitch attitude and vertical speed was 
added to the erroneous airspeed indications and ECAM messages, which did not 
help with the diagnosis. The crew, progressively becoming de-structured, likely 
never understood that it was faced with a “simple” loss of three sources of 
airspeed information. In the minute that followed the autopilot disconnection, the 
failure of the attempts to understand the situation and the de-structuring of crew 
cooperation fed on each other until the total loss of cognitive control of the 
situation (BEA, 2012, p. 199). 

In light of these persistent issues, designers and researchers continue to work to improve the means by 
which human and automation interact to accomplish plant functions and tasks. In some cases, functions 
and tasks are accomplished using varying levels of automation. In others cases, a function is performed 
primarily by personnel with automation assisting some aspects of the tasks to be performed. In other cases 
still, a function may be performed primarily by automation, with personnel performing some aspects of 
the task, such as to provide authorization to perform one subtask when a prior subtask is completed. 
However, little guidance is available to designers to implement such approaches to HAC. Thus, additional 
research is needed to identify successful approaches and to develop design guidance supporting their 
implementation. Currently, little such guidance is available to designers. 

Research on HAC has been identified as a significant need in the nuclear industry and, in particular, 
as it pertains to aSMRs. In 2007, DOE published a study providing a technology roadmap on ICHMI to 
support DOE advanced NPP programs (Dudenhoeffer et al., 2007). Seven areas of research were 
identified as essential elements for advancing ICHMI technologies in NPPs to resolve the challenges and 
needs. One area was Human-Automation Interaction Models and Analysis Tools. It was defined as 
follows: 

Human factors must be a key consideration in any upgrade or paradigm of 
operation shift. This includes integration of plant automation, new information 
systems, new procedures, and any other aspect that changes the human machine 
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interaction expectation. Current human activity within nuclear power plant 
operation and maintenance is studied by the U.S. NRC and industry itself. This 
topic addresses the development of new models of human-automation interaction 
based on emerging control technologies, such as automation that adapts to 
operator workload. Models should be defined and methods of analysis for 
allocation of functions, including dynamic allocation, should be formalized. The 
user interface requirements for each model should be specified. A test program 
should be included to evaluate concepts (Dudenhoeffer et al., 2007, p. 28). 

In 2012, NRC published a study outlining human-performance issues related to the design and 
operation of SMRs (O’Hara, Higgins, & Pena, 2012). The study identified several issues related to HAC, 
one of which was entitled “High Levels of Automation for All Operations and its Implementation.” Their 
findings emphasized automation as the key enabling technology for multi-unit operations. As crews 
manage increasing numbers of units, automation must take responsibility for tasks traditionally performed 
by operators. aSMRs are no exception and their degree of automation will be high as both normal and 
safety operations will be automated. The “automate everything that can be automated” philosophy often 
dominates programs for developing advanced reactors to improve their performance and decrease 
operational costs. However, as discussed previously, there is a complex relationship between automation 
and human performance, which often fails to confirm common-sense expectations. For example, one 
might expect that high levels of automation will lower workload; instead, it shifts workload and creates 
other human-performance difficulties (O’Hara, Gunther, & Martinez-Guridi, 2010). The authors 
suggested that flexible approaches to using different levels of automation in a single system should be 
explored. This is discussed in greater detail in Section 2. 

Human-automation interaction also was identified in NRC’s report to Congress on advanced reactor 
licensing and, in addition, research needed to support licensing (italics added for emphasis) was 
identified: 

The future designs will generally rely on passive rather than active safety features 
and may involve concurrent control of multiple modules from a common control 
room. In general, these designs will employ digital information and controls 
technology as opposed to the predominantly analog information and controls C 
technology used in the current fleet of operating nuclear plants. These systems 
will provide the capability for increased automation that makes greater use of 
interactions between personnel and automatic functions. Automation can change 
the operators’ role in monitoring, detection, and analysis of off-normal 
conditions, situation assessment, and response planning. Research is needed to 
determine the effect of these changes on operator safety performance and on 
plant safety (DOE, 2010, p. 28). 

Thus, the nuclear industry, from both design and regulatory perspectives, has identified significant 
issues related to HAC in development of future commercial NPPs in general and aSMRs in particular. 

Given the public visibility of new plant construction and awareness of the “ironies of automation,” it 
is imperative that research is performed to ensure that design of aSMR automation is based on sound 
scientific and engineering principles that support HAC, efficient performance, and safety. 

1.4 Human-Automation Collaboration Research Effort 
As shown in Sections 1.2 and 1.3, high levels of automation are a requirement for aSMR designs, and 

automation presents challenges to human operators. In order to ensure safe and productive aSMR plant 
operation, research is needed to determine how to best automate the plant functions without causing 
human performance detriments. Given the design specifications aSMR vendors have provided, it is 
anticipated that the means by which humans and automation interact will be significantly different from 
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typical reactor control room operations. No blueprint is in place for how this kind of HAC will best be 
carried out. Therefore, it is imperative that empirical research be conducted to determine how to 
maximize the use of automation to the greatest degree, without adversely affecting safety, efficiency, and 
performance of the human operator. This is a delicate balance and only investigation by various 
experimental designs will produce the key to best design implementation. 

The HAC research project is investigating the consequences of the allocation of functions between 
the operators and automated systems. The research effort addresses the question of how to best design the 
collaboration of personnel and automation to capitalize on the strength of each. Hence, focus is on what 
the collaboration level should be and how it should be implemented to have the greatest positive impact 
on overall plant performance and safety. It also is developing a model of HAC, which will support aSMR 
designers when evaluating their proposed approach for the conduct of operations in terms of how humans 
and automation are collaborating. The research results will inform integration and cooperation between 
plant staff and automation, with the purpose of maximizing productivity and safe operations of aSMRs. 
One key research goal is providing a technical basis to support reduction in aSMR operations and 
maintenance costs through reduced staffing per unit, which is made possible by greater integration and 
cooperation between plant staff and automation. Additionally, aSMR vendors will be able to use the 
results of this research effort to inform development of the technical basis they will develop for their 
licensing case in submittals to NRC. 

An initial step to establish a technical basis for HAC in aSMR designs is creation of a HAC model, 
with a focus on interaction between humans and automation. This HAC model is one means to identify 
the gaps that need to be bridged in order to establish a technically sound future state of practice for aSMR 
plants. As an initial step, the research team conducted a review of research literature related to human 
factors and automation. The path of moving the state-of-practice forward consists of a selection process 
part and an investigation part. For each identified knowledge gap, the researchers will ask a series of 
questions to determine if the particular gap is relevant to the research effort and the aSMR industry (the 
the selection process). If the answer to the five questions is “yes,” the gap should be investigated further 
via empirical studies (the investigation part). The research team will reiterate the process of asking these 
questions thoughout the span of the project. The questions are as follows: 

1. Is there a knowledge gap? 

2. Can it be addressed with experiment(s) (i.e., can it be demonstrated empirically)? 

3. Is it relevant to the aSMR field? 

4. Can the result be generalizable to most aSMR designs? 

5. Can the results also be the technical basis for development of HAC-related engineering procedures 
and aSMR guidance? 

The overarching question that current research efforts aim to answer is how multi-modular aSMRs 
can be safely and economically operated with a reduced operating crew that controls the aSMR through a 
greater reliance on digital automation technologies. In order to address this question and the identified 
gaps, the research team will conduct research to develop potential solutions. 

The principal focus of this report is to summarize the current state-of-practice in HAC, identify a 
preliminary HAC model (which will be updated as this research continues), and identify research that 
needs to be addressed to accomplish the research project’s overall objective. The HAC model will, among 
other things, serve as the basis for further model development and development of engineering procedures 
and guidance for use by designers in developing human automation collaborations. 



 

9 

1.5 Organization of this Report 
The remainder of this report details the literature review and to-date development of a HAC model. 

The project team analyzed research findings pertaining to the effects of automation on human 
performance to identify lessons learned, best practices for supporting performance, and unresolved issues. 
Information from a variety of sources was used, including the basic literature on automation and human 
performance, consisting of papers from research journals, technical conferences, and operational 
experience with automation in the nuclear and other industrial domains. The literature review and 
conclusions are described in Section 2. 

An important step in creating aHAC model is to develop a characterization of automation and 
performance. Characterization provides an important structure needed to develop and organize the design 
procedures and guidance later in the research effort. The initial model of HAC, including characterization 
of automation design and HAC design characteristics, is described in Section 3. 

Section 4 discusses the path forward based on development of the initial HAC model. Preliminary 
research issues and proposed research topics are described.  
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2. STATE-OF-PRACTICE IN HUMAN-AUTOMATION-
COLLABORATION 

This research effort aims to identify the factors that designers must consider in order to facilitate 
effective HAC. Human factors researchers have explored a wide variety of factors that influence human 
collaboration with automation. This section contains a review of the existing literature on HAC and serves 
as a starting point for the framework for HAC and an initial description of the current state-of-practice in 
HAC. The literature is divided into two subsections: Subsection 2.1 describes how researchers have 
characterized what automation is and what it does. Subsection 2.2 describes empirical research that 
investigates how the factors identified in Subsection 2.1 affect performance in HAC. 

2.1 Characterization of Automation 
In order to frame the discussion of HAC, it is helpful to first understand what automation is and how 

researchers typically characterize some of the important factors related to automation design. Automation 
is part of the plant’s instrumentation and control (I&C) system.  Modern complex digital I&C systems 
afford a great deal of functionality that is vital to the plant’s performance and safety.  New reactor designs 
use a diversity of digital I&C architectures.  Figure 3 is a generic block-diagram of a representative I&C 
system identifying the generic components that it encompasses.  The blocks represent the types of digital 
instrumentation component types required to process a signal from the system to its end use.  The arrows 
represent the communication links between each component.  The signals are processed through a “data 
processing and error checking unit” (sometimes termed an I/O unit), and transformed to an appropriate 
format that might include some high- level calculated parameters.  These input parameters then pass 
through a communication link to a computerized logic unit, often containing internal software that 
processes the parameters, and compares them to a set of criteria to decide if a series of systems and 
components must be actuated.  Thereafter, the actuation signal is transmitted to actuator devices that 
complete the desired operation.  The communication links can be provided from both the data- processing 
and actuation-signal logic units through a separate communication bus to generate information displays in 
the control room.  Displays for the operators can be fed from any of these components, although the logic 
units and signal processors are the commonest links to the control room displays.  

  

 
Figure 3. Digital I&C system components. 

Figure 4 illustrates the I&C system from a functional point of view.  This way of describing the I&C 
system, and its subsystems, was developed for use in the I&C roadmap for the DOE’s advanced NPP 
programs (Dudenhoeffer et al., 2007).  
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Figure 4. I&C subsystem representation employed by the DOE for advanced NPPs (Dudenhoeffer et al., 
2007). 

The subsystems are described as follows: 

• Sensor subsystem – Nearly every plant process uses some form of physical measurement taken by 
sensors that detect parameters in the plant, such as neutron flux, temperatures, pressures, flow, valve 
positions, electrical current levels, and radiation levels.  Some new nuclear-energy production 
technologies employ new, different types of sensors and instruments to measure physical processes.  
In some reactor designs, they include electronic sensors with imbedded software that are required to 
work in high-temperature environments and measure and analyze process parameters quite different 
from those in today’s operating light water reactors.  

• Monitoring subsystem – These subsystems monitor the signals and other information produced by 
sensors and evaluate that information to determine whether and what type of response is needed.  
They can contain sophisticated diagnostic and prognostic functions. Diagnostics refers to techniques 
for identifying and determining the causes of deviations or faults in the plant’s systems or processes.  
Prognostics refers to methods for using sensor data to estimate the rate of physical degradation and 
the remaining useful life of systems, predicting time to failure, and applying this information to more 
effectively control  processes.  

• Automation and control subsystem – Digital control systems offer the ability to implement more 
advanced control-algorithms than those presently used in U.S. NPPs that rely primarily on single-
input, single-output, classical control schemes to automate individual control loops.  Advanced 
control schemes include matrix techniques for optimal control, nonlinear control methods, fuzzy 
logic, neural networks, adaptive control (a control that modifies its behavior based on plant 
dynamics), expert systems, state-based control schemes, and other schemes combining multiple 
control methods.  Applying these advanced techniques will assure a more integrated control of plant 
systems and processes (versus separate, non-interacting control loops) and greater complexity.   
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• Communications subsystem – A variety of communication systems assure information flow 
throughout the I&C system and to devices being monitored and controlled; they may include wireless 
technology.  A classical I&C architecture provides point-to-point wiring of measured variables to the 
monitoring and control systems.  The communications subsystems for a modern I&C system are 
configured into a flexible network architecture’ their greatly expanded functionality enables “smart” 
transducers to signal their service condition to the engineering staff.   

In this view, the role of automation in the I&C system and plant operations is more readily apparent.  
For the purposes of our project, a more detailed characterization of automation is needed.  This project 
takes the view that humans and automation  

Sheridan (2002) defined automation as (a) the mechanization and integration of the sensing of 
environmental variables (by artificial sensors); (b) data processing and decision making (by computers); 
and (c) mechanical action (by motors or devices that apply forces in the environment) or information 
action by communication of processed information to people. At the simplest level, an automation system 
is designed to accomplish a goal that can be predetermined by designers or set by operators, based on 
their current needs. The automatic system processes inputs from the plant and operators to meet the goal 
(Figure 5). 

 
Figure 5. Overview of an automation system. 

Because automation is applicable to many aspects of the plant’s operations, from analyzing 
procedural steps to controlling the plant’s systems, the specific processes used to accomplish 
automation’s goal vary depending on its particular usage. Thus, modern approaches to automation 
emphasize the value of multi-agent teams monitoring and controlling complex systems (Christoffersen & 
Woods, 2002; Hollnagel & Woods, 2005; Woods & Hollnagel, 2006). The teams consist of human, 
software, and hardware elements working together, sharing responsibilities, and shifting responsibilities 
to support the plant’s overall production and safety missions (see Figures 5 and 6). In this context, the 
term “agents” refers to who/what is performing an activity (i.e., agents are entities that do things). An 
agent will monitor the plant to detect conditions, indicating that a function must be performed. An agent 
will assess the situation and plan a response. Having established the response plan, it must be 
implemented by sending control signals to actuators. The agent will continue monitoring the activity to 
determine that the function is being accomplished and to plan again if it is not. Finally, the agent must 
decide when the function is completed satisfactorily. Human or machine agents can perform any one or 
all of these activities. Uhrig, Gao, and Tsoukalas (2004) suggest that for advanced NPP designs, 
multi-agent systems will be the first line of defense against degraded conditions, assuring continuous 
surveillance and predictive diagnosis. 
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Figure 6. Multi-agent teams to accomplish plant functions and operator tasks. 

In recent research, O’Hara and Higgins (2010) have identified a six-dimensional characterization of 
automation: levels, cognitive function, processes, modes, adaptability, and reliability. Each automation 
dimension is described in the following subsections. Note that a “type” of HAC is defined by its 
characterization along these dimensions. An adapted version of this six-dimensional model serves as a 
preliminary automation characterization for the HAC research effort. The following subsections describe 
the dimensions of cognitive function, level of automation (LOA), reliability, degradation, process mode, 
and adaptability. 

2.2 Automation Design Dimensions 
This section defines the factors that researchers use to characterize automation and HAC.  The factors 

presented in this section were initially identified by O’Hara and Higgens (2010). The contribution of these 
factors to HAC is discussed in the context of the empirical literature in Section 2.3. 

