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Abstract

We present a new package, VEST (Vector Einstein Summation Tools), that performs

abstract vector calculus computations in Mathematica. Through the use of index

notation, VEST is able to reduce scalar and vector expressions of a very general type

using a systematic canonicalization procedure. In addition, utilizing properties of the

Levi-Civita symbol, the program can derive types of multi-term vector identities that

are not recognized by canonicalization, subsequently applying these to simplify large

expressions. In a companion paper [1], we employ VEST in the automation of the

calculation of Lagrangians for the single particle guiding center system in plasma

physics, a computation which illustrates its ability to handle very large expressions.

VEST has been designed to be simple and intuitive to use, both for basic checking

of work and more involved computations.
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Catalogue identifier:

Licensing provisions: none

Programming language: Mathematica

Computer: Any computer running Mathematica

Operating system: Linux, Unix, Windows, Mac OS X

RAM: Usually under 10 Mbytes

Supplementary material: Tutorial notebook

Keywords: Vector calculus, Mathematica, Tensors

Classification: 5, 12, 19

Nature of problem: Large scale vector calculus computations

Solution method: Canonicalize expressions in index notation, automatic derivation of multi-

term vector identities

Restrictions: Current version cannot derive vector identities without cross products or curl

Additional comments: Intuitive user input and output in a combination of vector and index

notation

Running time: Canonicalization of a typical expression is usually less than one second.

Simplification of very large expressions can take much longer.

1. Introduction

Many problems in the physical sciences and engineering involve substantial amounts

of vector calculus; the manipulation of expressions involving derivatives of smooth

scalar, vector and tensor fields in 3-D Euclidean space. While multiple popular com-

puter algebra systems include some basic native vector operations as well as external

vector packages [2, 3, 4, 5, 6, 7, 8], almost all emphasize the expansion of expres-

sions into components. Although this can be an important tool, particularly when
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performing calculations in non-cartesian co-ordinates, the results obtained from this

approach to simplification cannot be easily translated into a co-ordinate independent

form. A natural way to overcome this problem is to encode the properties of vector

operators such as ·, ×, and ∇. Due to the non-trivial nature of these operators,

expressions can often be greatly simplified without ever considering the underlying

co-ordinate representation.

As a concrete example of a problem that requires this approach to vector simpli-

fication, consider the derivation of the single particle guiding center Lagrangian from

plasma physics [9, 10, 11]. Through this procedure, one can systematically derive a

set of reduced equations of motion for a particle moving in a strong magnetic field

that varies weakly in space and time. Such equations have proved invaluable in both

computational and analytic studies, since they eliminate the need to follow the fast

gyro-motion of particles. In principle, the procedure can be carried out to any de-

sired order in magnetic field non-uniformity; however, the complexity of the algebra

increases dramatically at every step, and even a second order calculation is a daunt-

ing task to perform by hand. Naturally, one can gain a great deal by performing the

required calculations on a computer. Some obvious benefits include the reduction

in human workload, greater confidence in final results and an improved ability to

verify intermediate steps. However, any attempt to carry out such a calculation in

co-ordinates would lead to expressions of such enormity (most likely upwards of 106

terms at intermediate steps) that reverting back to co-ordinate free vector notation

would be inconceivable.

In this communication, we present a new symbolic algebra package, VEST (Vec-

tor Einstein Summation Tools), implemented in Mathematica, that canonicalizes and

simplifies abstract vector calculus expressions. Functions are designed to be very

simple and intuitive to use and we hope that it can be a practical tool for anyone
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working with vector calculus, both for simple checking of work and for more substan-

tial computations. A thorough illustration of the capabilities of VEST can be found

in a companion paper [1], where we present the first automated calculation of the

guiding center Lagrangian discussed in the previous paragraph. Much of the func-

tionality of VEST is made possible through the use of abstract index notation for

internal manipulation, rather than standard vector notation. This allows VEST to

derive vector identities, both through a systematic canonicalization procedure and

by inserting pairs of the Levi-Civita symbol, rather than relying on the relatively

limited set found in standard reference (for instance [12]). The obvious advantage

of this is that even for expressions and operations that are rarely used (e.g., higher

order derivative tensors), a full simplification may still be performed without the

necessity of hard-coding these into the package. Of course, in principle one of the

many existing abstract tensor manipulation packages designed for general relativistic

calculations (e.g., Refs. [13, 14, 15, 16]) could be used for these types of computa-

tions; however, the increased generality required for curved spaces in any dimension

necessitates features that would be very cumbersome for vector calculations. For

example, in Euclidean R3 there is never any need to store properties of the Riemann

or torsion tensors and one may elect to use the identity metric. In addition, since

the Levi-Civita symbol plays such a prominent role in vector calculus, it is desir-

able to have its expansions and contractions integrated into the canonicalization and

simplification routines.

