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ABSTRACT

The goals of this project are to develop new, scalable, high-fidelity algorithms for atomic-level
simulations and program transformations that automatically restructure existing applications,
enabling them to scale forward to Petascale systems and beyond. The techniques enable legacy
MPI application code to exploit greater parallelism though increased latency hiding and improved
workload assignment. The techniques were successfully demonstrated on high-end scalable
systems located at DOE laboratories. Besides the automatic MPI program transformations efforts,
the project also developed several new scalable algorithms for ab-initio molecular dynamics,
including new massively parallel algorithms for hybrid DFT and new parallel in time algorithms
for molecular dynamics and ab-initio molecular dynamics. These algorithms were shown to scale
to very large number of cores, and they were designed to work in the latency hiding framework
developed in this project. The effectiveness of the developments was enhanced by the direct
application to real grand challenge simulation problems covering a wide range of technologically
important applications, time scales and accuracies. These included the simulation of the electronic
structure of mineral/fluid interfaces, the very accurate simulation of chemical reactions in
microsolvated environments, and the simulation of chemical behavior in very large enzyme
reactions.
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EXECUTIVE SUMMARY

The availability of massively parallel supercomputers has supported the dramatic expansion of atomic level
simulations (molecular dynamics, and ab-initio molecular dynamics) to new classes of scientific and
engineering models that more effectively capture the full complexity of real systems. With continuing
performance improvement this technology it is expected that simulation will take a more crucial role in
areas such as the development of new high performance materials (batteries, magnetic recording devices),
control and prevention of disease, drug discovery and the development of secure waste isolation
technology, e.g., CO, sequestration and nuclear waste isolation [7,11,12]. However, despite impressive
progress, the time scales, model system sizes (particle numbers), and model accuracies that are necessary to
capture the complex behaviors encountered in many of these problem areas are still not accessible to
predictive simulation analysis. Exascale systems could enable further growth in applying simulation
methods. However, performance improvements of such simulations are limited by the costs of data motion
as we increase the number of cores (~10%). Thus, managing these data motion costs is the significant
impediment to further development of this critical tool for technological discovery.

The implementation techniques required to run at scale for these large computational problems introduce an
unprecedented expansion in performance programming detail. Since present day compiler technology
cannot perform the required optimizations, the task of masking communication delays entails significant,
intrusive performance programming, challenging even the expert programmer. Moreover, with no
assurance that current software techniques will continue to be effective in the face of rapid technological
evolution, performance robustness will be troublesome.

Too meet this software need, we developed Bamboo, a source-to-source translator that transforms an MPI
program into a semantically equivalent task precedence graph formulation, which automatically masks
communication with available computation. Bamboo is a custom source-to-source translator that
recognizes MPI calls, in effect treating the MPI entries as primitive language objects. We implemented the
translator with the ROSE compiler framework [17]. Bamboo re-engineers MPI code to run as a data-driven
program (like coarse-grain dataflow [16]) running under the control of runtime services which schedule
tasks according to the flow of data and the availability of processing resources. The run time services rely
on virtualization [19] to pipeline communication and computation.

We validated Bamboo against two important application motifs: Jacobi’s method for solving Poisson’s
equation in 3 dimensions (structured grid) and Cannon’s Matrix Multiplication Algorithm (dense linear
algebra). We ran on up to 98304 processor cores of NERSC’s Hopper system and demonstrated that
Bamboo-generated code improved performance by masking communication delays. Performance was
competitive with that of carefully optimized MPI source that was manually restructured with classic
split-phase coding. Indeed, Bamboo avoids the need for classic split-phase code that complicates
communication tolerant applications. Whereas classic split- phase code embeds the communication
tolerance strategy into the application, Bamboo factors the communication overlap strategy out of the
user’s code, improving code maintainability and performance robustness.

Several new low latency parallel algorithms were implemented for atomic-level simulations, including
massively parallel algorithms for hybrid DFT, parallel in time algorithms for molecular dynamics and ab-
initio molecular dynamics, local density of states free energy calculations based on ab-initio molecular
dynamics, and new algorithms for dynamic mean field theory. These algorithms were designed to work
with the latency hiding Bamboo framework developed in this project.

The developments of the computer science and implementation side of the program were rigorously guided
by application of the methods in the simulations in real technological applications of high importance.
These included: the 1% principle simulation of the dynamics of a fluid/mineral fluid interface and the
demonstration of the stability of the hydrated mineral surface stability (supported by the development of



efficient hybrid DFT implementations; the calculation of the microsolvation of an acid species leading to
the demonstration of the need to simulate these problems using very high level accuracy in the electronic
structure force calculation (supported by the development of the new parallel in time algorithm); and the
application of QM/MM methods to bioenzyme reactions illustrating the effectiveness of the application
accurate of the application of high level quantum chemistry methods to interpreting the detailed chemistry
drug discovery targets.