2.2.1 Function of Automation (Cognitive Function) 
It is important to note that the word ‘function’ is term that is used in psychology, engineering, and 

other fields, and is defined and used in a variety of ways. Psychological and human factors literature uses 
the word function to refer to information processing functions that operators perform as part of executing 
their tasks in the control room such as monitoring, detecting problems, gathering information, making a 
diagnosis, generating plans or alternative strategies, making decisions, and implementing the chosen 
action. Automation also serves these same information processing functions. These are the low-level 
functions that must be accomplished to successfully execute higher-level plant functions, regardless of 
whether they are performed by the operators or automation. However, the word function also has specific 
meaning to designers related to the plant functions (e.g., produce electricity, steam, and process heat) and 
system functions (e.g., provide core cooling). Human factors engineering also uses the word function 
when describing a standard human factors engineering process called function allocation (i.e., how 
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decisions are made regarding whether a plant function is allocated to the human operator, the automated 
systems, or both). To avoid confusion regarding which type of function is being discussed, this report will 
use plant function or system function when referring to the plant or system functions and cognitive 
function when referring to the lower-level information processing functions, whether they are performed 
by the operators or automation. It may seem counterintuitive to call these low-level functions cognitive 
functions when they are performed by automation (because automation does not “think” in a strict sense); 
however, it can be argued that, in most cases, automation executes these cognitive functions in place of 
the operator, thus serving as the cognitive function that the operator would normally fulfill. 

The list of cognitive functions varies slightly depending on the researchers and model of cognition. 
Parasuraman et al. (2000) characterized the following four main cognitive functions: 

6. Information acquisition (e.g., the gathering of process information) 

7. Information analysis (e.g., calculations) 

8. Decision and action selection (e.g., evaluating step logic, conditions, or providing recommendations) 

9. Action implementation (taking a control action such as opening a valve). 

Endsley and Kaber (1999) identified four slightly different generic cognitive functions that are 
applicable across domains: 

1. Monitoring: scanning displays and indications to perceive system or process status 

2. Generating: formulating options or strategies to achieve operational goals 

3. Selecting: making a decision on a particular option or strategy 

4. Implementing: carrying out the selected option. 

The two lists of cognitive functions are very similar, yet differ slightly. Parasuraman et al. (2000) 
combine generating response options with decision making and have a separate function of information 
analysis, whereas Endsley and Kaber (1999) separate generation of options from decision making and 
incorporate information analysis with monitoring. Both of these models have received wide use, in part, 
because both models are generic enough to apply across industries. 

However, in developing an HAC model for the aSMR domain, it is important to use a model that is 
more tailored to the specific domain due to the unique design characteristics and the anticipated advanced 
automation of aSMRs. O’Hara et al. (2010) have proposed a new taxonomy that is more relevant to the 
aSMR domain than either of the Endsley and Kaber (1999) or Parasuraman et al. (2000) models. 
Specifically, the O’Hara et al. (2010) taxonomy of cognitive functions: 

 Is widely used in the nuclear industry 

 Is representative of the types of process control task activities that NPP operators commonly engage 
in 

 Includes interface management tasks, which are not typically considered in the other taxonomies 

 Is more directly associated with issues related to automation, such as failure to monitor automation 
and loss of situational awareness (SA). 

For these reasons, the research team will utilize the O’Hara et al. (2010) taxonomy of cognitive 
functions in developing a model of HAC for aSMR designs. This taxonomy is briefly described in the 
following paragraphs. 

In fulfilling their responsibilities, agents perform primary tasks (i.e., cognitive functions), which 
include activities such as monitoring plant parameters, executing procedures, starting pumps, and aligning 
valves. Cognitive functions have several common elements, whether the agent is automation or a human 
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operator: monitoring and detection, situation assessment, response planning, and response 
implementation. When the agents are human, they also must perform interface management tasks such as 
navigating or accessing information at workstations and arranging various pieces of information on the 
screen. These secondary tasks are important to consider because they create workload and may divert 
attention away from primary tasks and make them difficult to perform (O’Hara & Brown, 2002). O’Hara 
et al. (2010) proposed a set of cognitive functions that consider all of the factors. These cognitive 
functions are: 

 Monitoring and detection refer to the activities involved in extracting information from the 
environment. Monitoring is checking the state of the plant to determine whether it is operating 
correctly, including checking parameters indicated on the control panels, monitoring those displayed 
on a computer screen, obtaining verbal reports from other personnel, and sending operators to areas of 
the plant to check on equipment. An alarm system is an example of automation applied to monitoring 
and detection. 

 Situation assessment is evaluating current conditions to assure their acceptability or determining the 
underlying causes of any abnormalities (e.g., diagnosis). An example of automation applied to a 
situation assessment is a disturbance analysis system and other computerized operator-support 
systems. 

 Response planning refers to deciding on or choosing a course of action to address the current 
situation. In an NPP, procedures usually aid response planning. An example of automation applied to 
response planning is a computer-based procedure system. 

 Response implementation is undertaking the actions specified by response planning. They include 
selecting a control, providing control input, and monitoring the responses of the system and process. 
An example of automation applied to implementing a response is an automatic safety system such as 
soft controls. 

 Interface management encompasses activities such as navigating or accessing information at 
workstations and arranging various pieces of information on the screen. An example of applying 
automation to interface management is automatic identification of a display appropriate to the 
ongoing situation (e.g., identification of an emergency-procedure display upon detecting any of the 
procedures entry conditions). In this context, HSI notifies the operator of the availability of the 
display (i.e., by a blinking icon at the bottom of the screen), rather than disrupting the operator’s 
ongoing activity by obtrusively showing the display. 

A potentially important facet of cognitive function that is not explicitly represented above is the fact 
that some processes may be discrete and others may be continuous. For example, a single control action 
(or a series of control actions) could be defined as discrete processes, while monitoring parameters are 
considered continuous processes. There may be important implications for allocating function to either 
humans or automation, because they have different capabilities when it comes to continuous versus 
discrete processes. 

2.2.2 Level of Automation 
LOA describes the amount of automation used in a given situation. There are nearly as many 

taxonomies of LOA as there are researchers who investigate it; however, each taxonomy typically varies 
from fully manual (the human operator does everything) to fully automatic (the automatic system does 
everything), with intermediate levels typically including some collaboration between automation and 
human. In 1992, Sheridan defined three global levels of automation (O’Hara et al., 2010):  

1. Manual control (all control is accomplished by humans); 

2. Supervisory control (some or all of the control is performed by the computer, but the human 
supervisor can assert control); and  
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3. Fully automatic control (all control is automatic and the human cannot interfere in the process 
except, perhaps, to terminate it). 

 As technology has evolved, more fine-grained distinctions between these levels have evolved. This 
section describes and discusses the extant taxonomies of LOA. 

Billings (1991, 1997a) proposed one of the best-known frameworks for LOAs based on his work in 
the aviation industry. Table 1 illustrates how Billings (1997a) characterized the division of 
responsibilities for functions and tasks across humans and automation. 

Table 1. Billings’ levels of automation. 
Level Role of Automation Role of Human 

Autonomous 
Operations 

Fully autonomous operation. Human 
not usually informed. System may or 
may not be capable of being disabled. 

Human generally has no role in operation 
and monitoring is limited. 

Operation by 
Exception 

Essentially autonomous operation 
unless specific situation or 
circumstances are encountered. 

Human must approve of critical decisions 
and may intervene. 

Operation by 
Consent 

Full automatic control under close 
monitoring and supervision. 

Human monitors closely, approves 
actions, and may intervene. 

Operation by 
Delegation 

Automatic control when directed by 
human to do so. 

Human provides supervisory commands 
that automation follows. 

Shared Control Automatic control of some 
functions/tasks. 

Human controls some functions/tasks. 

Assisted 
Manual Control 

Primarily manual control with some 
automation support. 

Human manually controls with assistance 
from partial automation. 

Direct Manual 
Control 

No automation is used. Human manually controls all functions 
and tasks. 

 
While early taxonomies of LOA treated it as independent from cognitive function, several researchers 

have acknowledged that the consequences of LOA for HAC are largely dependent on which cognitive 
functions are automated. As a result, these researchers have combined level and cognitive functions into a 
single taxonomy. Endsley and Kaber (1999) proposed an LOA taxonomy intended to be generic enough 
to have applicability to a wide range of cognitive and physical tasks that require real-time control in a 
number of industries. In developing this model, Endsley and Kaber assigned the four cognitive functions 
described in Section 2.1.1 (i.e., monitoring, generating, selecting, and implementing) to the human 
operator, automation, or a combination of the two to develop the 10 levels of automation shown in 
Table 2 (Endsley & Kaber, 1999). Note that as the LOA increases, automation takes over progressively 
more of each cognitive function. 

Table 2. Level of automation taxonomy (Endsley & Kaber, 1999). 

Levels of Automation 
Roles 

Monitoring Generating Selecting Implementing 
(1) Manual control Human Human Human Human 
(2) Action support Human/ 

computer 
Human Human Human/ 

computer 
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Levels of Automation 
Roles 

Monitoring Generating Selecting Implementing 
(3) Batch processing Human/ 

computer 
Human Human Computer 

(4) Shared control Human/ 
computer 

Human/ 
computer 

Human Human/ 
computer 

(5) Decision support Human/ 
computer 

Human/ 
computer 

Human Computer 

(6) Blended decision 
making 

Human/ 
computer 

Human/ 
computer 

Human/ 
computer 

Computer 

(7) Rigid system Human/ 
computer 

Computer Human Computer 

(8) Automated decision 
making 

Human/ 
computer 

Human/ 
computer 

Computer Computer 

(9) Supervisory control Human/ 
computer 

Computer Computer Computer 

(10) Full automation Computer Computer Computer Computer 
 

Each of these levels are described in more detail as follows (Endsley & Kaber, 1999): 

1. Manual control: The human performs all cognitive functions. 

2. Action support: The system aids the operator in performing the selected action; however, some 
operator control actions are required. 

3. Batch processing: The human generates and selects the options to be performed and then turns the 
actions over to the computer to carry out. The automation at this level is primarily in terms of 
implementing actions. 

4. Shared control: Both the human and computer generate possible options. The operator makes the 
decision on which option to implement, and then shares responsibility with the system for carrying 
out the action. 

5. Decision support: The computer generates a list of options that the human can select from; the 
operator may still generate his or her own options. The computer is responsible for implementing the 
chosen action. This LOA is common in many expert systems or decision support systems in which 
the operator may use or ignore the option guidance provided by the system. 

6. Blended decision making: The computer generates a list of decision options, selects one, and 
implements the action if the operator consents. The operator may approve or disapprove the 
computer’s choice and may provide her or his own option. 

7. Rigid system: This system presents a limited set of actions to the operator, who must choose an 
option from the set and cannot generate any other options. The computer then fully implements the 
chosen action. 

8. Automated decision making: The computer generates a list of options to which the operator may add 
suggestions. The computer then makes a decision and carries out the chosen action. 

9. Supervisory control: The computer generates options, makes decisions, and carries out the chosen 
actions. The operator’s role is primarily to monitor the system and intervene only when necessary.  
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10. Full automation: The computer carries out all cognitive functions. The human operator is out of the 
loop and cannot intervene. This is a fully automated system, where human intervention is not 
considered to be necessary. 

Parasuraman et al. (2000) also proposed an LOA taxonomy that incorporated cognitive functions. 
Their taxonomy includes the four cognitive functions described in Section 2.1.1 (i.e., information 
acquisition, information analysis, decision selection, and action implementation). Based on these four 
functions, Parasuraman et al. developed their own 10 LOAs (Table 3). 

Table 3. Levels of automation (Parasuraman et al., 2000). 
Levels of Automation of Decision and Action Selection 

High 10 The computer decides everything, acts autonomously, and ignores the human. 
 9 The computer executes automatically and informs the human only if the computer decides 

to. 
 8 The computer executes automatically and informs the human only if asked. 
 7 The computer executes automatically, then necessarily informs the human. 
 6 The computer allows the human a restricted time to veto before automatic execution. 
 5 The computer executes the suggestion if the human approves. 
 4 The computer suggests one alternative. 
 3 The computer narrows the selection of decision/action alternatives to a few. 
 2 The computer offers a complete set of decision/action alternatives. 
Low 1 The computer offers no assistance, the human must take all decisions and actions. 

 
Their levels differ somewhat from Endsley and Kaber (1999); however, there are some overlaps (e.g., 

Parasuraman et. al Level 5 corresponds to Endsley and Kaber LOA 6 [blended decision making]). 
Endsley and Kaber’s model does not include levels that specify when and how automation notifies the 
operator of actions taken, as is the case with Parasuraman et al.’s Levels 7, 8, and 9. Endsley and Kaber’s 
model also includes levels that detail more of the operator’s supervision of the system (e.g., LOA7, 
LOA8, and LOA9) than Parasuraman et al.’s model. 

Parasuraman et al. (2000) provide a model in which they advocate different LOAs, depending on the 
cognitive function and other automation or task characteristics (Figure 7). 

Parasuraman et al. (2000), Endsley and Kaber (1999), and Billings’ (1997a) LOAs have all been used 
widely in empirical research. However, it remains to be seen which taxonomy best fits automation that 
will be employed in aSMR NPPs. 
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Figure 7. Recommended levels of automation for different cognitive functions (Parasuraman et al., 2000). 

The majority of LOA taxonomies have been developed in the context of industries other than nuclear 
power (e.g., aviation). To ensure relevance to the nuclear industry, O’Hara et al. (2010) adapted existing 
taxonomies to account for the types of automation used in the nuclear industry (see Table 4). 

O’Hara et al.’s Level 3 corresponds to Endsley and Kaber’s LOA6 and Parasuraman et al.’s Level 5, 
and O’Hara et al.’s Level 4 corresponds to Parasuraman et al.’s Level 6 and Endsley &and Kaber’s LOA8 
and LOA9 (Endsley and Kaber’s model breaks down into finer detail than O’Hara et al.’s levels). 

Though this taxonomy was tailored to the type of automation that would likely be employed in the 
nuclear industry, it was developed for near-term applications in advanced plants. While those plants are 
likely to use more automation than an existing light water reactor plant, they may not use automation to 
the degree that is anticipated for aSMRs; therefore, this taxonomy may need to be updated to accurately 
reflect the aSMR context. 

Table 4. Preliminary levels of automation for nuclear power plant applications. 
Level Automation Functions Human Functions 

1. Manual Operation No automation Operators manually perform all 
functions and tasks 

2. Shared Operation Automatic performance of some 
functions or tasks 

Manual performance of some 
functions/tasks 

3. Operation by 
Consent 

Automatic performance when 
directed by operators to do so, 
under close monitoring and 
supervision 

Operators monitor closely, approve 
actions, and may intervene to provide 
supervisory commands that automation 
follows 

4. Operation by 
Exception 

Essentially autonomous operation 
unless specific situations or 
circumstances are encountered 

Operators must approve critical 
decisions and may intervene 
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5. Autonomous 
Operation 

Fully autonomous operation; 
system or function cannot 
normally be disabled, but may be 
started manually  

Operators monitor performance and 
perform backup if necessary, feasible, 
and permitted 

 
Research on the impacts of LOA on operator performance (see discussion in Section 2.2.3) indicates 

that it is not possible to determine the impact of LOA on operator performance without knowing which 
tasks the automation is controlling. In this manner, level and cognitive function are not independent of 
each other, which is reflected in research where level and cognitive function are confounded: higher 
levels of automation have the automation conducting more of the cognitive functions that operators 
typically are responsible for in non-automated settings. Both Endsley and Kaber’s (1999) and 
Parasuraman et al.’s (2000) LOA taxonomies illustrate this point. As LOA increases, not only does the 
amount of automation increase, but automation takes over increasingly more of the operator’s role and 
activities. 