There are only a handful of previous software packages that are designed for

working with abstract vector expressions. As well as some of the new functionality

in Mathematica 9.0 [2], the packages detailed in Refs. [5, 17, 6, 8, 7] include some ab-

stract simplification capability. Out of these, VEST is the first to work with general

rules for gradient tensors and thus provide non-trivial simplifications of expressions
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involving gradient, divergence and curl. In addition, all vector algebra simplifica-

tion examples given in Ref. [7] are handled with ease, see Fig. 1 for a selection of

these. We note that all but one of the aforementioned examples are verified through

canonicalization, without necessitating the use of the simplification capabilities of

VEST. Utilization of these capabilities allows VEST to derive in real time many

types of vector identities that have not (to our knowledge) appeared in any previous

publications.

The remainder of the manuscript is organized as follows. In section 2 we outline

the foundations of the VEST package, including the use of abstract index notation

and definition of a canonical form. We then describe the function ToCanonical,

which will canonicalize any vector or scalar expression and is the main workhorse of

the VEST package. Several relevant examples are given, illustrating various stan-

dard vector properties as well as more complex examples from the literature. While

ToCanonical usually provides a thorough simplification, there are certain more com-

plicated multi-term identities that are not recognized, and in section 3 we explore

some methods to provide further simplification of expressions. We discuss the algo-

rithm used in the function FullSimplifyVectorForm, which expands pairs of Levi-

Civita symbols to generate identities for all terms in an expression, and applies these

in an attempt to find the shortest canonical form. A more general method of de-

riving vector identities based on symmetry properties is then given, with the idea

that a similar technique will be implemented in a future version of VEST. Finally,

in section 4, we describe some additional tools provided in VEST with the aim of

improving the usefulness of the package. These include; simple but very general in-

put and output, explicit equality checking through expansion of sums, substitution

capabilities, and automatic unit vector rule generation and simplification.
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2. Index notation as a tool for vector calculus

While adequate for simple calculations, standard vector calculus notation (A×B,

(b · ∇) b, etc.) has numerous deficiencies when more complex expressions are in-

volved. For instance, the meaning of the dot product can become ambiguous for

higher rank tensors (e.g., derivatives) and seemingly disparate rules or "vector identi-

ties" [12] are needed to deal with specific cases of the cross product anti-symmetry. To

illustrate this latter point, although the exact correspondence between the identities

∇×(a× b) = a∇·b−b∇·a−(a · ∇) b+(b · ∇)a and a×(b× c) = b (a · c)−c (a · b)

is not entirely clear, both are simply expansions of the double cross product. In con-

trast, with a representation of vector objects in index notation using the Einstein

summation convention, there is no trouble whatsoever with higher rank tensors. In

addition, many simple vector identities are an obvious consequence of the product

rule and properties of the Levi-Civita symbol, εijk. This systemization makes index

notation far more convenient for a computer algebra system. For the sake of input

and output, it is straightforward (where possible) to convert between indexed and

vector expressions using

a · b⇐⇒ aibi ∇ · a⇐⇒ ai,i

a× b⇐⇒ εijkajbk ∇× a⇐⇒ εijkak,j

a · ∇b⇐⇒ aibj,i ∇b · a⇐⇒ aibi,j

∇γ ⇐⇒ γ,j (1)

for a, b vectors and γ a scalar. VEST includes functions to automatically perform

the above conversions for both input and output. Note that, since by definition

vector calculus is confined to Euclidean space, there is no need to distinguish between

covariant and contravariant indices. We emphasize that this is not a restriction on
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a subsequent expansion into a curvilinear co-ordinate system, although an indexed

expression cannot be interpreted in the literal sense (i.e., a sum over components) if

a non-cartesian system is used. VEST also allows the use of a derivative with respect

to a second co-ordinate (labelled v), since this situation commonly occurs in kinetic

physics. For compactness, we notate this in a non-standard way with a semi-colon

∂vA ⇐⇒ Ai;j, since it is not necessary to distinguish between the covariant and

partial derivatives in Euclidean space.