REPORT DETAILS

Experimental Methods

Computational results were obtained on two platforms. The first platform was Hopper, a Cray XE-6
located at NERSC, with 153,216 cores. The second platform is Chinook, a supercluster with
computation nodes comprising dual-socket, quad-core AMD processors and 32 GB of memory per
node.

Results and Discussions

We first discuss our results in restructuring MPI application code to hide communication. We then
discuss our results with ab-initio Molecular Dynamics.

Restructuring MPI applications to hide communication

Results for Bamboo were obtained on Hopper. All source code was compiled using the CC wrapper,
an MPI interface to the C++ compiler, with the following optimization options:

-03 -ffastmath. The wrapper was set up to use the GNU compiler suite (GCC 4.6.1). High performance
matrix multiply (dgemm) was supplied by ACML version 4.4.0.

We validated Bamboo against applications from two well-known HPC computational motifs: a 3D
Jacobi iterative solver (which we will refer to as 3D Jacobi) and dense matrix multiplication. For the
latter, we implemented not only the classic Cannon algorithm, but also the communication-avoiding
variant, which targets small matrices [4].

Jacobi. For Jacobi, we conducted a strong scaling study, maintaining a fixed problem size as we
increase the number of processors. The results, shown in Fig. 1, demonstrate that Bamboo was able
to restructure the MPI application to use improve performance by masking communication. For
example, on 96K (98304) cores, the restructuring improved performance by a factor of 1.27, hiding
52% of the communication delays. The improvement in performance tracks the relative fraction of
communication. Thus, at smaller numbers of cores, the improvements are also smaller, 7% on 12K
(12288) cores.
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Fig. 2. Weak scaling studies of matrix multiplication (Cannon’s algorithm). Left. The conventional (2D)
algorithm. The matrix size was 520002 on 1024 cores and the amount of computation work per core (N3/P)
remains constant. The performance of the original MPI code (MPI) appears as the left-most bar in each series.
The rightmost bar (NoComm) corresponds to the ideal case when all MPI communication has been shut off and
is an upper bound on performance. Bamboo (21d bar from the right) improved performance by 42% on 16K
cores (S=1.42) and it outperforms the handed coded variant (MPI-olap, 2nd from the left). Right. Results for the
2.5D communication avoiding variant. The matrix size was 206082 on 8192 cores. As with the 2D algorithm,
Bamboo hid communication and outperformed the hand-coded variant. There was a slight performance
inversion on 8K cores, which vanished at larger scales

Cannon’s matrix multiplication algorithm. For this application, we conducted a weak scaling study.
Since the application delivers a high fraction of peak performance on a single core (88%), strong
scaling is of limited value. We used square matrices of size of 520002. As shown in Fig. 2,
communication costs increase with the number of cores. This is consistent with the performance
model for the application. The number of communication steps grows as 4 P. Since the wall clock
time spent in dgemm remains constant, and the size of the local sub-matrices A and B grows as P2/3,
the communication to computation ratio grows as P1/6. In fact, the observed growth in
communication is a bit higher as we’ve ignored the increase in message starts, which also grow as
¥ P. Under these conditions of growing communication costs, Bamboo speeds up the original MPI
code by a factor of 1.15 to 1.42, eliminating the majority of the communication overhead.

2.5D Cannon’s matrix multiplication algorithm. The 2.5D “communication avoiding” variant of matrix
multiplication algorithm [4] targets small matrices. These small matrices arise in the structure
calculations targeted by this project [5], [6]. The 2.5D algorithm is interesting for two reasons. First,
small matrix products incur high communication costs relative to computation, especially at large
scales, which stress Bamboo’s ability to mask communication delays. Second, the 2.5D algorithm
introduces two new communication patterns: broadcast and reduction. Supporting these new
patterns broadens the scope of Bamboo. We conducted a weak scaling study on 8K, 16K and 32K
cores (Fig 2). We chose problem sizes that enabled us to demonstrate the algorithmic benefit of data
replication employed by the 2.5D algorithm. Bamboo improved performance by up to 31% (on 16K
cores).

In all of the applications, we compared the performance of Bamboo-generated code with carefully
hand coded variants that hide communication delays. These codes require expert knowledge to
implement complicated split phase strategies for overlapping communication with computation. In
all cases, Bamboo’s generated code usually outperformed these variants. In one case the hand-coded
variant slightly outperforms the Bamboo generated code, though this occurred at a smaller scale.
Bamboo avoided the need for costly code restructuring to reformulate the algorithm to hide
communication. Only a few lines of pragmas needed to be added (see Fig. 3, as discussed in the next
section), and in some cases a few lines of code were re-arranged. The MPI code retains it original
structure, and a standard C/C++ compiler ignores Bamboo pragmas.