2.2.3 Reliability 
Automation is imperfect. In fact, all engineered systems have less than perfect reliability. 

Automation’s reliability is defined as how well automation accomplishes its task. Reliability is a 
characteristic of properly functioning automation. For example, an alarm system’s reliability is a function 
of the alarm conditions correctly detected, false alarms (signaling an alarm when no alarm condition 
exits), and missed alarms (failing to signal an alarm when an alarm condition does exists). This 
relationship is illustrated in Table 5. 

Table 5. Automation reliability performance matrix. 
Situation Event Occurs Event Does Not Occur 

Alarm Triggers Correct Performance False Alarm 
Alarm Does Not Trigger Miss Correct Performance 

 
This type of relationship characterizes many types of automation. The reliability of such a system can 

be expressed as (Cullen, Roders, & Fisk, 2012): 

 
However, when automation’s tasks are complex (as is the case for many decision support systems), 

defining the measures of reliability is more involved. Further, automation’s reliability may differ across 
different contexts of use or modes of operation. 

An important feature of automation’s reliability is degradation. Automation is a part of the overall 
instrumentation and control system, which is composed of four subsystems: sensor, monitoring, 
automation and control, and communications subsystems. Automation depends on the other subsystems 
to function properly. Problems arising in the instrumentation and control infrastructure can lead to 
degradation or failure of any aspect of automation (O’Hara et al., 2010). Thus, for example, loss of 
sensors or significant delays in the transmission of information along the data highways can cause 
degradations of any aspect of automation. 

For purposes of the HAC research effort, degradation and failure fall on a continuum from 
degradations resulting in minor loss of functionality to complete loss of functionality (or an automation 
failure). In a degraded condition, automation will continue to operate, but the loss of functionality may 
lead to incorrect performance. In a failed condition, automation does not perform at all. For the purposes 

Reliability =
Hits + Misses  + False Alarms

Hits
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of this section, we are not considering automation degradation and failure s that are due to incorrect 
operator inputs, configuration, or usage of automation. 

Degradation and failure can lead to two types of problems for operators: 

 Automation does not do what it is supposed to do when it should do it 

 Automation does something that it is not supposed to do such as causing abnormal operating 
conditions due to erroneous automatic action or providing erroneous information. 

With each of these types of problems, operators must detect the degraded or failed automation, 
determine the proper actions to take (via assessing the situation and planning a response), and/or 
transition to back-up systems or operations.  Each of these human actions are potentially subject to human 
performance issues. 

2.2.4 Process 
Automation uses input from the plant (and perhaps the operator) and processes the information to 

accomplish a goal. These processes are an important aspect of automation in that they are the means by 
which automation performs its tasks. Automation processes can include control algorithms, decision logic 
(such as the use of Boolean logic), and virtually any other type of information processing routine suited to 
its tasks (O’Hara et al., 2010). 

2.2.5 Mode 
Automated systems may have different modes of operation. Modes define sets of mutually exclusive 

behaviors that describe the relationship between input to the automation and the response to it (Jamieson 
& Vicente, 2005).  A system can have multiple modes, but only one is active at a time.  Modes do not 
imply differing levels of automation; rather, they involve performing the same function in different ways.  
Modes are beneficial in providing the capacity for a system to do different tasks, or to accomplish the 
same task using different strategies under changing conditions 

A global positioning system device is a simple example of modes. After the user specifies a 
destination, the global positioning system device automatically plans the best route. Users can select 
driving mode or pedestrian mode. In a city environment, where there are many one-way streets, the route 
suggested by each mode may be completely different. In driving mode, the one-way streets constrain the 
route selected; in pedestrian mode, one-way streets have no impact on the route selected. Therefore, the 
task is the same, but the solution depends on the mode selected (O’Hara et al., 2010). 

2.2.6 Adaptability 
A system can be designed such that the human or machine agent responsible for performing a task 

always is the same (i.e., the so-called static allocation). Alternatively, a task can be performed either by 
automatic systems or by personnel based on situational considerations such as the operator’s overall 
workload. For example, automation may assume control over lower priority tasks when the operator’s 
workload increases to a level where all current work becomes difficult to complete. This approach ensures 
operators can focus their attention on high-priority tasks because their workload levels remain within 
acceptable limits. A simple example is alarm reset, when during a major plant disturbance workload is 
very high and many alarms are coming in, operators can reallocate the alarm-reset task from manual to 
automatic. When human or machine agents can flexibly perform tasks, automation is said to be adaptive 
(O’Hara et al., 2010). 

A key consideration for adaptive automatic systems is the “triggering” condition (i.e., the condition 
that causes the adaptive automation shift), and which agent makes the change: the human operator, the 
automation, or whether the system is flexible enough that the operator or the automation can initiate a 
change to the automation. 
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Adaptability of automation is an issue that is not entirely separate from the LOA or the cognitive 
functions for which the automation is responsible. The concept of adaptive automation involves changing 
the LOA (and/or the cognitive functions allocated to the automation) depending on the specific 
circumstances of the situation. The triggers that initiate a change to LOA or cognitive function can vary.  
Parasuraman et al. (1996) and Yoo (2012) have identified five main categories of techniques for 
classifiying triggering conditions: 

 critical events (that will change demands on ops – like an emergency operating procedure initiator) 

 operator performance measurement 

 operator physiological assessment 

 modeling 

 hybrid methods combining one or more of the above 

It should be noted that if triggers are to be made on operators’ states, such as poor SA or high 
workload, a means to measure those states in real-time systems will be needed (Salmon et. al. 2008). 

2.3 Review of Empirical Literature on Human-Automation 
Collaboration  

As the first step in developing a model of HAC, researchers reviewed empirical literature on human 
automation interaction.  The researchers identified the prominent human performance characteristics that 
are investigated in the human factors literature on HAC. The researchers then investigated what 
conclusions can be drawn from the existing literature regarding how the automation design dimensions 
affect those human performance characteristics.  

Before going into a detailed review of the human factors literature, it is worth pointing out the 
distinction this research is making between HAC and human-system interaction (also known as 
human-computer interaction). HAC is defined as how the operator and the automation work as a team to 
ensure effective and safe plant operation. At this level, the focus is on understanding the effects of various 
characteristics of automation (such as its reliability, processes, and modes) on an operator’s use and their 
awareness of plant conditions. 

Human-system interaction involves analysis and design of the interaction between people (i.e., users) 
and technological systems. The goal is to design the human-system interaction in such a way that the 
user’s performance and, as a result, the overall human-system’s performance is optimized. This can be 
measured with a variety of metrics, including time to learn, speed of performance, rate of errors by the 
users, retention over time, and subjective satisfaction (Schneiderman, 1998). 

With respect to human-system interface methods and models to evaluating the design of user 
interfaces or HSIs, there are a number of widely accepted approaches and methods, including the goals, 
operators, methods, and selection rules model (Card, Moran, & Newell, 1983) and user-centered design 
(Norman & Draper, 1986). In general, these methods model (a) the human in terms of their cognitive, 
physical, and social attributes, (b) the technological system in terms of its capabilities and limitations, and 
(c) their dynamic interaction as they work together to perform various tasks to achieve a defined goal. 
More importantly, because these methods often focus on the design of user interfaces that allow the user 
to effectively use the technology, human-system interaction is considered a subset of HAC. 

2.3.1  Performance Characteristics in Human-Automation Collaboration 
Though a large portion of the human factors’ literature addressing HAC focuses on the human 

performance consequences of automation (Endsley, 1996, 1997; Endsley & Kaber, 1999; Endsley & 
Kiris, 1995; Jou, Yenn, Lin, Yang, & Chiang, 2009; Kaber & Endsley, 2004; Lin, Yenn, & Yang, 2009, 
2010a, 2010b; van de Merwe, Oprins, Eriksson, & van der Plaat, 2012), the overall characterization of 
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HAC needs to consider the consequences to overall system performance. Overall system performance can 
be characterized as a combination of each individual agent’s (human or automatic) individual 
performance in accomplishing the overall plant function in addition to each agent’s ability to compensate 
or recover from another agent’s failure. Thus, the characterization of overall system performance can be 
broken down into two levels: integrated system performance and the individual performance of 
automation and the human (which also encompasses the quality of HAC). Even though overall 
performance of automation is an important factor in system performance (and is likely to be of great 
importance to designers), we will only consider it here as it applies to human performance and human 
interaction with automation. 

Automation and personnel work together to accomplish a mission, function, or purpose. The overall 
accomplishment of that plant function reflects the success of HAC. Therefore, measures of plant function 
accomplishment ultimately are the bottom line from an operations standpoint. Measures of plant function 
performance are scenario specific. While they are an important criterion for success, these measures 
typically are not diagnostic. They do not provide an indication as to whether successful plant function 
accomplishment was achieved in an undesirable way (such as with poor SA or high workload) that may 
bring into question the reliability of performance or why plant function accomplishment failed. 

Even though overall system performance ultimately is the measure by which HAC will be deemed 
successful, it also is essential to consider the human performance consequences of automation. As stated 
above, a plant function that has been performed satisfactorily may not reflect satisfactory performance of 
the individual agents involved in executing the plant function (i.e., the human and/or automation may 
have failed to perform individual tasks). The majority of empirical studies investigating 
human-automation interaction characterize human performance in terms of the following dimensions: 
objective task performance (which is situation dependent), SA, and use of automation. These dimensions 
characterize the human performance aspects of HAC, and are often affected by the automation design 
dimensions reviewed in section 2.2. Thus the review of the HAC literature is organized by human 
performance dimension and discussed in the context of the specific automation design dimensions that are 
investigated.  

2.3.2 Objective Task Performance 
Many researchers have investigated the effect of automation’s reliability on performance (both human 
performance and system performance). Wickens and Dixon (2007) reviewed the findings of 20 studies 
that used automation’s reliability as an independent variable to quantify its effects on task performance. 
The automation in these studies supported the generic tasks of monitoring/detection and SA (not response 
planning or implementation). A regression analysis of the data from these studies indicated the following:  

 There was a “strong linear function,” relating reliability and performance. 

 Below a reliability of 0.70, providing automation led to poorer performance than no automation. 

 The effect of reliability on performance was stronger in high-workload conditions. 

To provide a richer understanding of these general findings, the researchers examined some specific 
studies addressing how reliability affects performance. While these studies are from a variety of industrial 
domains, most of the tasks are target detection–target recognition tasks. 

Metzger and Parasuraman (2005) examined decision aid reliability and its relationship to using 
automation, with two reliability levels: high and low. Reliability levels were not quantified. The 
participants were professional air traffic controllers. The aid supported detection of air traffic conflicts. 
The researchers assessed task performance and workload. They found that when the aid was very reliable, 
task performance improved, and workload was lowered. However, when automation was less reliable, 
conflicts were missed and manual detection was better. The authors suggested applying automation of 
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lower reliability to support less important tasks, thereby keeping operators available to address the more 
important tasks. 

Skitka, Mosierer and Burdick (1999) compared simulated flight performance with and without an 
automated decision aid that monitored specific gauges and recommended actions to be taken when the 
gauge’s readings entered the red zone. The participants, all students, were told the gauges were always 
100% accurate, but that automation did make mistakes. When working properly, automation increased 
task accuracy and reduced errors. When automation failed to monitor properly, operator errors rose 
relative to the no automation condition (i.e., errors of omission [missing an event that was not detected by 
the aid] and of commission [doing what the aid said even when it contradicted their training and the 
information in the gauges] were higher). The authors suggested that in trying to reduce cognitive effort, 
operators tend to accept what the decision aids tell them. 

Ruff et al. (2004) explored the impact on task performance, workload, and trust in automation of 
unmanned aerial vehicle team size with two different LOAs and two levels of automation reliability (low 
and high). Sixteen participants controlled unmanned aerial vehicle teams of two or four in a planning and 
targeting task. The automation planned new routes and identified targets, then either waited for user input 
to proceed (operation by consent) or waited for a time and then continued unless the participant gave a 
stop command (operation by exception). Performance measures included targeting task performance, 
workload, and trust. The low reliability of automation decreased task performance and trust, but had no 
effect on workload. 

Goh, Wiergmann, and Madhavan (2005) evaluated the effects of reliability as an aid (70 vs. 90%) and 
the type of cue (direct vs. indirect) on the competence of students in identifying targets in a security 
luggage screening task. The direct cue was a green circle around a suspect target in the security display; 
the indirect one was a green border around the display suspected to contain a target. Their study also 
examined the participants’ performance after an automation failure. Target identification was better with 
the direct cue than the indirect cue. Performance was better with the aid that was 90% reliable compared 
with the one that was 70% reliable. However, performance with the 70% reliable aid was not significantly 
better than that of a control group lacking an aid. The authors concluded that the 70% reliable aid did not 
sufficiently support performance and participants did not rely on it. 

Dixon and Wickens (2006) examine the effect of the different reliability levels of an automatic 
alerting system. Pilots flew unmanned aerial vehicles and the system provided auditory alerts for system 
failures, route changes, and other mission updates. The reliability of the auto-alert system was either 
100% detected (15 correct alarms); 67% detected (10 correct alarms, 5 false ones); or 67% detected (10 
correct alarms and 5 that the alert system missed). A manual condition (no auto-alert system) was 
included. They found that detection accuracy and response time worsened with the automation’s declining 
reliability. 

de Visser & Parasuraman (2007) conducted a study in which 12 student participants performed a 
simulated target recognition task with unmanned ground vehicle teams of three or six. An automated 
target recognition system with three levels of reliability was used: low, medium, and high. They 
employed a variety of performance measures, including target detection, SA, workload, and trust in 
automation. For comparison, they assessed the target recognition performance of the user alone and the 
automated target recognition alone. Performance of the joint human- automated target recognition system 
was better than performance of either agent by themselves. Thus, even under the condition of low 
reliability, the automated target recognition system supported overall task performance. Reliability of 
automation affected trust and the task performance. Both decreased with lower reliability. SA and 
workload were unaffected by reliability. 

In de Visser and Parasuraman’s (2011) Experiment 1, student participants performed a target 
detection task under two task loads in a high-fidelity, multi-unmanned vehicle simulation. A target 
detection aid was provided in one of three levels of reliability. The study showed that even extreme levels 
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of imperfect automation can still be beneficial to the overall system performance. In their study, human-
automation performance at a target detection task was better than either automation or operators alone. 
Each agent is imperfect and their interaction led to the highest performance. These studies generally 
support the findings of Wickens and Dixon (2007) presented at the beginning of this section. 

While higher reliability improves task performance, it does not improve an operator’s ability to detect 
automation failures. In fact, the higher the reliability of automation, the less likely it is that operators will 
recognize when it fails (Dixon & Wickens, 2006; Wickens et al., 2010). In fact, this is one of the ironies 
of automation identified by Bainbridge (1983)  many years ago. 

In summary, highly reliable automation improves task performance, but not the detection of 
automation failures.  When operators know the actual reliability of the system, they can make use of that 
knowledge to more properly adjust their automation usage.  Based on the research above, we 
hypothesized the relationship as follows.  As automation becomes less reliable, its support for task 
performance becomes less and performance declines.  At some reliability threshold (perhaps.70 for 
monitoring, detection, and SA task automation), automation’s lack of reliability draws operator attention 
away from the task to automation monitoring and task performance suffers.  At an even lower threshold, 
operators abandon automation altogether and perform the task manually.   

Objective task performance of a HAC also depends largely on the LOA and the function that is 
automated. Though the dimensions of level and function are discussed separately in section 2.2, they are 
discussed together in this review because very few empirical studies have invested them separately.  