2.1. Canonicalization

We now describe the ToCanonical function in VEST that reduces expressions to

the canonical form defined by:

1. The expression is expanded into a sum of monomials.

2. There are no products inside partial derivatives and no nested derivatives.

3. Each term contains either no Levi-Civita symbols or one Levi-Civita symbol

and no δij (always possible for vector or scalar expressions).

4. The dummy indices in each monomial are re-ordered according to symmetry

properties ensuring like terms appear as such. As a simple example of this type

of re-ordering, εjikbjak becomes εijkajbk due to the anti-symmetry of εijk.

We note that this form is unique only for sufficiently simple expressions; multi-term

vector identities can lead to multiple canonicalized forms being non-trivially equal

(see Sec. 3).

To bring an expression to canonical form, ToCanonical uses the following se-

quence of steps:

1. Expand out products in partial derivatives and concatenate nested derivatives.
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2. Expand expression and find all dummy indices in each term. Check that these

occur in pairs and free indices match across sum. Rename dummy indices in a

consistent internal form so the procedure is not limited by the set number of

user defined indices.

3. Expand pairs of Levi-Civita tensors according to

εijkεlmn = δil (δjmδkn − δjnδkm)− δim (δjlδkn − δjnδkl) + δin (δjlδkm − δjmδkl) .

(2)

4. Remove all δij using aiδij = aj.

5. Apply user defined rules. As a special case of this, rules associated to unit

vectors are automatically derived and applied to relevant objects (see Sec. 4).

6. Reorder dummy indices into a canonical form for each monomial in the ex-

pression. The problem of permuting indices can be very complex in large con-

tractions and has historically been a major difficulty for tensor manipulation

software, see for instance Refs. [18, 19]. VEST uses the Mathematica function

TensorReduce (new in version 9.0), which has proven to be very reliable and

efficient for our needs.

7. Print objects and dummy indices in a user-friendly output format (see Sec. 4).

ToCanonical is relatively efficient and handles very large vector expressions with

ease. As an example, a direct calculation of the guiding center Poisson tensor, which

involves up to 1500 terms (after expansion of Levi-Civita symbols) and canonicalizes

to over 100 terms, takes approximately 15 seconds on a 2.26GHz Intel Core 2 Duo.

The whole procedure can be parallelized in a straightforward way if desired, but we

leave this to future work.

The canonicalization procedure detailed above effectively contains all of the most

common vector identities (for instance all identities in Ref. [12], a standard resource
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Load package and define objects and indices.

<< VEST`

DefIndices@8i, j, k, l, p, q, r, s, m, n, t, u<D;

DefObject@a, 1, 8True, False<, "a"D
DefObject@b, 1, 8True, False<, "b"D
DefObject@c, 1, 8True, False<, "c"D
DefObject@d, 1, 8True, False<, "d"D
DefObject@T, 2, 8True, False<, "T", Symmetric@81, 2<DD
DefObject@Γ, 0, 8True, False<, "Γ"D

Some very simple canonicalization examples. Output can be printed in vector notation.

ToCanonical �� 9 b Ó́ a, -b •
Ó Ic Ó́ aM, div@Γ aD, div@curl@aDD, curlAÑ

Ó
ΓE, Γ a + curl@Γ bD, T@j, nD b@jD=

vectorForm �� %

9-ai bj ¶n i j, -ai bj ck ¶k i j, ai Γ ,i + ai ,i Γ , 0, 0, -bi ¶n i j Γ ,j + an Γ - ¶n i j bi ,j Γ , bi Tn i=

8-Ha ´ bL, -Hc × Ha ´ bLL, Ha × Ñ ΓL + Γ HÑ × aL, 0, 0, -Hb ´ Ñ ΓL + HÑ ´ bL Γ + a Γ , bi Tn i<

Some vector algebra examples from [Liang and Jeffrey 2007].

ToCanonical �� 9 a Ó́ Ib Ó́ Ic Ó́ dMM + b Ó́ Ic Ó́ Id Ó́ aMM + c Ó́ Id Ó́ Ia Ó́ bMM + d Ó́ Ia Ó́ Ib Ó́ cMM - Ia Ó́ cM Ó́ Ib Ó́ dM,

IIa Ó́ bM Ó́ Ib Ó́ cMM •
Ó Ic Ó́ aM - Ia •

Ó Ib Ó́ cMM Ia •
Ó Ib Ó́ cMM,

IIa Ó́ bM Ó́ cM Ó́ d + IIb Ó́ aM Ó́ dM Ó́ c + IIc Ó́ dM Ó́ aM Ó́ b + IId Ó́ cM Ó́ bM Ó́ a =

80, 0, 0<

Some identities involving Ñ from [Wimmel 1982].

