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I was awarded the DOE’s Early Career Principal Investigator Award in
2004. This was the single most important event in my early career; it
validated the research program I had begun and it launched me into a
productive research career. It also opened up relationships with DOE
scientists across the country. Your confidence in me is very, very, very
much appreciated.

AT A HIGH LEVEL, my research interests center around design-
ing, programming, and evaluating computer systems that use new
approaches to solve interesting problems. The rapid change of tech-
nology allows a variety of different architectural approaches to
computationally difficult problems, and a constantly shifting set of
constraints and trends makes the solutions to these problems both
challenging and interesting.

One of the most important recent trends in computing has been
a move to commodity parallel architectures. This sea change is mo-
tivated by the industry’s inability to continue to profitably increase
performance on a single processor and instead to move to multiple
parallel processors.

In the period of review, my most significant work has been lead-
ing a research group looking at the use of the graphics processing
unit (GPU) as a general-purpose processor. GPUs can potentially
deliver superior performance on a broad range of problems than their
CPU counterparts, but effectively mapping complex applications
to a parallel programming model with an emerging programming
environment is a significant and important research problem. As
the computing industry moves toward ubiquitous parallel hardware
and software, the lessons learned from the GPU, the first commod-
ity parallel processor, are even more important. Our field of “GPU
computing” (also called “general-purpose computation on the GPU”
[GPGPU]) continues to have a substantial and growing impact on
mainstream computing. As one of the early researchers in the field,
I was privileged to lead two highly-cited articles’, supported by this
grant, that helped define GPU computing as a field of study.

SUPPORTED BY THIS AWARD, OUR WORK WAS THE FIRST to present
an abstraction for GPU data structures as a first-class element in
the GPU programming model. With this work, we addressed two
important issues in the GPGPU community: first, the difficulty

of programming graphics hardware because of the lack of good
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abstractions and libraries; second, the difficulty of structuring efficient
computation because the programming model is complex. Based

on our preliminary work in parallel data structures®, we developed
“Glift,” a library for GPUs that addressed these problems3. Our
contributions include an abstraction that separates data structures
from algorithms, a factorization of data structures into modular
components, a definition of an iterator model to tie data structures
and algorithms together, and a demonstration that data structures
built with this structure both reduce code complexity and yield good
performance.

We described Glift in 2006 in ACM Transactions on Graphics*.

It was also the basis for my student Aaron Lefohn’s Ph.D. disserta-
tion, for which he won the 2007 Department of Computer Science
Outstanding Dissertation Award. Glift (and this award) was also
fundamental in several other publications from our group>.

Using Glift, we were able to target a long-standing problem in
computer graphics that was previously thought too difficult for the
GPU: adaptive shadow maps (ASM). In realistic images, shadows
provide important visual cues for the viewer, but generating them in
real-time with high quality is quite difficult computationally. Most of
today’s real-time methods severely compromise shadow quality to
maintain acceptable performance.

A difficult scene for shadow map algorithms, this furball consists of 4,000 self-
shadowing hairs of 12 line segments each and is shadowed with a 32,768 effective
resolution, resolution-matched shadow map. For a 1024% image, our implementation
running on an NVIDIA GeForce 8800 GPU GTX rendered the left image at 60—75
fps with a static light and 20-25 fps for a moving light. The right image is a close-up
of the hair shadow on the wall, and renders at 70—75 frames per second (fps) with a
static light and 60—65 fps with a moving light. Our implementation was typically
23 times faster, and for some scenes up to 10 times faster, than a highly-optimized,

GPU-based implementation of the original ASM algorithm.
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The key to our implementation was a Glift multiresolution adap-
tive data structure, the first implementation of its kind, which was an
ideal match for the adaptive shadow map algorithm®. We improved
this work with a new algorithm that yields better performance and
eliminates a class of artifacts from the original ASM algorithm. This
work marked an important milestone in using general-purpose
computing to solve a graphics problem?.

ONE OF THE PERFORMANCE-CRITICAL KERNELS in our shadow
algorithm, stream compaction, turned out to be a gateway to a set of
very interesting problems. The best previous work in this area had
O(nlogn) computational complexity. We characterized stream com-
paction in terms of the scan parallel primitive, first introduced in the
APL programming language in 1962. We reinvented scan for modern
data-parallel processors, implementing the first O(n) (linear-time)
GPU scan primitives. With Dr. Mark Harris of NVIDIA, we then gen-
eralized our scan implementation into a family of scan primitives and
adapted them to new GPU hardware, resulting in two recent publica-
tions presenting the first space-efficient O(n) scan implementation®
and the first GPU segmented scan implementation' (which won the
Best Paper Award at Graphics Hardware 2007). The scan primitives
have allowed us to attack a new class of GPU problems and to allow
others to do the same. Within the period of review, we used scan to
study sorting primitives, tridiagonal matrix solutions (which we pre-
viously explored with Pixar in the context of real-time depth-of-field
computation'), and sparse matrix operations. Beyond the period of
review, we’ve used scan to address many other problems as well. I
did much of the early work on scan while visiting Pat McCormick at
Los Alamos National Laboratory and appreciate the feedback of Pat
and his team along the way.

More generally, I feel that scan provided us an excellent example
of a need to rethink our approach to programming parallel machines.
Scan is a primitive that is of little use on a scalar machine, and hence
would not be part of serial programming primitives. But on the
GPU, we demonstrated that scan is both useful and efficient, and the
ample computational horsepower of the GPU provides an order of
magnitude speedup for a scan implementation over the CPU.

Over the period of review we also shipped three releases of our
popular open-source “CUDA Data Parallel Primitives” (CUDPP)
GPU primitive library™. CUDPP also shipped as part of NVIDIA's
CUDA SDK and rapidly gained acceptance as one of the critical li-
braries for general-purpose computing on the GPU?3. This library,
developed as a collaboration between our group and NVIDIA, im-
plemented a series of broadly applicable data-parallel primitives
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including scan, segmented scan, sort, and random number generation
for use in GPU computing applications, with many other primitives
added after the period of review. The library also comes with test
code and ample documentation to allow it to be easily integrated
into applications across a wide range of domains. We have continued
to extend and maintain CUDPP even after the conclusion of this
award. Maintaining a complex open-source software package is a
time-consuming and difficult task, but it is a crucial part of ensuring
the impact of our research.

A FINAL PROBLEM WE TACKLED UNDER THIS GRANT was how to
build an abstraction for writing programs across multiple GPUs. At
the time, GPU parallelization either took the form of trivial paral-
lelization (where the problem is evenly divided among GPUs, but
requires no communication between GPUs) or a simple pipeline.
Our work presented a distributed-shared memory abstraction and
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shared memory address space but the memory is distributed across

of the work was our identification of the hardware and software

AGAIN, | WANT TO EMPHASIZE the impact this award had on my
career. You showed a lot of faith in me by funding our work. Thank
you for your confidence. I believe that the trajectory of DOE high-
performance computation has justified your investment and I look
forward to continuing to work with DOE scientists for the remainder
of my career.