Prevot et al. (2012) tested the effect of a newly designed, highly automated system for air traffic 
control on overall human system performance. They varied the LOA (i.e., fully automated, interactive, or 
manual) and the level of air traffic. They found that the best performance (as measured by operator 
workload, time to resolve conflicts, and the number of loss of separations) was obtained when the tasks 
were executed in an interactive manner, rather than a fully manual or fully automatic manner. 
Specifically, the best performance was obtained when the human operator was still involved in the high-
level decision making. Additionally, they found that as the level of traffic increased, the impact of 
interactive automation increased. These results indicate that it may be preferable to include operators in 
the loop of the high-level decision making, even in situations that require high levels of automation for 
most tasks. 

One study found an interaction between the cognitive function that is automated and the reliability of 
automation. According to Rovira, McGarry, and Parasuraman (2007), the reliability of automation 
differentially affected acquisition of information and decision-making cognitive functions. Student 
participants identified targets as part of a simulated command-and-control operation. They had to identify 
the most dangerous target, deciding on an engagement strategy (i.e., identify which “friendly” resources 
should be used to attack the enemy). The task was performed manually or with an automated aid that 
supported information gathering or three levels of decision functions. The aid was either unreliable (60% 
correct) or reliable (80% correct). The dependent measures were accuracy and speed of identifying the 
most dangerous target and the correct engagement strategy. Their results revealed that reliable automation 
improved performance compared with manual performance. If the 80% reliable automation aid failed, the 
participant’s performance was worse with decision support than with information-acquisition support. 
Performance was poor when the aid was only 60% reliable, regardless of the type. The authors concluded 
that should decision-support automation not be highly reliable, designers should provide users with 
information automation only because it is easier to compensate for loss of that function in comparison 
with decision functions.  

Level of automation also plays a role in performance under conditions of automation degradation or 
failure.  Wickens et al. (2010) conducted a meta-analysis of 17 studies that examined the effect of level of 
automation on failure detection.  They identified a “routine-failure tradeoff.”  Simply stated, “more 
automation yields better human-system performance when all is well, but induces increased dependence 
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so that it will produce more problematic performance when things fail” (p. 389).  This relationship is 
illustrated in Figure 8.  The tradeoff is acceptable until point A in the figure.  As the automation increases 
beyond Point A, the negative effects of failure performance become significant.  The legitimacy of the 
routine-failure tradeoff has been supported in more recent research (Smith & Jamieson, 2012). 

Manzay, Reichenbach and Onnasch (2008, evaluated the effects of degree of automation (analogous 
to LOA) and automated decision aids on human performance. Specifically, they measured task 
performance when using the automated aids and return-to manual performance upon failure of the 
automated aids. They found that task performance was better with a higher degree of automation. 
However, return-to-manual performance was poorest under the highest degree of automation. This 
suggests that performance may improve with higher levels of automation, but perhaps at the cost of a 
decrement to manual recovery of the automation fails.  

 

 
Figure 8. Routine-failure tradeoff (adapted from Wickens et al., 2010). 

Wickens suggested that as designers make decision about automating tasks, they should assess this 
performance tradeoff in the light of automation failure probabilities.  That is, there may be a point where 
the costs of increasing the level of automation are too great if the automation fails.  Thus, one approach to 
manage this tradeoff may be to refrain from higher levels of automation (Kaber & Endsley, 2004). Higher 
automation reliability exaggerates this effect (probably due to complacency), impairing the operator’s 
ability to detect automation degradation or failures (Dixon & Wickens, 2006; Wickens et al., 2010). 
Operators are less likely to monitor automation they consider reliable.  This situation is considered 
“overtrust” and is likely to be the root cause for this finding. 

Jou et al. (2009) evaluated operator performance and workload on a simulated reactor control task 
(using two separate tasks: alarm reset and reactor shutdown), with a secondary target detection task with 
an advanced digital HSI. Operators worked under either low automation or high automation (LOA not 
specified). Low automation produced significantly longer primary and secondary task performance and 
significantly higher workload than high automation. Additionally, the authors found performance 
differences between the types of operational tasks and concluded that the fact the mental workload was 
significantly higher in the alarm reset task than the reactor shutdown task shows that the task type plays a 
critical role in mental workload; LOA does not necessarily influence workload, but depends on the task 
type. 

The research on LOA and HAC performance indicates that in most cases, intermediate levels are 
automation produce the performance. In many of the studies LOA is confounded with cognitive function, 
and thus it is difficult to make generalizable conclusions regarding the optimal level of automation 
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without considering function. For some cognitive functions, higher levels of automation enhance 
performance without producing any negative consequences. However for decision making functions, 
higher levels of automation may enhance performance, but at the cost of reduced ability for the operator 
to return to manual performance.  

Some studies have investigated how adaptive automation affects performance compared to a static 
LOA. Kaber and Endsley (1997) studied how LOA and adaptive automation affects human performance, 
namely workload and vigilance demands, as participants were presented multiple tasks and goals to be 
completed simultaneously in a complex and dynamic simulation and a secondary monitoring task. The 
results showed that LOAs had an effect on the operator’s performance of the primary task, but no effect 
on the secondary monitoring task. The adaptive automation had more of an effect on the secondary 
monitoring task and less of an effect on performance of the primary task. 

 Clamann, Wright, and Kaber (2002) found a relationship between adaptability and cognitive 
function. The authors studied how adaptive automation affects performance when applied to different 
stages of human information processing. Their results showed that the participant’s performance with 
adaptive automation was better compared to fully manual operation, but that adaptive automation also 
was more effective when supporting less cognitively demanding stages of information processing 
(e.g., information acquisition and action implementation) than more cognitively demanding stages 
(e.g., information analysis and decision making). 

Parasuraman et al. (2009) investigated the effect of an adaptive automation system for a human 
operator supervising multiple unmanned vehicles. The adaptive automation was adjusted based on the 
human operator’s performance in a change detection task. They found that performance and SA were 
higher under conditions of adaptive automation than in manual or static automation. These results indicate 
that operator performance may be a useful method for activating adaptive automation, provided that the 
measure of performance is validated first.  

Though some studies have successfully employed adaptive automation using a specific triggering 
condition (e.g., Parasuraman et al., 2009), there has not been a great deal of research on the relative merits 
of the various triggering conditions for adaptive automation (Kaber, 2012; O’Hara et al., 2010), yet their 
importance to human-automation collaboration is widely acknowledged (Kaber, 2012; Sheridan & 
Parasuraman, 2005). Since there are relative benefits and disadvantages to each type of techniques 
mentioned in Section 2.2.7, several authors have recommended the use of hybrid methods to ensure that 
automation is initiated (or changed) when it should be (Parasuraman et al., 1996; Sheridan & 
Parasuraman, 2005).  Hybrid may lead to a more robust, resilient system that is less subject to potential 
problems or errors of individual triggers. 

That the initiation of automation can be based on machine authority may contradict the often stated 
principle in the automation literature that human should always be in charge (e.g., Billings, 1991, 1997a).  
In actual complex systems, this is often not the case and should not be the case (Inagaki & Sheridan, 
2012).  For example, in the recently published Revision G to MIL-STD-1472 (U.S. Department of 
Defense, 2012), the following Requirement of automaton is stipulated: 

Requirement 4.12.2, Human involvement. Irrespective of the level of automation, system 
and task design shall ensure that the human user is in command, involved in ongoing 
operations, and appropriately informed to maintain awareness of the situation and other 
status of automated functions. 

However, while this is generally true, some system functions are allocated to automation because they 
cannot be performed by personnel within time requirements (O’Hara, 2012). For example, if a safety 
function has to be performed within a second or two, the user is not really in command of it.  As another 
example, there may be situations where automation initiates a critical action because users have failed to 
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do so.  What does it mean for the user to be in command of these types of automation applications?  They 
will be performed with no input or opportunity for the user to intervene.   

When automation can be initiated under either human or machine authority, the situation is called 
“co-agency” (Inagaki & Sheridan, 2012).  When humans are in control, we refer to the situation as 
“supervisory control” (Sheridan, 2011). Note that this usage of “supervisory control” is different than the 
LOA of Supervisory Control.  Inagaki and Sheridan (2012) explain that the advantage of co-agency is that 
automation can be authorized to respond if it can detect the operator’s failure to respond appropriately. 

Another consideration related to adaptive automation is that there is a tradeoff between operator-
initiated and automation-initiated triggers (Kaber, 2012).  Requiring operators to initiate automation or 
changes to automation levels increase workload because they have to take action. This may come at a 
time when they want to initiate automation because their workload is already high. Automation-initiated 
triggers do not require additional operator workload.  However, operators may become disoriented or 
distracted by the initiation of automation or a change in the degree of automaton. This disorientation can 
cause transient performance decrements. The cognitive cost of initiating automation cannot outweigh its 
benefits or operator will not use it (Parasuraman et al., 2009). Thus when operator initiated triggers are 
used, designer should seek to minimize the workload associated with it. When automation-initiated 
triggers are used, designers should seek to design etiquette strategies to alert operators to the change in a 
manner that minimizes distractions and interruptions. 

In general, adaptive automation tends to enhance automation compared with static automation; 
however additional work is needed to define the optimal strategy for adaptive automation for the aSMR 
context. 

Automation design dimensions (such as reliability, LOA and adaptability) clearly have an effect on 
human performance. However, for any given set of the automation design dimensions, the HSI may have 
a substantial impact on the HAC performance. Skjerve & Skraaning (2004) evaluated a human-
automation interaction display in two experimental studies. The key features of the experimental 
interference were that it provided the following: 

 Representation of the key automatic devices on the overview display 

 Verbal feedback associated with the activity of the key automatic devices; dedicated displays for the 
automatic controllers available on the operators’ workstations 

 Computer-based logic diagrams available on the operators’ workstations. 

Both studies found that the quality of the collaboration between the human and automation was 
greater in the experimental display compared with the conventional display. 

2.3.3 Research Related to Effects of Automation on Operator Awareness 
Situation assessment is the evaluation of current conditions to determine that they are acceptable or to 

determine the underlying causes of abnormalities when they occur (e.g., diagnosis). Operators actively try 
to construct a coherent, logical explanation to account for their observations. This cognitive activity 
involves two related concepts:  the mental model and the situation model. The mental model refers to 
general knowledge governing the performance of highly experienced individuals, and it consists of the 
operator’s internal representation of the physical and functional characteristics of the plant and its 
operation. The mental model is built up through formal education, training, and operational experience.  
Operators develop and update a mental representation of the situation based on the factors known, or 
hypothesized, to be affecting the plant’s state at a given point in time. This situation assessment process 
produces a mental representation that is referred to as a situation model, the person’s understanding of the 
specific current situation; alternately this may be described as “situation awareness,” the understanding 
that personnel have of the plant’s current situation.  SA also is used more generally to refer to an 
operator’s awareness and understanding of what is going on (Endsley, 1995).   
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To develop SA, operators use their general knowledge and understanding about the plant and how it 
operates to interpret the information they observe and understand its implications. Operators constantly 
update their SA as they receive new information. The HSI provides alarms and displays that are used to 
obtain information in support of situation assessment. The HSI may provide additional support to SA in 
the form of operator support systems. Limitations in knowledge or in current information may result in 
incomplete or inaccurate SA.  

Situation assessment and accurate SA is critical to taking proper human action. This is noted in an 
IAEA report (1988) with respect to events involving incorrect human actions:  “Frequently such events 
have occurred when plant personnel did not recognize the safety significance of their actions, when they 
violated procedures, when they were unaware of conditions of the plant, were misled by incomplete data 
or incorrect mindset, or did not fully understand the plant in their charge” (p. 19). If operators have an 
accurate situation model, but mistakenly take a wrong action, they have a good chance of detecting it 
when the plant does not respond as expected. However, when an operator has a poor situation model, they 
may take many “wrong” actions because, while the actions are wrong for the plant state, they are correct 
for their current understanding of it. 

SA is a term that generally refers to an operator’s awareness of what is going on (Endsley, 1995). As 
a research construct, SA has received extensive attention over the last 20 years. There are several models 
of SA: sensemaking (Klein, Moon, & Hoffman, 2006; Klein et al., 2007), perceptual cycle theory of SA 
(Smith & Hancock, 1995; Adams, Tenney, & Pew, 1995), and the functional model of orienting activity 
(Bedny & Meister, 1999; Bedny & Karwowski, 2004; Bedny, Karwowski, & Jeng, 2004), but the model 
that has received the most empirical investigation and support by far is Endsley’s (1995) model, which 
was developed through work in the aviation industry and has been applied in numerous additional 
industries, including, but not limited to, air traffic control, military command and control, power plant 
operations, National Aeronautics and Space Administration missions, rail system operations, equipment 
maintenance, and medicine. Endsley’s SA model allows operator SA to be measured and quantified, 
which makes it a supremely useful model for empirical research. 

Endsley’s SA model (shown in Figure 9) is an information-processing model that documents the 
product of situation assessment in three levels. Level 1 involves perception of the status, attributes, 
dynamics, and other relevant aspects of elements in the environment (such as information and objects) 
(Endsley, 1995). Level 1 simply involves perception of the relevant elements; higher-level comprehension 
does not occur until Level 2. Level 2 SA involves combining, integrating, and interpreting the 
information perceived in the Level 1 SA into an understanding of the current situation (Endsley, 1995, 
2000). Level 3 SA involves projecting the current situation into the future to mentally forecast the future 
state of the situation given currently available information (Endsley, 1995, 2000), enabling the person to 
project and anticipate how the situation is going to evolve. Each level builds on the previous level to 
create understanding of the situation and errors made at an earlier level impair subsequent levels of 
awareness. 

With increased use of automation across many fields, researchers have observed persistent findings 
related to operator awareness of what is happening in the plant or process and awareness of what 
automation is doing. These findings show that automation does not necessarily improve operator 
performance (Endsley, 1996, 1997; Endsley & Kaber, 1999; Endsley & Kiris, 1995; Jou et al., 2009; 
Kaber & Endsley, 2004; Lin et al., 2009, 2010a, 2010b; van de Merwe et al., 2012). 
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Figure 9. Endsley’s model of situational awareness. 

When working with a system that is highly automated, the operator’s role changes. Instead of 
interacting frequently with the system and process, the operator must engage in extensive amounts of 
monitoring of the automated process instead and remain vigilant to identify any system changes or 
indications of system upset. However, research has shown that vigilance, which is an operator’s ability to 
maintain focused attention, awareness, and alertness over a prolonged amount time, is actually a very 
difficult task (Warm et al., 2008). Performance on a vigilance task declines over time, sometimes as early 
as 5 minutes into the vigilance task. Vigilance tasks tend to tax limited cognitive resources and are 
associated with high levels of perceived workload and stress (Warm et al., 2008). 

Therefore, forcing the operator into the role of monitoring has significant consequences for the 
operator’s ability to maintain awareness of the state of the plant and automation.  

Furthermore, Parasuraman & Manzey (2010) have shown that under conditions of high task load, 
operators preferentially allocate their attention to manual tasks at the expense of monitoring the 
automated system. This leads to reduced awareness of what the system is doing and increases 
complacency. Moray & Inagaki (2000) showed that in highly reliable automated systems, it actually is a 
sensible and suitable strategy for operators to not maintain constant SA, meaning that the operator’s 
behavior is well calibrated to the reliability of the system.  

One of the most significant and persistent findings related to effects of automation on operator 
performance and SA is referred to as the out-of-the-loop phenomenon or out-of-the-loop performance 
problem (Endsley, 1995, 1996, 1997; Endsley & Kaber, 1999; Kaber & Endsley, 1997, 2004; Lee, 2006; 
Parasuraman et al., 2000; Sheridan, 2002; Wickens & Hollands, 2000; Wright & Kaber, 2005). When 
operators are out of the loop, they are not aware of the state of automation or the system parameters 
(Endsley, 1996). This contributes to operators failing or being slow to detect that a problem has occurred 
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in the system that necessitates their intervention. Furthermore, the out-of-the-loop phenomenon means 
that once operators have detected a problem, they need additional time to determine and adequately 
understand the state of the system (in other words, restore their SA of the system and automation) in order 
to take appropriate action. 