vectorForm �� ToCanonical �� 9 Ia •
Ó

Ñ
Ó

bM Ó́ c + c Ó́ IÑ
Ó

b •
Ó

aM - c Ó́ Ia Ó́ curl@bDM,

Ia •
Ó

Ñ
Ó

bM •
Ó

c - Ic •
Ó

Ñ
Ó

bM •
Ó

a - Ia Ó́ cM •
Ó

curl@bD,

a •
Ó

Ñ
Ó Ib •

Ó
cM + c •

Ó
Ñ
Ó Ib •

Ó
aM - b •

Ó
Ñ
Ó Ia •

Ó
cM + Ib Ó́ cM •

Ó
curl@aD + Ib Ó́ aM •

Ó
curl@cD + Ia Ó́ cM •

Ó
curl@bD =

80, 0, 2 Ha × HÑ b × cLL<

Figure 1: Various examples of the action of the VEST function ToCanonical.

used in the plasma physics community), as well as many more complex identities.

In Figure 1, we give examples of the operation of ToCanonical on various vector

expressions. Note that input and output can be in standard vector notation, indexed

notation, or a mix of both. Several vector algebra examples have been taken from

Refs. [7, 20, 21, 17], with some examples involving gradients taken from Ref. [22].

9



3. Simplification through Levi-Civita expansions

While adequate for simpler problems, the canonicalization of individual terms as

carried out by ToCanonical does not recognize certain types of multi-term vector

identities. In many cases, these can lead to substantial simplification of large expres-

sions. We have found very few instances of this type of identity given in previous

literature; two examples are

d (a · b× c)− a (b · c× d) + b (c · d× a)− c (d · a× b) = 0, (3)

which is relatively well known, and

d (a · b× c)− (c · d) (a× b) + (b · d) (a× c)− (a · d) (b× c) = 0, (4)

which is given in [7]. There are in fact whole families of similar relations, including

those involving gradient tensors and more than four monomials.

In essence, the ability to simplify expressions using these types of multi-term

vector identities requires two somewhat separate operations. Firstly, we need to be

able to generate vector identities that involve any given monomial in the polynomial

expression we wish to simplify. These identities can be used to construct substitution

rules for each term. Secondly, we require a way to sift through different combinations

of these substitutions in order to arrive at the shortest possible manifestation of the

expression.

In this section we describe the VEST function FullSimplifyVectorForm, which

simplifies vector polynomials. FullSimplifyVectorForm handles both of the afore-

mentioned operations, deriving vector identities for each term before applying these

in an attempt to find the simplest form of an expression. We have found the function

to be very useful when carrying out large calculations, in many cases reducing the

size of expressions by more than a factor of two.
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3.1. Derivation of multi-term identities through Levi-Civita expansions

Vector identities such as Eq. (3) can be derived systematically using properties

of the Levi-Civita symbol. A simple technique used in FullSimplifyVectorForm is

based on the identity
1

2
εirsεjrs = δij. (5)

Starting from a single monomial, one substitutes Eq. (5) for a chosen index or indices

(using ai → δijaj = εirsεjrsaj/2), obtaining an equivalent term involving more Levi-

Civita symbols. Expanding pairs of Levi-Civita symbols in various orders using

Eq. (2) will then sometimes generate a non-trivially equivalent form, essentially a

vector identity involving the original monomial.

We illustrate this process with a simple example that generates Eqs. (3) and

(4) above. Starting with d (a · b× c) and inserting Eq. (5) into the free index, one

obtains

aibjckdnεijk =
1

2
aibjckdlεijkεlrsεnrs. (6)

There are now three ways to expand pairs of Levi-Civita symbols using Eq. (2);

expanding εijkεnrs, we are led to Eq. (3), while expanding εijkεlrs gives Eq. (4). Of

course, an expansion of εlrsεnrs will simply generate the original term. As another

example, the identities

(a× c) · ∇b−∇b · (a× c)− a (c · ∇ × b) + c (a · ∇ × b) = 0,

(−a · c)∇× b+ a× (c · ∇b)− a× (∇b · c) + c (a · ∇ × b) = 0, (7)

are generated from the monomial c (a · ∇ × b). These identities [Eq. (7)] are of

course strongly related to those in Eqs. (3) and (4), although in vector notation the

exact correspondence may not be immediately obvious.
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Finally, we note that the same process can be applied using more than one pair

of Levi-Civita symbols, replacing multiple indices in a monomial. This will generate

both a greater number of identities (due to the large number of possible expansion

orders) and larger individual identities (since more symbols are involved) at the

expense of computation time.

3.2. Simplification of large vector expressions

We now describe the algorithm implemented in FullSimplifyVectorForm. The

general technique is to find equivalent forms (vector identities) for each term and

subsequently use these to bring the polynomial to its shortest form. An outline of

the procedure goes as follows:

1. Ensure expression is in canonical form.

2. For each monomial in the expansion, perform the procedure detailed in Sec. 3.

The identities generated are stored as substitution rules so as to facilitate the

subsequent search for the shortest form. If desired, this step can be performed

with multiple pairs of Levi-Civita symbols, generating more substitution rules

at the expense of computational speed.

3. Consider the set of rules for each of the n monomials generated in the previ-

ous step, denoting the rule set for monomial i by Ri (Ri includes the trivial

substitution of a monomial into itself). It is desirable to search through the

entire set R1 × . . . × Rn rather than substituting just individual rules, since

rules containing similar terms can sometimes cancel when substituted concur-

rently. Since the number of elements in R1 × . . . ×Rn can be very large (the

product of the lengths of the Ri), FullSimplifyVectorForm reduces the size

of this set by choosing only those elements that contain rules that have the

possibility of canceling in a concurrent substitution. It then searches through
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Short identities similar to those in the text.

9FullSimplifyVectorFormA d Ia •
Ó Ib Ó́ cMM - a Ib •

Ó Ic Ó́ dMM + b Ic •
Ó Id Ó́ aMM - c Id •

Ó Ia Ó́ bMM E,

FullSimplifyVectorFormA div@cD b Ó́ a + a Ó́ Ib •
Ó

Ñ
Ó

cM + Ia •
Ó

Ñ
Ó

cM Ó́ b + Ñ
Ó

c •
Ó Ia Ó́ bM E=

80, 0<

An example that arises in guiding center theory through taking a Lie derivative of the Lagrangian for the Lorentz force 

(see [Burby et. al. 2013]). Note that b is a unit vector in this example. (The =
ind

 operator is discussed in Section 4.)

Ρ =
ind

v Ó́ b � B;

Gvsub =
ind

ToCanonicalAb � 2 � B Iv - Iv •
Ó

bM bM •
Ó

curlAv - Iv •
Ó

bM bE - 1 � 2 b Ib •
Ó

vM IIb •
Ó

Ñ
Ó

bM •
Ó

Ρ@iDM -

Iv •
Ó

bM Hdelta@n, jD - b@nD b@jDL dotAÑ
Ó

b, Ρ@iD, jE - Ib Ó́
Ρ@iDM Ib •

Ó
curlAv - Iv •

Ó
bM bEME;

Ifullexpr = ToCanonicalAA + Ε Iv •
Ó

bM b + Ε ^ 2 HGvsub@nD - 1 � 2 Hdelta@n, jD - b@nD b@jDL Gvsub@jDL +

Ε ^ 2 � 2 curlAv - Iv •
Ó

bM bE Ó́
Ρ@jDEM �� vectorForm

FullSimplifyVectorForm@fullexprD �� vectorForm

Ε2 Hb × vL HÑ b × Hb ´ vLL
2 B

+
Ε2 Hb × vL HHb × Ñ bL ´ vL

2 B
+

Ε2 Hb × vL2 Hb ´ Hb × Ñ bLL
2 B

-

Ε2 Hb × vL Hb ´ HÑ b × vLL
2 B

+
Ε2 Hb × HÑ b × vLL Hb ´ vL

2 B
+

Ε2 Hv ´ HÑ b × vLL
2 B

+ A +

Ε2 HHÑ b × vL × Hv ´ bLL b

2 B
+ Ε Hb × vL b +

Ε2 Hb × Ñ ´ bL Hb × vL2 b

2 B
-

Ε2 Hb × vL Hv × Ñ ´ bL b

2 B

Ε2 Hb × vL HÑ b × Hb ´ vLL
2 B

+ A + Ε Hb × vL b

Figure 2: Some example applications of the VEST function FullSimplifyVectorForm.

all elements of this reduced set, recording the length of the expression obtained

for the substitutions given by each element.

4. Choose the shortest expression obtained in step 3 and:

(a) Return to step 1 if the expression has changed since the previous iteration.

Store rules found in previous step to save computation time.

(b) Return result if expression is unchanged since the previous iteration.

In Figure 2 we give several examples of the operation of FullSimplifyVectorForm.