Endsley (1996) asserts that the out-of-the-loop phenomenon occurs through the following three 
primary mechanisms: 

 Vigilance failures and complacency related to monitoring, including either over reliance on or distrust 
of automation 

 Assumption of a passive monitoring role rather than an active controlling role, which makes the 
operator less actively engaged in the decision-making process 

 Changes in feedback provided by the system to the operator, such as providing information in a 
different form or manner than what the operator is used to, changing the salience of critical 
information, providing too much information overall, information of lower quality than what the 
operator needs, or providing integrated displays without the underlying data on which the display is 
based. 

Additionally, Endsley notes that one of the major obstacles to successful automation is the difficulty 
that operators have in understanding automated systems, which are typically more complex than manual 
systems; this makes achieving an accurate mental model of the system very difficult and often is due to 
poorly designed interfaces or inadequate training. 

It has been suggested that automation can improve operator SA by reducing operator workload. 
Studies have shown a detriment to SA when workload is either too high or too low. As such, operator 
workload seems to be a major consideration for designing automation. However, some studies have 
shown that automation does not always decrease operator workload; in fact, it can increase it, depending 
on how it is designed and the cognitive functions automation is responsible for (Lin et al., 2010a). 
Furthermore, automation may reduce operator workload at the expense of SA (van de Merwe et al., 2012, 
Miller & Parasuraman, 2007). 

Despite all of this, well-designed automation can provide benefits to SA by reducing visual clutter 
and providing integrated displays and, for the most part, automation has worked well and accompanied a 
reduction in many types of human errors. Many of the factors that can lead to SA problems can be traced 
directly to the way automation is designed. Therefore, it is essential to minimize these problems during 
system design and optimize the benefits of automation without sacrificing operator SA (Endsley, 1995). 

As discussed in Section 2.2.1 and 2.2.2, the impact of automation on operator SA and workload 
depends on LOA and the cognitive function (i.e., monitoring, planning or generating options or strategies, 
making decisions, and implementing actions) automation is providing. Increasing amounts of automation 
produces different effects, depending on which cognitive function is automated and in what manner. A 
number of studies have been conducted to investigate this relationship between level and cognitive 
function. 

Lin et al. (2009) conducted a simulated reactor shutdown with a secondary detection task at two 
different levels of automation (Endsley and Kaber’s LOA2 and LOA9; see Table 2). They found that 
LOA9 produced lower operator workload than LOA2. While they did not find any significant differences 
in operator SA, depending on LOA, some operators in the high automation mode reported feeling out-of–
the-loop. The authors concluded that existing automation design still is not sufficient to eliminate out-of-
the-loop problems. Subsequent research by the same group of researchers did find an effect of LOA on 
both workload and SA (Lin et al., 2010a). They compared workload and SA for four levels of automation 
(Endsley and Kaber’s LOA2, LOA5, LOA6, and LOA9; see Table 2). LOA6 (an intermediate LOA) 
produced the best SA and lowest workload of all four LOAs. LOA2 produced the highest workload, and 



 

32 

LOA9 produced the out-of-the-loop performance problem. Participants in this experiment preferred lower 
LOAs for generating options and decision making and higher LOAs for monitoring and implementing 
(Lin et al., 2010a). 

Lin et al. (2010b) expanded on this research in a survey of participants familiar with their control 
room simulator task. The authors used Rasmussen’s (1983) skill-rule-knowledge taxonomy to identify the 
types of human errors that can occur in various levels of automation. Depending on LOA (Endsley & 
Kaber, 1999; see Table 2) and the cognitive function provided by automation, different types of human 
errors are more likely. Participants reported that skill-based slips and lapses are the most likely human 
errors in LOA2. However, in LOA9, participants indicated that the most likely human errors are 
knowledge-based mistakes. Participants also reported feeling out of the loop in LOA9 because so many 
tasks are automated and the operators complete so few tasks. As a result of being out-of-the-loop, 
knowledge-based mistakes may occur when dealing with unfamiliar alarms or unexpected conditions (Lin 
et al., 2010b). 

van de Merwe et al. (2012) conducted research on an air traffic control task with an automated 
decision support tool called SARA that provides controllers a speed and route combination for inbound 
flights. They did not use a particular LOA taxonomy; what van de Merwe et al. varied was the type of 
information that the decision support tool provided (nothing beyond a standard air traffic control system, 
delta time (change in estimated arrival), speed advisory only, and speed and route advisories). As a 
decision support tool, SARA corresponds to Endsley & Kaber’s (1999) LOA5; this study found that 
differences within a single LOA between types of information presented may have an impact on operator 
performance. Specifically, the researchers found that speed and route information produced the best 
overall performance, negligible impacts on workload, and a decrease in operator SA due to the out-of-the-
loop phenomenon. Two studies were performed. SARA did assist controllers in delivering traffic more 
accurately, but interestingly produced lower SA. The participants mentioned that with SARA they felt 
less engaged in the traffic situation, or in other words, they felt out-of-the-loop. The authors conclude that 
particular care needs to be taken when designing automated decision support tools to avoid out-of-the-
loop phenomenon and support operator SA. 

In an in-depth study of LOA effects on performance, Kaber & Endsley (2004) investigated whether 
interspersing manual with automatic control (at five different LOAs: LOA3, LOA4, LOA6, LOA9, and 
LOA10; see Table 2) of a target-processing task similar to an air traffic control task (with a secondary 
gauge monitoring task) would impact operator performance, SA, and workload. They found that LOA3 
and LOA9 produced the worst operator SA across conditions. LOA3 had better target-processing 
performance than LOA4 and LOA6 and, when combined with longer times on automation, LOA3 
produced better target processing performance than LOA6. LOA3 also yielded the greatest number of 
target collisions, indicating operators were out of the loop in terms of avoiding target conflicts. LOA4 was 
the worst in terms of target processing performance across all conditions. When interspersed with periods 
of manual control, LOA10 was associated with improved SA, but when LOA10 was used without periods 
of manual control, operator SA was significantly poorer. LOA9 also produced low SA that can be 
attributed to the out-of-the-loop performance problem. In terms of workload, the cycle time between 
periods of manual control and automation had the greatest impact: higher cycle times (longer periods on 
automation) produced the lowest operator workload. LOA3, in particular, showed marked detriments to 
workload when there were no periods of manual control; in other words, full-time monitoring of the 
automation involved more workload than interspersing LOA3 with periods of manual control. An 
important conclusion from this study is that interspersing periods of manual control with fully automatic 
operation can enable operators to maintain adequate SA. Depending on LOA, different cycle times 
between periods of manual control and automated control can produce markedly different overall 
performance, operator workload, and operator SA automation in the primary task; however, LOA was not 
a driving factor in secondary task performance. 
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Another factor contributing to the failure to properly monitor automation is that automation often 
performs tasks independently from plant personnel (O’Hara & Higgins, 2010).  Personnel often have 
other tasks for which they are responsible.  While personnel do play a role in monitoring the performance 
of the automation, that responsibility often becomes compromised in the face of workload pressures.  This 
problem is exacerbated when automation is reliable, and personnel trust and depend on it to function 
properly (Parasuraman & Riley, 1997). Thus because of workload management strategies, personnel may 
continue to use automation, even when it does not correctly fulfill its functions.  

Across these multiple studies, there appears to be a general consensus that intermediate levels of 
automation (i.e., Endsley & Kaber’s LOA6, Parasuraman et al.’s LOA5, and O’Hara’s automation by 
consent) are best to ensure proper operator SA. There also is agreement across many studies that high 
levels of automation are not recommended due to the out-of-the-loop performance problem that high 
levels of automation continue to produce. This presents a particular problem for aSMR designs in that 
aSMR plants will be highly automated as a requirement for financial viability. This fact highlights an area 
in which additional research is needed: given high levels of automation, how can system designers ensure 
adequate operator SA (or design in sufficient time and means for operators to recover SA)? 

The HSI have can have an important impact on operator SA in the same manner that it can affect 
objective performance. Dehais, Causse, and Tremblay (2011) studied how “cognitive countermeasures” 
presented through the automation HSI can help mitigate cognitive errors (such as attentional tunneling 
[Wickens & Alexander, 2009]), the operator can commit when automation behaves in an expected 
manner. The study demonstrated that the dynamic presentation of visual cues in the HSI were effective at 
getting the operator’s attention without causing over fixation on the visual cue and conveyed to the 
participant what aspects of the situation had changed and affected the collaboration task such that the 
operator was no longer surprised by the change in the automation’s behavior. The results of this study 
reinforce the ideas that the HSI is an important mediator between humans and automation and that it is 
important that the HSI communicate the right information to the operator at the right time. 

Jou et al. (2011) applied content category analysis and performance evaluation matrix methods to 
explore the potential operator errors that can be caused by advanced digital HSI in light water reactor 
NPP control rooms. They identified that multiple accidents, pressure level, number of available operators, 
and other environmental factors are key issues that impact the likelihood of operator errors. They 
recommend providing guidance on prioritizing tasks in multiple accident scenarios, increasing staffing to 
reduce the individual operator workload, and taking care with implementing automation to ensure 
operator workload is not increased. 

HSI is critical in cases of automation degradation or failure.  HSI is key to whether operators detect 
the automation degradation or failure.  Operator SA can minimize the “routine-failure tradeoff” discussed 
in Section 2.3.2.2 above; i.e., failures are better handled when operators have good SA regarding the 
system and automation state (Wickens et al., 2010).  However, even if operators do monitor automation, 
the design of the operator’s interface with the automation may not support monitoring needs and, may be 
misleading. Willems and Heiney (2002) stated that “As errors involving automation tend to be more 
cataclysmic and costly, the human interface has become more important than ever” (p. 3).  The HSIs 
typically provide insufficient information about automation’s goals, current activities, and performance 
(Lee & See, 2004; Liu, Nakata & Furuta, 2004; Parasuraman & Riley, 1997; Rook & McDonnell, 1993; 
Roth et al., 2004).   

As an example of this issue, O’Hara, Gunther, and Martinez-Guridi (2010) analyzed the possible 
effect of failures of an NPP’s digital feedwater system on HSIs and operator performance.  A previous 
study determined the risk significance of digital I&C failures on this system (Chu et al., 2008). They 
developed a detailed failure modes and effects analysis (FMEA) for the system.  Using that analysis, they 
extended the effects to how they would impact the HSIs used by operators to monitor and control the 
system and how those impacts might affect operator performance.   
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Seventeen of the degraded conditions are latent failures because they do not cause loss of automatic 
control of the system, but lower its functionality to some extent.  If other degraded conditions occur 
and/or the operators make a mistake(s) after a latent failure, the outcome can range from negligible to 
severe.  In eight out of these seventeen degraded conditions, the HSI gives no indication that the degraded 
condition exists.   

In fourteen of the degraded conditions, one or more of the HSIs give some indication that a failure 
occurred.  Sometimes, the HSI only informs the operators that there was a failure, but does not specify the 
condition.  Operators generally would need technical support from maintenance personnel to troubleshoot 
the specific cause of the failure.  One interesting case, the failure, the system provides an analog input 
signal for the steam generator (SG) level to a valve controller. The information is displayed to the 
operators, but the controller does not use it for any calculations or decisions.  Accordingly, this failure 
mode does not directly affect the system’s operation.  However, the displayed SG level will be 
(incorrectly) low, and may mislead operators to take erroneous actions to increase the SG level, e.g., 
increasing the flow of feedwater to the SG.  This can lead to a high SG level, and should the high-level set 
point be reached, the reactor will be tripped.  This example illustrates how a system failure can be 
designed to lead operators to conclude a control failure has occurred when it has not. 

Five of the degraded conditions cause a loss of automatic control of a valve that requires operators to 
take manual control of the system.  The failure to do so may result in a reactor trip due to an incorrect SG 
level.  In these five cases, the operators have available information about the degraded condition, but it is 
not alarmed.  Hence, some time may elapse before they become aware that a degraded condition exists, 
potentially allowing the problem to worsen.  A reactor trip is a transient that challenges the operators, and 
potentially, the safety systems. Should some components or trains be unavailable at the time of the trip, 
the transient may evolve into a serious safety challenge, e.g., the accident at Three Mile Island Unit 2 
in1979 started with a reactor trip with a loss of feedwater.   

Thus the analysis of selected degradation and failure failure modes in a digital feedwater system 
revealed the following:  

 Operators can be mislead about the plant’s state when automation uses different information than is 
made available to the operators, and, while responding appropriately to the situation, may appear to 
be malfunctioning to operators in view of their information and understanding of the situation.  
Further, operators may take inappropriate actions based in the erroneous information. 

 Important degradation of the digital system may not be alarmed nor communicated to operators in a 
timely way.  This can cause a delayed response, and possibly none at all. 

 Degraded conditions may not affect the system’s functionality and may not be communicated to the 
operators.  This might create latent failures and subsequently more serious events should there be new 
failures or certain changes in conditions. 

 Loss of automatic control places demands on operators, and can lead to significant transients, such as 
a reactor trip. 

The authors identified strategies that might be adopted to minimize the potential impact of degraded 
automation in this system:   

 Displays are needed to support operator awareness of degraded components within complex systems, 
such as the digital feedwater control system (8 of 17 degraded conditions in it are not communicated 
to the control room). 

 The HSIs should indicate to the operators the same information as is used by the automaton, 
otherwise their SA may be compromised 
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 Five of the degraded digital I&C conditions cause the loss of automatic control and the need for 
manual action.  Therefore, an alarm should alert the operator of the automatic-manual status of the 
system.  

The authors further suggested that potential I&C failures should be analyzed to determine their effects 
on HSIs and the operator performance that may be needed in response. Extending the designer’s failure 
modes and effects to include how failure modes are processed through the HSI might identify potential 
impacts on human performance that could be addressed in system design. Using such a method, the 
authors uncovered weaknesses in the HSIs and offered opportunities for improvements.   

Consistent with this finding, Parasuraman and Riley (1997) noted that there is evidence to indicate 
that automation failures were better detected when the behavior of automation can be easily determined in 
the HSIs, especially those that minimize attentional demands (such as integrated displays and emergent 
features). 

2.3.4 Research Related to Use of Automation 
When HAC is designed such that use of an automated aid is discretionary rather than mandatory (i.e., 

the operator has the choice to use the automation or not), there a number of factors that influence whether 
a human operator will choose to use the automated aid.  

One of the most important factors that influences whether an operator chooses to use automation is 
the perceived reliability of the automation. Related to perceived reliability is the concept of trust in 
automation, which has been a concept that has been researched extensively in the human factors 
literature.  For a review of research that has looked more directly at trust, see (Beck, Dzindolet, & Pierce, 
2007; Cook, Lacson, & Manes, 2012; Endsley & Strauch, 1997; Ezer, Fisk, & Rogers, 2005; Ghazizadeh, 
Lee, & Ng Boyle, 2012; Itoh, 2012; Jian, Bisantz, & Drury, 2000; Madhaven, Wiegmann, & Lacson, 
2006; Meyer, Feinshreiber, & Parmet, 2003; O’Hara, Brown, Higgins, & Stubler, 1994; Riley, 1996; 
Sarter, Mumaw, & Wickens, 2007; Spain, Bustamante, & Bliss, 2008; and Strauch, 1997).  However, the 
research team does not view trust as its own independent factor in the sense that it is a very similar 
construct to perceived reliability, which itself is an intermediating variable between reliability and use of 
automation. 