Due to the large number of expansions to explore, the function can be relatively

processor intensive (especially if multiple pairs of Levi-Civita tensors are used). The

first two examples given in Figure 2 take approximately 2 seconds to compute, while
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the final one requires approximately 10 seconds. Memory use is not an issue for rea-

sonable expressions; we have simplified expressions of up to 600 monomials without

using more than roughly 100MB of memory.

3.3. More general methods for automatic generation of vector identities

While the method currently implemented in FullSimplifyVectorForm (described

above in Sec. 3.1) can easily and reliably generate many vector identities that have

not appeared in previous literature, there are certain more complicated identities

that cannot be recognized. Specifically, any non-trivial polynomial identity with no

Levi-Civita symbols (i.e., involving only dot products) will not be identified by the

above technique. This property is obvious if only one pair of Levi-Civita symbols is

expanded at step 2 in the procedure, but also appears to be the case when multiple

pairs are expanded in all possible combinations. These identities that involve only

dot products necessarily include more terms and larger monomials (see below) than

identities with Levi-Civita symbols, meaning they are only required for simplification

when very large expressions (or expressions with multiple derivatives) are encoun-

tered. To give an example, with up to two derivatives and without involving unit

vector properties, the shortest such identity we have derived is given by

0 =
(
a2c2 − (a · c)2

)
∇ · b2 −

(
a2c2 − (a · c)2

)
bi,jbj,i + 2a2 (c · ∇b · ∇b · c)

+ 2 c2 (a · ∇b · ∇b · a)− 2 (a · c) (a · ∇b · ∇b · c+ c · ∇b · ∇b · a)

+ 2 (a · c)∇ · b (a · ∇b · c+ c · ∇b · a) + 2 (a · ∇b · a) (c · ∇b · c)

− 2 (a · ∇b · c) (c · ∇b · a)− 2∇ · b
(
c2 (a · ∇b · a) + a2 (c · ∇b · c)

)
(8)

for general vectors a, b and c. For this collection of objects (two of each a, ∇b and

c), there also exists a slightly longer, very similar identity of 17 monomials. When

unit vectors and/or more derivative tensors are included, much shorter identities
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exist; for instance

− bi,jbj,kbk,i +
3

2
bi,jbj,i∇ · b−

1

2
(∇ · b)3 = 0 (9)

is given in Ref. [23] for a unit vector b and can also be derived through the method

detailed in this section1. As another example, Eq. (8) reduces to 8 terms when a or

c is set to b and this is set as a unit vector. This identity turned out to provide an

important and non-trivial simplification in our work described in Ref. [1].

In this section we describe a very general technique for deriving vector identities

that is not limited to identities that involve the cross-product. The method encom-

passes relations such as Eqs. (8) and (9), as well identities with cross-products, e.g.,

Eqs. (3) and (7). While not implemented in the current version of FullSimplifyVectorForm,

we will provide this functionality in a future release. The overall approach is based on

the idea that anti-symmetrization of an n-dimensional tensor over n+ 1 indices will

automatically give a tensor polynomial that is identically zero. Such a polynomial is

necessarily of relatively high rank, so the construction of interesting identities entails

contracting over various pairs of indices. Note that almost all such contractions triv-

ially canonicalize to zero and finding identities in this way by hand would be a very

arduous task. The method is essentially an application of Lovelock’s "dimensionally

dependent identities" of the Riemann tensor [24] to tensor products of vectors and

their gradients.

1Eq. (9) was derived in Ref. [23] by noticing that it is nothing but the Cayley-Hamilton the-

orem for matrix bi,j satisfying det (bi,j) = 0. This method cannot be generalized to obtain other

multi-term identities, but an interesting point is that the Cayley-Hamilton theorem is a simple

consequence of the anti-symmetrization procedure detailed in this section. Eq. (9) is the sole vector

identity we have found in previous literature that cannot be recognized by the current version of

FullSimplifyVectorForm
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To be more precise, consider a general tensor Ti1...ik , where the ik represent an

arbitrary number of indices (note that we work in 3-D Euclidean space with all lower

indices). For the cases we will consider Ti1...ik will be the product of vector objects,

e.g., aibjckdlεrsq. Representing anti-symmetrization by [ ] around relevant indices,

the identity

Ti1...ij−1ij+1...ik[ij δ
b1
a1
δb2a2δ

b3
a3]