Ross et al. (2008) examined the relationship between automation reliability, operator trust, reliance 
(use of automation in place of manual performance), and performance. Student participants performed a 
simulated unmanned ground vehicle task to identify the locations of terrorists, civilians, and improvised 
explosive devices. They were told that using the aid was optional, but were not told about its reliability 
(the levels of which ranged from 75 to 99% calculated as a function of misses and false alarms). Some 
participants performed the task with no aid. Even though the participants did not know the system’s 
reliability, the results showed that participants’ reliance on automation was a function of its reliability. As 
reliability increased, perceived trust was greater and task performance better. 

In a study by Rice et al. (2008), student participants performed a simulated security screening task 
with the support of a decision aid for detecting weapons that was 95%, 80%, or 65% reliable. The aid 
never missed a target, but could produce false alarms. The participants made target-detection decisions in 
both time-pressured and non-time-pressured scenarios. The former were intended to increase reliance on 
automation. Overall detection performance was best when the reliability was 95% and worst when it was 
65%. A higher LOA dependence (agreement with the recommendations of the decision aid) was 
registered in the time-pressure scenarios despite the occurrence of false alarms. The authors concluded 
that using time-pressure scenarios encouraged automation use (i.e. operators will use less reliable 
automation if their workload is sufficiently high). 

Riley (1996) demonstrated that perceived risk has a significant influence on operator use of 
automation. Risk in this context refers to the consequences of failing to achieve the mission or accomplish 
the task. Riley points out that this is a significant difference between studies conducted in 
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laboratories/simulators when compared with real-world systems. In laboratory/simulators studies, there 
are no real consequences for failing, while in real-world systems; the real consequences of failure have a 
different impact on an operator’s use of automation. 

Carsten et al. (in press) found that participants in a driving study had different levels of trust and 
acceptance of automaton depending on the tasks to which it was used, even when the reliability was the 
same. In this study, driver response was not the same for automation supporting longitudinal and lateral 
driving tasks under identical reliability conditions. This finding emphasizes the need to understand 
general research findings within the context of each specific application. 

Parasuraman and Riley (1997) offered a number of recommendations for how to encourage proper 
use of automation and discourage improper use. They suggest proper use can be facilitated by making 
sure the automation’s processes and mode are transparent to the operator and to make it easy for the 
operator to be able to engage and disengage automation as the operator sees fit. To avoid misuse, they 
recommend making sure the operator’s workload is not too high, that operators are given ample training 
on how to use automation so they have confidence in their ability to use it or to perform the task 
manually, to use automation cues as heuristics for the operator’s decision making, and to have automation 
provide clear feedback on its processes, mode, and intentions. To avoid disuse, they recommend that 
designers remain vigilant about aspects of automation that lead the operator to mistrust it. These aspects 
are generally related to when automation fails to perform as the operator expects and include specific 
issues such as automation having a high false alarm rate and low reliability. 

 In general, operators use automation more if they perceive it to be reliable. However, highly reliable 
automation may contribute to issues of complacency and inappropriate use. Though different researchers 
refer to many different types of inappropriate use (automation  bias, complacency, misuse, disuse 
overreliance, etc.) these different constructs can be distilled into two categories of inappropriate use: first 
operators can fail to use functioning automation (thus wasting their own resources on doing a task 
manually) or they can use malfunctioning automation (thus failing in the task execution).  

The cognitive function that is executed by automation, along with LOA for that function, may affect 
whether an operator will use automation. Bekier, Molesworth & Williamson (2012) conducted a survey of 
air traffic controllers that inquired about their hypothetical acceptance of automated air traffic 
management tools. The survey revealed that air traffic controllers were willing to accept automated aids 
as long as the ultimate decision making was still delegated to the human operator. However, if decision 
making was delegated to the automated tools, then air traffic controllers reported that they would likely 
reject automation. 

 Sheridan and Parasuraman (2005) identified “perceived understandability” of automation as a factor 
impacting the operator’s perceived reliability of automation and its acceptance and use. Understandability 
refers to the ability of the operator to “form a mental model and predict future system behavior.” This is 
analogous to the automation design dimension of “process.” 

One of the important factors that contributes to successful HAC is whether the HSI informs the 
operators about what the automation is doing, what its reliability is, and so forth.  

The content and format of the HSI design impacts operator trust. (Lee & See, 2004; Parasuraman & 
Riley, 1997). Parasuraman and Riley (1997) suggest that monitoring of automation is improved when its 
behavior can be determined easily using the HSIs, especially those that minimize attentional demands 
such as displays that integrate information and provide emergent features. They noted that there is 
evidence to indicate that automation failures were better detected with these types of displays. 
Conversely, operators are less likely to monitor automation when the HSI does not offer an easy means to 
do so. 

Operator trust in automation can increase if they are provided with information about the processes 
automation uses to accomplish its functions such as control algorithms and decision logic. For example, 
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Oduor and Wiebe (2008) gave information about the way a decision aid arrives at its decisions and 
recommendations to students performing a simulated task involving adjustment of  a city’s resources and 
tax rates. Information about its algorithms was given as a graphic display, a textual display, or, at times, 
none was given. Also, the reliability of the decision aid was varied from low to high. A between-subject 
design was used. The perceived reliability of the decision aid was greatest for textual information, 
followed by graphic information, and the lowest in the no algorithm condition. The results for measures 
of “understandability” followed a similar pattern. Overall, perceived reliability was low in the low-
reliability condition when compared with the high-reliability condition. The authors concluded that 
presenting an automated aid algorithm supported the appropriate calibration of trust and a better 
understanding of automation. 

Wang, Jamieson, and Hollands (2008b) studied students undertaking a target identification task; 
targets identified as hostile were to be shot and friendly targets were not shot. This task was performed in 
one of three conditions: no aid, 67% reliable aid, or 80% reliable aid. The aid classified targets as friends 
or unknown. Its classification of friendly targets was always correct, but it was fallible when classifying 
targets as unknown. Reliability was quantified as the percent of hostile targets classified as unknown. One 
group received information about the aid’s reliability (the informed group), while the other did not 
(uninformed group). The informed group was given specific information as to the aid’s reliability in its 
classification of targets as unknown, while the uninformed group only knew the reliability was not 100%. 
Measures of performance were obtained (false alarms – shooting targets that are friendly; misses – failing 
to shoot hostiles), trust, reliance, and belief in the aid’s reliability (for the uninformed group). It seemed 
that informing participants of the aid’s reliability helped in establishing proper reliance. 

McGuirl and Sarter (2006) obtained similar results in examining the effect of providing confidence 
information about an aid’s task performance on the operator’s use of information. Instructor pilots 
undertook simulated flights during which icing was encountered. The decision aid supported the detection 
and management of the icing conditions. One group of pilots received only overall confidence 
information (system is 70% accurate), while a second group saw a confidence trend display of 
continuously updated confidence information over time. The latter experienced fewer icing-induced stalls 
and were more likely to modify their approach to the icing conditions when it was not effective. The 
authors concluded that providing more precise information about the decision aid’s confidence improved 
the pilots trust and, consequently, their use of the automated system. The authors were concerned that the 
continuously updated confidence information they received might constitute an information overload. 
After examining its impact on other flying tasks, they uncovered no negative effects. 

The way the information is presented is important; for example, Lacson, Wiegmann, and Madhavan 
(2005) demonstrated the effect of the presentation mode of reliability information to operators on their 
automation-utilization strategies. Students performed a signal detection task with the support of one 
decision aid. Three approaches were used to communicate the aid’s reliability: positive framing (the aid is 
80% reliable), negative framing (the aid is 20% inaccurate), and neutral (the aid is 80% reliable and 20% 
inaccurate). Performance was better in the group receiving neutral information than in the two other 
groups, suggesting that more complete information may be the best approach for improving the use of 
automation utilization. 

Another important aspect of the way information is presented is the automation’s perceived etiquette. 
The design of automation’s etiquette has been found to impact the operator’s trust in automaton (Atkinson 
et al., 2012). Automation that is intrusive is trusted less than automation that interacts with the operators 
in a more “civilized” manner. 

 



 

38 

2.4 Conclusions 
In order to fully comprehend all facets of HAC, it is imperative that the research team identifies and 

analyzes key contributing factors, including LOA, reliability, and out-of-the-loop. Carrying out this 
analysis, along with a corresponding review of the extensive collection of human factors’ literature geared 
toward automation, provided critical information for better understanding of the current HAC state-of-
practice and the means to construct the initial framework. 

Reliability of automation is an important feature of HAC performance due to its direct effect on 
system performance and its mediating effect on human performance in HAC. Generally, as reliability 
increases, an operator’s trust and use increase, resulting in increased system performance. Unfortunately, 
higher reliability also tends to decrease the operator’s monitoring of automation, leading to inappropriate 
use when automation fails (this is referred to as complacency, misuse, and automation bias in the 
literature). 

Level and cognitive function also are important features of HAC that affect human performance. For 
many cognitive functions, high levels of automation produce better system performance than lower levels. 
However, for some cognitive functions, such as decision making, higher levels of automation produce 
poorer performance. Additionally, higher levels of automation for any function tend to reduce operator 
monitoring and contribute to out-of-the loop issues, which reduce an operator’s ability to regain manual 
control after an automation failure. 

Many studies indicate that adaptive automation may be a promising way to increase the overall level 
of automation while mitigating some of the negative consequences of high LOAs. However, it is unclear 
what the best strategies for initiating adaptive automation are, and further research is needed to establish 
them.  

In addition to the automation design dimensions, there are several contextual factors that interact with 
the design dimensions to affect HAC performance. One of those factors is task load. As task load 
increases, many of the effects of automation design dimensions increase. For example, operators are less 
likely to monitor highly reliable automation under conditions of high task load.  

Similarly, the design of the HSI can interact with the automation design dimension to influence the 
success of HAC. Poorly designed HSIs are implicated in many automation failures. However, in many 
cases, the HSI can provide a means to mitigate some of the negative effects of using higher reliability and 
higher levels of automation on human performance. For example, if HSI provides a simple means to 
monitor automation, the operator is more likely to do so, thus eliminating monitoring problems like 
complacency and automation bias. Additionally, providing information about automation (such as 
reliability, the process, and current mode) through the user interface can improve HAC and reduce the 
feeling of the operator being out-of-the-loop.  

While human factors and psychological research has gone a long way in identifying the factors that 
influence HAC, there are clear gaps in the current state of knowledge for addressing the needs of aSMRs. 
First, the majority of the human factors’ literature (with a few exceptions) defines performance problems 
associated with certain HAC configurations, but the literature does not necessarily illuminate the 
circumstances that lead to successful HAC. 

Second, taken together, findings from the existing literature would indicate that using intermediate 
levels of automation for most functions is ideal for keeping operators in the loop. Additionally, many 
studies indicate that intermediate LOAs are also ideal for performance. However, as stated in Section 1, 
aSMRs are likely to employ much higher levels of automation to meet the need of reducing O&M costs to 
a per kilowatt cost that is comparable to the existing fleet of reactors. Therefore, extensive research needs 
to be conducted to investigate how to enable higher levels of automation, while still keeping the operator 
actively engaged in operation of the plant. 
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Finally, a potentially important limitation in the existing research is the fact that none of it was 
conducted in the aSMR context and very little was conducted in the nuclear domain. Most of the studies 
were from a military or aviation context. Some of the conclusions presented in the literature simply are 
not applicable in the nuclear context. For example, the recommendation to use lower reliability 
automation to enhance human performance is inappropriate given the potential consequences of low 
reliability in the nuclear domain. 
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3. MODEL OF HUMAN-AUTOMATION COLLABORATION 
As stated previously, the overall objective of this project is to research the issues that contribute to the 

optimization of HAC in order to maximize the productive and safe operations of aSMRs. To do this, a 
model of HAC for aSMRs was developed. This preliminary HAC model serves as the basis for future 
empirical research that will inform further refinement of the HAC model and the development of 
engineering procedures and guidance for use by designers in developing HACs. These products of the 
HAC model (i.e., planned empirical studies, engineering procedures, and guidance) are discussed in more 
detail in Section 4. The HAC model defines (1) the important design dimensions of automation that 
impact automation’s use by personnel and integrated human-automation performance, and (2) what 
aspects of human cognition, behavior, and performance mediate automation’s use by personnel (i.e., the 
model identifies how human cognition and behavior interact with the design dimensions of automation to 
affect overall human-system performance). In doing this, the model identifies what aspects of the human-
automation interaction are important for the designer to consider in developing automation for SMR 
systems. This model is based on existing research and operational experience from aviation, military, and 
existing NPPs. The importance of a HAC model has been expressed by a number of researchers, 
including Parasaruman and Wickens (2008), Bruni et al. (2007), Kaber et al. (2009), Sanchez (2009), and 
Linegang et al. (2006). 

3.1 Description of the Human-Automation Collaboration Model for 
Advanced Small Modular Reactors 

The nature of HAC is dependent on many factors related to the characteristics of HAC, and a number 
of contextual factors that mediate the interaction. All of these factors interact to produce either a 
successful HAC outcome or one of a number of different kinds of unsuccessful HAC outcomes (i.e., HAC 
failure modes). Furthermore, those HAC performance outcomes may or may not have direct effects on 
overall system performance. 

The research team has developed a model of HAC that shows the relationship between these factors 
and outcomes (see Figure 10). This model describes the factors that affect HAC; the potential outcomes 
of HAC, which depend on the ways in which the factors interact; and the ultimate consequences on 
system performance. In experimental psychological terminology, the characteristics of HAC [dark blue 
box] are independent variables, and the contextual factors [light blue box] are mediator variables. The 
research team hypothesizes that the ways these variables interact when they are applied to and used in the 
aSMR design will affect a number of dependent variables [big blue diamonds], including the operator’s 
SA, use of automation, workload, skills, and abilities (e.g., to take manual action). Furthermore, this 
model hypothesizes that, depending on the state of the operator’s SA, use of automation, workload, skills, 
and abilities, the resulting HAC and system performance (which are also dependent variables) will either 
be successful (i.e., functional or satisfactory) [green boxes] or unsuccessful [black box], leading to a loss 
of money and/or failure of the mission goal. The model also specifies that there are general HAC failure 
modes [red boxes] that will describe the specific human errors that the operators are expected to commit 
when their SA, use of automation, workload, skills, and abilities are adversely affected by the 
independent and mediating variables.  Finally, the model represents the defense in depth and resilience of 
the engineered safety systems present in all aSMR designs as balance of system variables [small blue 
box], which is included to convey the idea that even in the event of a human error and dysfunctional 
HAC, the overall system is designed to operate safely. 
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Figure 10. High-level model of human-automation collaboration for advanced small modular reactor 
designs. 
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Note that the model in Figure 10 is a preliminary model of HAC for aSMRs. In particular, the 
research team recognizes that this is a high level model and that lower levels of detail that identify more 
specific relationships between factors and outcomes is needed. As more knowledge is gained as a result of 
empirical studies conducted, information acquired on aSMR designs and other surrogate facilities (e.g., 
planned concepts of operations), and new research findings in the literature, the model will be updated 
(i.e., refined and more detail added), and documented in future reports and research papers. 

3.2 Characteristics of Human-Automation Collaboration 
There are several characteristics of the automation and how the HAC is designed. These factors need 

be represented in the model and need to be considered by aSMR designers in order to gain a complete 
understanding of the important variables that contribute to successful HAC. 

3.2.1 Cognitive Functions 
Cognitive functions typically are described in terms of human information processing analogies. This 

HAC model uses the breakdown described in O’Hara and Higgins (2010), which is monitoring and 
detection, situation assessment, response planning, and response implementation. As described in Section 
2 showed, there is relationship between these stages of information processing that are automated and 
human performance. Thus, in order to provide guidance on HAC design, this characteristic is included in 
the HAC model in order to understand how it interacts with other factors and how it affects system 
performance. 