= 0 (10)

must hold for for all 1 ≤ j ≤ k, since the tensor is anti-symmetric over four indices

in three dimensions. (In Eq. (10) δji is simply the standard Kronecker delta δij,

we write with an “up” index to more clearly show the anti-symmetrization). One

can also anti-symmetrize over more indices of T (and fewer δij) if desired, but the

resulting identity will involve only the relevant anti-symmetric part of T . Of course,

in the case where T is already anti-symmetric in some set of indices (in our case

due to εijk), an identity involving the entirety of T with fewer δij can be obtained

by anti-symmetrizing over these indices. For example, with T anti-symmetric over

{i1, i2, i3},

Ti4...ik[i1i2i3 δ
b1
a1]

= 0. (11)

This insight explains why vector identities that involve εijk can be so much simpler

than those that do not; any tensor with anti-symmetry will naturally have identities

with fewer terms than those without anti-symmetry, since non-trivial identities in

the form of Eq. (10) can be constructed with fewer indices.

The ideas of the previous paragraph can be used to automatically generate vector

identities from a given set of vector objects. Although certainly not the most efficient

method, a simple algorithm goes as follows:

1. For a given vector monomial, consider the tensor obtained by removing all con-

tractions between dummy indices e.g., for aiajbiblbj,lbk,k this is aiajbkblbr,sbp,q.
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2. Choose an index over which to anti-symmetrize and form the polynomial given

by Eq. (10). If one of the objects from step 1 is εijk, construct Eq. (11)

instead, antisymmetrizing over the indices of εijk (the reason for this is simply

to generate shorter identities). For instance, with the tensor example given in

step 1, one could use aiajbkblbr,sbp,[qδbaδdc δ
f
e].

3. Contract the polynomial between index pairs. Aside from those contractions

that are known a priori to give identically zero (see Ref. [25]) all possible con-

tractions should be evaluated. For example, aiajbkblbr,sbs,[qδqi δjrδkl] is the scalar

formed by contraction of the tensor given above between the index pairs

{{1, 9} {2, 12} {3, 14} {4, 13} {5, 11} {6, 7} {8, 9}}. If one wishes to generate

only those identities involving the original scalar monomial (i.e., aiajbiblbj,lbk,k

in the running example), consider only the set of contractions that have a

possibility of generating this.

4. Canonicalize the resulting list of scalar or vector expressions to remove δij and

cancel relevant terms.

We have applied this procedure to various forms, systematically generating iden-

tities that involve a given set of objects, both with and without the Levi-Civita

symbol. For instance, applying the method to the objects {a, b, c,d, ε} (i.e., the

tensor aibjckdlεrsq at step 2) generates Eqs. (3) and (4), Eq. (8) is generated with

{a,a, c, c,∇b,∇b}, and Eq. (9) is generated with {b, b,∇b,∇b,∇b} and a subse-

quent application of various unit vector identities. There are of course many other

similar relations that we have not listed here.

We note that the Invar package [26] uses a similar anti-symmetrization based

method as part of its algorithm to generate scalar invariants of the Riemann tensor.
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4. Additional VEST functionality

In addition to the functions described in Sections 2 and 3, VEST contains several

other features than can be very useful when carrying out large calculations. In this

section we briefly describe some of this functionality.

4.1. Intuitive and user friendly input and output

While very precise and straightforward to interpret, index notation can be in-

convenient for the user, since expressions often look jumbled and confusing. As

illustrated in Figs. 1 and 2, VEST includes several features to facilitate user input

and output, both in index and vector notation. Expressions can be input in stan-

dard vector notation omitting indices (e.g., curl[a]), full index notation, or a mix of

both (e.g., div[b[i]v[i]b[j]] + a � (T[i, j]b[j])). This allows for fast and reliable user

input with the ability to represent more complex expressions where vector notation

becomes ambiguous. In addition to coloring dummy index pairs so contractions are

more immediately obvious, the function vectorForm prints expressions using vector

notation where possible (up to first order derivatives), see Figs. 1 and 2.

4.2. Checking expression equality

The function CheckTensorZero provides a very reliable check of whether an ex-

pression is identically zero. This is useful both for when one is not confident that

FullSimplifyVectorForm has reached the shortest possible form and for rapid ver-

ification of results. The function works in a very straightforward way by expanding

an expression into Cartesian co-ordinates, which amounts to explicitly evaluating all

sums over dummy indices. If so desired, the user can specify particular forms for

some (or all) objects in an expression. This is useful both for when non-trivial rela-

tionships exist between different objects (e.g., B = ∇×A) and in the expansion of
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very large expressions where memory use becomes an issue and a numerical check is

necessary. CheckTensorZero also includes functionality to search through an expres-

sion for subsets that are zero, which has occasionally proved useful for simplification

purposes.