3.2.2 Level 
Multiple taxonomies describe levels of automation (for a review, see Section 2.2.2; or Sheridan, 

1992). O’Hara and Higgins (2010) proposed a taxonomy that reflected NPP operations rather than 
aviation (Billings, 1997a). All taxonomies generally vary from fully manual (i.e., the human does 
everything) to fully automatic (i.e., the automatic system does everything) to intermediate levels, typically 
including some collaboration between automation and the human. LOA is included in this model because 
as numerous studies described in Section 2 show (e.g., Prevot et al., 2012; Lin et al., 2010b; Bekier et al., 
2012), it has an impact on human performance and ultimately system performance. 

3.2.3 Reliability 
The current working definition of reliability used in the HAC research effort is the same as what was 

stated in Section 2.2.3. Reliability is the recognition that automatic systems might fail entirely or in part, 
compromising their ability to achieve their intended function. Overall reliability may be expressed in 
terms of probability that the system will correctly perform its function. The effect of automation’s 
reliability on the human operator, HAC, and system performance is well documented in the literature 
review provided in Section 2 (e.g., Wicken & Dixson, 2007; Ross et al., 2008); therefore, it is clearly an 
important causal factor to include in this HAC model for aSMRs. 

3.2.4 Degradation 
Automation depends on the other instrumentation and control subsystems (i.e., sensors, monitoring, 

and communications) to function properly. Malfunctions in these other subsytems (e.g., loss of sensors or 
significant delays in the transmission of information along the data highways) can degradation or can 
automation to fail (O’Hara et al., 2010). Degradation and failure can lead to two types of problems for 
operators (1) Automation does not do what it is supposed to do when it should do it, and (2) Automation 
does something that it is not supposed to do such as causing abnormal operating conditions due to 
erroneous automatic action or providing erroneous information.  It is important for aSMR designers to 
understand the nature of these dependencies within the instrumentation and controls subsystems, because 
their degrading effect on automation can change how automation behaves and performs, which can 
subsequently affect HAC and system performance. 



 

43 

3.2.5 Process 
Process refers to the way an automatic system uses input from sensor feeds in the plant and from the 

human operator and assesses it relative to its programmed information processing routine (e.g., control 
algorithms and decision logic) to initiate its preprogrammed response. When well designed, the 
automation’s preprogrammed responses are appropriate, or correct, for the input it receives and assesses. 
This is how automation performs correctly and how it is able to accomplish the tasks assigned to it. 

However, not all automatic processes are going to be readily comprehensible by humans, and 
research summarized in Section 2 document the consequences of opaqueness (e.g., Odour & Wiebe, 
2008). Sometimes, the process is very complex or occurs too quickly for the operator to detect. Other 
times, the process would be comprehensible, but it is not communicated to the operator through the HSI. 
Successful HAC performance frequently depends on the operator knowing what the automation processes 
are. The operator not knowing what the automation processes are contributes to the operator losing SA. 
Thus, in order to facilitate HAC performance, the system design should accommodate operator 
comprehension through any of a number of design modifications such as making the automation process 
transparent to the operator and simplifying complex processes for human operators. 

3.2.6 Mode 
Automation can be designed to have different modes and the behavior of and processes automation 

executes can be substantially different depending on which mode it is in. One example of a relatively 
simple mode error is when a human is using graphics editing software and the user expects the mouse 
pointer to behave like it does when controlling the computer’s operating system, when, in fact, the mouse 
pointer has been set to behave like a paintbrush or an eraser. A more nuclear power relevant example of 
the potential for mode error is the automatic power control system. The automatic power control system 
can be set in (1) turbine following mode for load following or (2) reactor following mode for full power 
operations. If an operator takes a local controller out of automatic into manual, she/he will need to know 
in what mode the automatic power control system is functioning. If this is not communicated to the 
operator, their manual actions could result in degraded system performance. 

Sarter and Wood (1995) provides a review of how the operator losing SA on what mode automation 
is in can lead to human errors and dimished system performance.  HAC performance can depend greatly 
on whether the operator is aware of which mode the automation is in and how well the operator 
understands what behaviors and processes automation will exhibit in that mode, which is why it is an 
important characteristic in this model of HAC for aSMRs. 

3.2.7 Adaptability 
The level and cognitive functions that are allocated to automation, the human, or both can be done 

statically or dynamically. The decision criteria for when tasks or functions should be reallocated can be 
based on factors such as the operator’s workload level (i.e., triggering conditions). In addition, aSMR 
designers need to consider the iniators for changing the allocation of functions.  Three examples of 
initiators include operator initiated, automation initiated, and hybrid (i.e., either the operator or 
automation can initiate). 

However, a number of studies have shown that the dynamic allocation of functions and tasks between 
automated systems and operators can positively and negatively affect HAC and system performance (e.g, 
Parasuraman et al., 2009; Clamann et al., 2002). Another example is if the adaptation mechanism fails 
and functions can no longer be dynamically allocated or the operator is unable to regain control of key 
safety functions, this will not only adversely affect the operator’s trust and future use of automation, but 
also overall system performance. Given that the goal for this project is to provide aSMR designers the 
information needed to optimize HAC and that adaptability will be widely used in aSMR designs, it is 
essential that this model of HAC include this characteristic in the model, because the model is the basis 
that informs this research and the subsequent guidance that this project produces. 
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3.3 Mediating Factors 
A number of factors may enhance or degrade the effect of the characteristics of automation design 

and the HAC design characteristics (i.e., factors identified in Section 3.2) on HAC and system 
performance. Considering only the effects of the characteristics of automation design and HAC design 
characteristics on HAC and system performance without recognizing important contextual factors does 
not provide a complete picture of how and under what conditions these factors will affect HAC 
performance and whether their effect can be amplified or attenuated. 

3.3.1 Human System Interface Design 
HAC is executed through the HSI or graphical user interface. Therefore, design of the HSI and the 

effectiveness of the human-system interaction (also called the human-computer interaction) via the HSI 
will have important effects on the nature of the interaction. An HSI that has been modeled and designed 
through a well-established, human-system interaction methodology, such as the goals, operators, 
methods, and selection rules model (Card, Moran, & Newell, 1983), or the user-centered design approach 
(Norman & Draper, 1986) will make up for deficiencies created in the earlier stages of the HAC design 
that would have otherwise produced unacceptable HAC performance (e.g., an automated process 
previously obscured to the operator and thereby creating a human out-of-the-loop issue could be corrected 
with the proper indications presented in the HSI). Similarly, functions may be allocated to best take 
advantage of each agent’s capabilities, but if the HSI design is poor, it will attenuate the positive effect 
the sound function allocation decision-making affect has on system performance. These two examples 
illustrate why HSI is treated as a mediating factor, because the extent to which the characteristics of 
automation design and HAC design characteristics affect HAC and system performance depends to a 
large degree on the design of the HSI. 

3.3.2 Additional Task Load Unanticipated by Function Allocation 
A good function allocation method will allocate functions to agents (i.e., automation, human, or both) 

in a way that optimizes performance. In many cases, the function allocation also will balance workloads 
and achieve cost efficiencies. However, unanticipated events may produce additional workload that was 
not considered in the original function allocation. This additional workload may change the way the 
human interacts with automation (e.g., it may reduce monitoring performance). This is an example of how 
context or changing circumstances in the operating environment may enhance or degrade the effects of 
the factors identified in Sections 3.2. 

3.3.3 Unanticipated Operational Conditions 
It is impossible to predict all possible operating conditions a system will encounter; therefore, it is 

safe to assume that, at some point during the life of a plant, it will be operating under conditions that were 
not considered in the original function allocation and HAC design. These changes may positively or 
negatively affect the ability of both the human and the automation to perform in the manner expected. 

3.4 Human-Automation Collaboration Performance Consequences 
Whether interaction of the factors described in Sections 3.2 and 3.3 results in successful or 

unsuccessful HAC performance depends on a number of key intermediate outcomes, including (1) the 
operator’s awareness of the automation’s and plant’s current state, (2) whether the operator’s use of 
automation is well calibrated to its capabilities and intended use, (3) the operator’s current workload 
level, and (4) the operator’s proficiency in performing tasks manually if the automation fails, or lack 
thereof (e.g., skill loss). 

3.4.1 Functional Human-Automation Collaboration 
When the operator is (1) aware of the automation’s and plant’s current state, (2) using automation 

appropriately, and (3) can successfully intervene if automation fails (i.e., has sufficient time, a 
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manageable workload level, the necessary information, and necessary skills to take over manual control), 
then the consequence, or outcome, is called Functional HAC. 

Furthermore, when these prerequisites are met, the model specifies that there are at least two different 
kinds of acceptable or successful HAC. One of the early findings cited in the human factors literature was 
that there was the expectation that automation was going to improve system performance or at least 
achieve system performance equivalent to less-automated systems at a reduced cost. However, multiple 
studies have found that this is not always the case; for example, automation intended to reduce operator 
workload can actually produce increased workload (Bainbridge, 1983). 

The first kind of successful HAC is where automation and operator perform at the level expected. The 
“expected level” of performance can be defined in different ways. For example, it can be defined as what 
the aSMR designers would predict given how they addressed the factors described in Sections 3.2 and 3.3 
or relative to the optimal performance of a similar system that relies on more manual operator control. 

The second kind of successful HAC is where HAC performance exceeds the expected level of 
performance. This outcome has been seen in some studies on automation (de Visser & Parasuraman, 
2011) and, generally speaking, is an extension of the literature on group performance, where multiple 
studies (for a review see Surowiecki, 2004) have shown how groups of people outperform or produce 
more than the same number of individuals working independently (i.e., the group’s performance is 
synergistic and the ephemeral properties of “teamwork” emerge or become emergent). However, it is 
recognized that a number of studies show how groups perform worse than individuals working 
independently, but the key preconditions to synergistic or emergent team performance are well 
understood. To the extent that automation and humans operating as a team have the same team dynamics 
issues and challenges that all human teams have, these preconditions for emergent team performance 
should apply to when humans and automation collaborate to achieve a common goal. 

3.4.2 Three Failure Modes Related to the Operator’s Lack of Awareness of the 
Automation’s and Plant’s Current State 

As stated previously, whether interaction of the factors described in Sections 3.2 and 3.3 results in 
acceptable or unacceptable HAC performance depends on a number of key intermediate outcomes. When 
the operator is unable (or unmotivated) to perceive, comprehend, and project what the automation’s 
processes and activities are or will be, it is unlikely the operator will be able to recover when automation 
fails. It is only under conditions where the operator has the prerequisites of adequate time to recover, the 
necessary information, and the spare capacity to take on additional workload that this failure mode can be 
mitigated. If the operator does not have all three of these prerequisites, then one of the following failure 
modes can occur: 

1. Automation fails and the operator is unable to recover. 

2. Operator interferes with automation that is working properly, thereby potentially introducing a fault 
into the system that could propagate into a system failure. 

3. Operator fails to act on good information from automation that is working properly. 

3.4.3 Two Failure Modes Related to the Miscalibration of the Operator’s Use to 
Automation’s Capabilities 

The operator’s use of automation is a well-researched topic in the human factors literature. One of the 
most often used lexicons (e.g., use, misuse, disuse, and abuse), developed by Parasuraman and Riley 
(1997), served as a starting point for identifying the remaining two failure modes. In this model of HAC, 
the operator’s use of the automation is recharacterized in terms of whether it is well calibrated to the 
automation’s capabilities and the intended use of automation. The extent to which the operator’s use is 
not well calibrated will result in one of the following two use-related failure modes: 
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1. The operator uses automation when she/he should not. 

2. The operator does not use or rely on automation when she/he should. 

3.4.4 Moderating Effect of the Resilience of the Balance of the System 
This model of HAC recognizes that HAC performance outcomes can be and often are different from 

overall system performance. Sometimes poor HAC performance leads to unacceptable overall system 
performance; other times poor HAC performance is mitigated by other features of the overall system. 
This difference is due to the fact that aSMRs are complex systems that are designed with defense-in-
depth, which often is achieved through diversification of instrumentation and control system design and 
engineered passive safety features. Most of the time, the defense-in-depth is well coordinated and robust 
(i.e., resilient) and at other times uncoordinated and fragile (i.e., brittle). 

When the balance of the remaining system is resilient and can mitigate the effects of poor HAC, it is 
still possible to achieve overall satisfactory system performance. 

When the balance of the remaining system is brittle, it is unable to mitigate the effects of poor HAC 
and under these circumstances will lead to a loss of money and/or failure of the mission goal. 
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4. PATH FORWARD 
This section discusses the research studies that this project is planning to conduct to fill in the 

knowledge gaps about HAC, and the engineering procedures and guidance that will be produced with 
respect to helping aSMR designers with their planned use of automation. 

4.1 Framing the Advanced Small Modular Reactor Context for 
Human-Automation Collaboration Research – Assumptions 

As stated in the introduction of this report, SMRs and aSMRs are expected to have design features 
that are vastly different from existing light water reactor NPPs, which means that the way operators and 
automation interact (i.e., collaborate) will be significantly different than current conduct of operations in 
U.S. NPPs. While NPPs currently in operation have become increasingly more automated, the 
fundamental concepts of operations have remained the same. The approach to concepts of operations in 
existing NPPs is very human labor intensive and requires multiple operators per reactor unit/core. 
However, SMR (Petrovic et al., 2012) and aSMR vendors (Tsuboi et al., 2012) alike have indicated that 
in order to be cost competitive2, aSMRs will need to operate with fewer operators and use more 
automation under both normal and emergency operating conditions3. Yet, questions such as what should 
be automated, how should the characteristics of automation be combined, what should be manually 
controlled, what should be jointly controlled by automation and human operators, and why (i.e., what 
technical basis was used to answer these questions) have not yet been answered. While some research has 
been conducted in other domains to answer these questions, including unmanned aerial vehicles 
(NUREG/CR-7126) and air traffic controllers (van de Merwe et al., 2012), considerably less R&D has 
been performed for nuclear power. Clearly, aSMR designs will benefit from more empirical research on 
how to maximize the use of automation to achieve cost savings, but at the same time not adversely affect 
safety or performance. 

4.2 Preliminary Research Issues 
Given framing of the aSMR context in Section 4.1, the relationship of this research project to other 

DOE ICHMI research pathway aSMR projects (as described in Section 1.1), and the preliminary model of 
HAC that has been developed for this research project (see Figure 10), the HAC research issues discussed 
in the following subsections were identified as the highest priority research needs. The research issues 
were identified through a selection process where the research team asked the following questions (also 
mentioned in Section 1.4):  

1. Is there a knowledge gap? 

2. Can it be addressed with experiment(s) (i.e., can it be demonstrated empirically)? 

3. Is it relevant to the aSMR field? 

4. Can the result be generalizable to most aSMR designs? 

5. Can the results also be the technical basis for development of HAC-related engineering procedures 
and aSMR guidance? 

Three knowledge gaps identified made it through the selection process. These gaps are presented as 
research topics in Section 4.2.1 to 4.2.3.  

It is important to note, however, that these research issues are only a subset of known issues with 
HAC that have not been studied thoroughly in the research literature. These other knowledge gaps are 
described in more detail in the Appendix. 
                                                      
2 For a general overview of the economic issues for SMRs and aSMRs, see Boarin et al. (2012). 
3 For a discussion of the regulatory perspective on staffing for SMRs and aSMRs, see Trikouros (2012). 
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4.2.1 Research Topic 1: Impact of Highly Automated Advanced Small Modular 
Reactors on Operator Awareness 

Based on the fact that aSMR designers have said they plan to use automation extensively in the 
conduct of operations (Tsuboi et al., 2012) and some, including NuScale (Reyes, 2012) and the Pebble 
Bed Modular Reactor (Nicholls, 2001) also have proposed multi-unit operation, how can operator and 
team awareness of the automation’s and plant’s state (i.e., operating condition) be maintained? This 
research proposes to investigate whether it is possible to implement high levels of automation in the 
aSMR design, require operators to monitor multiple independent units simultaneously, and still keep the 
operator sufficiently in the loop so he/she can perform his/her functions or responsibilities when required. 