4.3. Substitutions

A very common application of a computer algebra package is the substitution of

some explicit expression into a given form, i.e., given a specific a, calculate f (a).

While this is a very simple process for standard algebraic expressions, the task be-

comes more awkward when the substitution involves indexed expressions. To illus-

trate this, consider as a basic example the evaluation of

aiaj,kbjbk, with ai = bjdjdi. (12)

There are two issues that arise if one attempts a naive substitution of ai; first, the

free index of ai = bjdjdi must be replaced with the correct indices in aiaj,kbjbk, and

second, one must ensure that dummy indices in the substituted ai do not conflict with

those in aiaj,kbjbk. While these issues are in principle not complicated, forcing the

user to keep track of all indices would be a particularly inconvenient characteristic

that would significantly reduce the utility of an index notation based package.

In VEST substitution of arbitrary expressions is handled through a new assign-

ment operator ind
= , which automatically manages assignment of free indices and en-

sures dummies do not overlap. Rather than simply assigning an expression to the left

hand side, ind
= assigns a call to the function FindDummies, which is used in step 2 of

ToCanonical (see Sec. 2.1) and can generate a new set of indices at every call. After

assignment with ind
= , an object can be used in exactly the same way as a standard

indexed object without the user having to worry about its underlying structure. To
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illustrate with the example of Eq. (12), after assigning a
ind
= b[j]d[j]d[i], evaluating

aiaj,kbjbk in the standard way will generate a valid indexed expression.

4.4. Unit vectors and user defined rules

Expressions involving unit vectors arise often in certain types of calculations,

including the guiding center calculation that we have discussed regularly through-

out the manuscript. As several examples earlier in the text have illustrated (e.g.,

Sec. 3.3), unit vector identities can provide very substantial simplifications and it

is important to make provision for these. Representing an arbitrary unit vector

by bi, VEST automatically generates identities by differentiating bibi = 1 up to a

user-specified order and applies these rules as part of ToCanonical. In addition,

unit vectors are automatically accounted for in FullSimplifyVectorForm by mul-

tiplying each term by bibi before each Levi-Civita expansion (see Sec. 3.1), and in

CheckTensorZero by setting b3 =
√
1− b21 − b22 for any unit vectors in an expression.

A related feature is the ability for the user to define rules that are applied as part

of ToCanonical. This is very useful both when non-trivial relationships between

objects need to be identified (e.g., ∇ · (Bb) = 0) and when working with expressions

that involve non-trivial scalar expressions in the denominator.

5. Conclusion

In this paper, we have presented a new Mathematica package, VEST (Vector

Einstein Summation Tools), for performing abstract vector calculus computations.

The canonicalization and simplification routines are based on representation of vector

polynomials using index notation with the Einstein summation convention. The

utility of the package has been illustrated through multiple calculations of the single
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particle guiding center Lagrangian in our companion paper [1], which is usually a

long and arduous process requiring months of tedious algebra.

The canonicalization routines in VEST encompass almost all previously pub-

lished vector identities [12, 7, 22] and provide a very thorough reduction for most ex-

pressions. For larger polynomials, more comprehensive simplification capabilities are

provided by the function FullSimplifyVectorForm, which uses expansions of Levi-

Civita symbols to derive multi-term vector identities. FullSimplifyVectorForm has

proven to be very useful in practice, often reducing the length of expressions dramat-

ically in ways that would be very difficult to find by hand. We note that in previous

literature we have found only a handful of examples of the type of identity derived

by FullSimplifyVectorForm.

In addition to the method of Levi-Civita expansions, we have illustrated a more

general technique based on anti-symmetrization that can be used to derive very

general non-trivial identities for a given set of objects. As future work, we hope

to implement some variant of this technique into FullSimplifyVectorForm, which

would allow the simplification of expressions that do not contain cross-products. To

improve computational efficiency, rules can be pre-calculated and stored in look-up

tables, a method that is used in the Invar package [26] to simplify polynomials of

the Riemann tensor. While the generation of basic identities will be simpler than

those for the Riemann tensor (due to its complex symmetries), the substitution

of known identities could be complicated somewhat by allowing multiple different

objects, including those of different rank. Another significant complication will be the

inclusion of unit vectors, the properties of which can significantly change identities

in non-trivial ways.

VEST has been designed to be very user-friendly, with intuitive and simple input

and output. We invite the reader to try out the package, which can be found along
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with a comprehensive tutorial from the CPC program library.
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