The goal of this study is to identify, in the context of high levels of automation and multi-unit aSMR 
operations, whether an aSMR with this concept of operations can still allow an operator to perform the 
functions or responsibilities allocated to them (e.g., initiate a safety system or correct a malfunctioning 
safety system that was automatically actuated). Additionally, this study proposes to evaluate the effect of 
high levels of automation for different stages/modes of plant operation (e.g., start-up, normal operations, 
off-normal operations, emergency operations, and shutdown operations) on the operator’s SA of both the 
automation’s and plant’s state. 

In the context of the HAC model for aSMRs, this question relates to the three failure modes related to 
the operator’s lack of awareness of the automation’s and plant’s current state, as described in more detail 
in Section 3.5.1. This study will elucidate the hypothesized causal relationship between (1) HAC 
characteristics, including, but not limited to, level, cognitive function, mode, and HSI, and (2) failures of 
awareness (i.e., automation fails and the operator is unable to recover, operator interferes with automation 
that is working properly, or operator fails to act on good information from automation that is working 
properly). 

4.2.2 Research Topic 2 – Regaining/Reacquisition of Awareness 
This study proposes to identify how quickly operators can regain or reacquire SA after having lost SA 

and under what circumstances the process of reacquisition of SA can be expedited. This study assumes 
that it is not reasonable to expect operators to maintain perfect SA of multiple units over the duration of 
their shift. Given that it is inevitable that operators will have reduced SA at times during their workday, 
the following research questions need to be investigated: 

1. What do HSI and automation need to do to facilitate a successful reacquisition of SA? 

2. What is the necessary information that the HSI must provide the operator? 

3. Can information that predicts the future state of the plant be generated and presented on the HSI so 
that operators have some advanced warning? 

In the context of the HAC model for aSMR, this question relates to how the operator can recover SA 
and what preconditions are needed in order for the operator to recover. This study will provide insights 
into what aSMR designers will have to do in their designs to ensure the operator has sufficient time, the 
necessary information, and a workload level that is not too high so the operator can take on additional 
tasks to perform the recovery action. 

4.2.3 Research Topic 3 – Effect of Human-Automation Collaboration 
Characteristics on Operator’s Use 

Section 2 of this report presented a number of studies that showed how HAC characteristics (e.g., 
reliability and level) can affect use. However, not all causal relationships are known, particularly when 
considering the unique aspects of the aSMR context. This study proposes to identify, from the perspective 
of aSMR design needs, the most critical gaps in what is known about how HAC characteristics affect use 
and conduct studies to fill those gaps. 
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For example, implicit in the increased use of automation in aSMRs is the fact that this automation 
will be based on newer and more complex technology than the automation technology used in existing 
light water reactor NPPs. As the complexity of automation increases (e.g., automation that can 
dynamically vary level, mode, and process versus an automated system that has only one level, mode, and 
process), it can affect operator use in new and more complex ways. Understanding how more 
sophisticated automation technology affects operator use and, subsequently HAC and system 
performance, is important for an aSMR designer to know. 

Furthermore, as Vicente et al. (1996) and others have documented, existing NPP displays typically 
use a design philosophy where a one-to-one representation of the parameters on the displays is used, 
which requires the operator to mentally synthesize the data to give it meaning. Advanced automation 
displays used in aSMRs will likely adopt an ecological interface approach (Vicente & Rasmussen, 1992) 
or use information-rich displays that present aggregated or grouped information, reducing the inherent 
information complexity, and rely on representational aiding (Woods, 1991) principles to effectively map 
lower-level data to higher-order functional information that gives the lower-level data meaning. How this 
change in HSI philosophy affects operator use, HAC, and system performance also is important to 
understand. 

4.3 Review of Experimental Approaches and Apparati to Support 
Human-Automation Collaboration Empirical Studies 

As Section 2 of this report has shown, the human factors literature on automation is vast. The sheer 
amount of research conducted on this topic is a good indicator that HAC is a significant issue. However, it 
is also clear that the existing literature does not provide all of the guidance that aSMRs designers need to 
know in order to implement automation in their designs without adversely affecting optimal system 
performance. Some additional empirical research is needed, not only because there are some gaps in what 
is known about HAC, but also because the context in which a significant portion of the literature has been 
conducted (e.g., military and aviation) is markedly different from the aSMR context. Furthermore, a 
number of reports describing (Tsuboi et al., 2012) or reviewing (NUREG/CR-7126) aSMR designs have 
stated that there will reduced staffing levels in aSMRs for economic viability reasons, implying the 
extensive use of automation in the daily operation and control of aSMRs.  Extensive use of automation is 
a significant departure from the conduct of operations at currently operating large light water reactor 
NPPs in the United States. As such, using existing NPP operating experience also will likely prove to be 
an insufficient source of information for designers of aSMRs. 

Given the anticipated need to conduct cost-effective and well-designed research that is targeted at 
effectively filling in the knowledge gaps for HAC in an aSMR context, the research team investigated 
what empirical approaches might be suitable for these research requirements. The research team 
investigated full-scope simulation, microworlds (a kind of part task simulation), and other approaches that 
have been developed and used as an experimental platform/medium for other studies that could be 
adapted for this project. Full-scope simulator studies are not being considered at this time due to their 
high costs and for the practical reason that it is unlikely that any aSMR vendor yet has had a full-scope 
simulation of their design programmed. 

A microworld is a computer simulation that is used as an experimental tool that can be used to 
increase the fidelity of controlled laboratory studies. Microworlds have been characterized by Brehmer 
and Doerner (1993), as being (1) complex in that they require an operator to try to achieve multiple goals 
simultaneously, which often leads to the operator having to make trade-off decisions; (2) dynamic in that 
the state of critical variables the operator must monitor and control are changing over time; and (3) 
opaqueness in that some variables and processes are not directly observable and require the operator to 
make inferences from other available information. Thus, while not as complex and realistic as a field 
study, a microworld provides some additional realism to the study and allows the experimenter to still 
maintain control over key variables that may confound the experimental design. 
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While numerous studies that have used microworlds can be found in the human factors literature, the 
software used in these studies is very application or research domain specific. For example, a number of 
microworlds have been developed for aviation. A few have been developed for simulating wild fires or 
forest fires, and many generic process control industry microworlds have been developed. In general, 
microworlds or part-task simulation have the advantages of being targeted and cost effective. Clearly, the 
relevant parts of the anticipated uses of automation in aSMRs need to be simulated, but the research team 
will need to decide whether an existing microworld, or one that is developed, is the more ideal 
experimental apparatus. Besides the publicly available microworlds, there are a variety of part-task 
simulator development software tools that allow researchers to design software-based simulations for 
designing, prototyping, and deploying control systems and other embedded monitoring applications. 
These software development programs allow researchers and engineers to (1) design and then operate a 
dynamic simulation of various plant processes on a computer, (2) develop the behind-the-boards 
instrumentation and controls logic to monitor and control the simulated plant process, and (3) design the 
in-front-of-the-boards graphical user interface that the human operator will use to interact and control the 
system. In short, they allow the researcher to develop a customized complex simulation that includes the 
critical human-system interactions that are likely to be present in real aSMRs. Additional features of the 
simulation, such as HSI (i.e., graphical user interface), complexity of the process, complexity of 
automation used, and how functions are allocated to either the automation or human operators, also can be 
manipulated to determine their effects on human and overall system performance. 

Computation-task simulation techniques (e.g., discrete event simulation) also are an option. This 
allows Monte Carlo methods of parametric simulation of the interaction between entities to be used to 
identify the probabilistic triggering of alternatives. Meta-analyses, engineering analyses, and other subject 
matter approaches are also possible options. As the research team proceeds with this phase of the project, 
all experimental approaches and apparti will be evaluated for how well they help facilitate the research 
project’s overall goals. 

4.4 Advanced Small Modular Reactor – Specific Engineering 
Procedures and Design Guidance for Human-Automation 

Collaboration 
The HAC model developed for this project will be used to develop engineering procedures and design 

guidance (i.e., to support designers in making decision as to where, how, and when to use automation) 
and to design the human-computer interaction and the HSI/procedures/training to support that interaction. 
Examples of these engineering procedures include the following: 

 Procedures for identifying the type of HAC for a specific application (e.g., deciding on the levels of 
automation to be implemented for a given function and whether the automation should be adaptive) 

 Procedure for evaluating, verifying, and validating HAC to ensure the plant’s production and safety 
goals are achieved. 

Guidelines provide the principles for implementing a selected type of HAC in the design (e.g., to 
build the user interfaces with which personnel monitor and interact with automation based on the level of 
HAC selected). 

Thus far, the focus of the research team has been concentrated on developing the technical basis upon 
which the HAC model can be built. 

The developed HAC model characterizes the nature of human and automation interaction and its 
affect on performance. Characterization is important because it provides a structure for developing and 
organizing the design procedures and guidance that will be developed later in this project. 
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4.5 Summary 
The needs analysis and development of the initial model of HAC described in this report are 

important activities toward developing a technical basis. As discussed in Section 4.2, the research team 
will continue to explore and investigate concerns related to HAC by conducting studies that are designed 
based on insights gained so far. 

Additionally, researchers currently are in contact with aSMR vendors to gain a better understanding 
of their specific design and HAC needs. However, because most aSMR vendors are in their plant design 
and licensing processes, it is a challenge to find detailed information regarding their plans or need for 
HAC. In fact, research efforts (such as the HAC effort) will be great support in moving the aSMR field 
forward. Vendors currently are focusing on technical concerns (e.g., how to design the core and the 
appropriate material for a small reactor); therefore, they focus very little on how to actually operate the 
plant in an optimal and economic manner. By this research addressing this concern in advance, it allows 
the vendors to focus on designing their plants. When they are ready to consider operation of the plant (i.e. 
design collaboration between the operator and automation), the vendor can use the research results as a 
spring board; therefore, reducing resources spent to get up to speed on how to best design the 
collaboration. 

Because of the current state of the aSMR field, the researchers will look to other industries to find 
operational experience that can be generalized to HAC for aSMRs. For example, researchers aim to 
further investigate and leverage experience and lessons learned from the coal power industry. Coal power 
plants are highly automated; therefore, their control rooms share characteristics that are thought to be 
applicable for aSMRs. 

One of the objectives within the framework for HAC is to specify how HAC should be evaluated to 
ensure integrated human-automation system performance acceptably meets design performance 
requirements for both production and safety. A methodology for this objective will be formalized in 
subsequent research. The studies to be conducted to support development of the methodology will 
provide methods, data, and lessons learned that will help address this objective. 

The framework for HAC will be evaluated and verified through its application to an aSMR design or 
to a mock-up design, which is as close to reality as the research team can predict it to be based on lessons 
learned throughout the research effort. The framework and methodology will be used to develop 
engineering procedures and guidance for implementation of the framework. 
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APPENDIX 
In the process of reviewing and analyzing the HAC literature, the research team identified a number 

of research issues. Based on the expected aSMR operating context, and the relationships among the three 
DOE ICHMI aSMR research projects described in Section 1.1, the research team made a preliminary 
determination that some HAC research issues are of higher priority than others. That is not to say, 
however, that the other research issues identified are not important. This appendix documents these other 
important research issues here, rather than as part of Section 4.2, so that the content of that section is 
focused on the research issues that are of higher priority. 

Additional Human-Automation Research Issues 
The following subsections summarize additional HAC research issues. Note that within the 

constraints of available resources and scope authorization, the research team will prioritize and pursue 
these research topics using best available means, including but not limited to microworlds; full scope 
simulators available at the Idaho National Laboratory, Halden, and elsewhere; meta-analyses; engineering 
analyses; and subject matter expert approaches. 

Generalization of the Findings from Academic Research to Complex Systems 
Many of the studies examining human-automation interaction have limitations for generalizing the 

findings to the target operational context this research is interested in: commercial nuclear power plants, 
highly trained professional operators, and complex HSIs. The findings of many of the studies reviewed 
for this project were based on students performing fairly simple tasks, using simple desk-top HSIs. 
Research results are generalized most easily when the operational context is the same. Thus, research is 
needed to assess the extent to which generalization between these contexts is supported. This would 
involve replication of key (or selected) findings for aSMR operations. 

NPP Operating Experience 
Commercial NPPs have begun see an extension of automation to a wider range of plant operations 

and to decision support systems, as well as the use more interactive forms of automation. Little operating 
experience relative to NPP operations is readily available in the literature or in industry human 
performance databases. Additional research is can address this need using proactive information 
solicitation methods, such has been done in the industry for other I&C issues and in other industries such 
as aviation. 

Detecting and Managing Automation’s Degraded Condition and Failure 
Even though automation systems typically are highly reliable, the potential for their degradation or 

failure can significantly jeopardize plant performance and safety. Research is needed addressing the 
operator’s ability to detect and manage degraded automation conditions. 

Models of Teamwork 
For multi-agent systems, designing automation to be a good “team player” has typically modeled 

human-automation teams on human-human teams. This made sense since it was the lack of typical human 
teamwork characteristics that led to poorly designed automation. However, it may be that different 
models of teamwork are needed for multi-agent teams. It is beneficial to investigate alternative models of 
teamwork for them. 

Performance Measures 
A more complete set of performance measures that focuses on the relationship between humans and 

automation, such as trust and neglect, and those needed to depict multi-agent teamwork, are needed. The 
concepts/constructs that are important to the relationship need to be defined along with approach to 
operationalize those concepts for use in: 
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 Research on the effects of automation design on performance, such as in simulator studies 

 Engineering procedures for determining the types of automaton that are appropriate to a given design 

 Design evaluations and validations of implementations of design-specific HAC 

Isolating the Effects of Confounded Dimensions 
Functions and levels and of automation often are confounded in the literature, as are modes and 

levels. Studies more specifically isolating the effects of each are required, so researchers can better 
understand the independent effects on the operator’s performance of these two independent dimensions. 

Calibrating Trust - Personnel trust in automation is based on their perception of its reliability, which 
may or may not be consistent with reality. This relationship is called “trust calibration.” When the 
operator’s perceptions accurately match the automation’s reliability and capabilities, trust is “well-
calibrated” and operators use it appropriately. Miscalibrated trust leads to either an overreliance on 
automation (misuse) or its underutilization (disuse). Research is needed on how the trust can be calibrated 
so that operators properly use automation when they should and override it when they should. There are 
training and HSI design aspects to this issue. 

Communication of Automation’s Reliability to Plant Personnel 
 Reliability affects the operators’ trust in automation and their decision to use it. Further, providing 

information about reliability in the HSI supports these decisions. But how reliability should be quantified 
and represented are not easy questions to answer, especially for automation supporting situation 
assessment and response planning. 

Processes Used by Automation 
Automation’s process can range from simple to complex. Research is needed to develop a better 

understanding of the relationship between process complexity, operator trust, and automation usage. For 
example, some studies have indicated that if operators do not understand the process used by automation 
to arrive at a result, the result is more likely to be discounted. A better understanding of this relationship 
between processes and behavior is needed.  

Triggering Mechanisms for Adaptive Automation 
Additional research is required to identify the appropriate triggering mechanisms for automation 

changes, and how they should be implemented to minimize any disruptions to the operator’s performance 
when the change occurs. 

 