The translator.

The Bamboo translator applies a set of transformations to MPI source code that capture MPI library
semantics to (1) analyze dependence information expressed via MPI calls and (2) automatically
generate a semantically equivalent task precedence graph representation, which can run
asynchronously and automatically hide communication delays.

An example MPI code with Bamboo annotations appears as Fig 3.

1 MPI_Init(&argc, &argv);

2 MPI_Comm_rank(&my_rank , MP_.COMM_WORLD) ;

3 MPI_Comm_size(&numprocs , MPL COMM_WORLD) ;

4 Compute processID of left/right/up/down processors
5 Allocate U, V, SendGhostcells, RecvGhostcells

6 #pragma bamboo overlap
7 for it = 1 to num_iterations {
8  #pragmabamboosend -
9 Pack boundary values to message buffer 2
10 MPI_Isend (SendGhostcells) to left/right/up/down =
c |11} g
~u% 12 #pragma bamboo receive - A
$_ 13 { MPI_Recv(RecvGhostcells) from left/right/up/down 7 £y
=3 Unpack incoming data into ghost cells _2
S| ) =
16 MPI_Waitall () ; - 2
17 for j =1 to N/Nprocs_ Y — 2
18 for i = 1 to N/Nprocs_X — 2
19 VI[j,il=(U[j—1,i]1+U[j+1,i]+U[j,i —1]4U[j,i+1])/4
20 swap (U,V)
-21 }

22 free U, V, SendGhostcells, RecvGhostcells
23 MPI_Finalize () ;

Fig. 3: Annotated MPI program for 2DJacobi. Some code has been omitted for the purposes of clarity. To save
space, we employ non-standard C syntax for send and receive regions: an opening curly brace appears on the
same line as the corresponding pragma.

We will refer to the task precedence graph as a task graph. This program runs under the control
of Bamboo’s run time services, which interpret MPI program execution in terms of the task
graph. Bamboo requires some additional knowledge about the input source, that comes in the
form of programmer annotations that we discuss next

A Bamboo program is a legal MPI program, augmented with one or more olap-regions. An olap-
region is a section of code containing communication to be overlapped with computation, both
located within the same olap-region. Lines 6-21 in Fig. 3 show an example of an olap-region.
Bamboo can recognize opportunities to overlap communication with computation within olap-
regions only. It preserves the execution order of olap-regions, which run sequentially, one after the
other.

Each olap-region contains at least 2 communication blocks, plus a single computational block that
depends upon the completion of communication. The computational block is optional and may
contain other olap-regions. The common case is for computational blocks to be present, as in the
applications we studied. There are two kinds of communication blocks: send and receive.
Communication blocks specify a partial ordering of communication operations at the granularity of
a block, including associated statements that set up arguments for the communication routines,
e.g. establish a destination process, pack and unpack message buffers. While the statements within
each block are executed in order, the totality of the statements contained within all the send
blocks are independent of the totality of statements contained within all the receive blocks. This
partial ordering enables Bamboo to reorder send and receive blocks. However, Bamboo will not
reorder blocks of the same type.



Bamboo currently handles 6 fundamental message passing primitives inside communication
regions: blocking send and receive (Send and Recv), asynchronous variants (iSend and iRecv) and
synchronization (Wait and Waitall). Wait and Waitall specify synchronization points; their
semantics are preserved by Bamboo. We note that the above restrictions do not rule out the
expression of certain communication patterns. Rather, they provide a methodology, that is,
guidelines for inserting Bamboo annotations that ensures code correctness.

Revisiting the code in Fig. 2, a single send pragma at line (8) groups four MPI Isend invocations
together. The iSend() at (10) consumes the data produced by code at (9) that linearizes data into a
buffer. Similarly, the receive pragma (12) groups four MPI Recv calls. The unpacking code inside
the receive block at (14) consumes data delivered by the Recv() at (13). By grouping the four
iSends and four Recvs into a send and a receive block, respectively, the user informs Bamboo that the
sending and the receiving of ghost cells are two independent activities. Once the two
communication blocks complete, the computations to update the local mesh at lines (17)-(19) may
execute.

Bamboo generates source code to produce a new program represented as a task graph that
runs under a data-flow like execution model. This program relies on a task graph library,
Tarragon [14,15], to define, manage, and execute task precedence graphs, which are objects of type
TaskGraph. Bamboo expects the task graph library to export this abstract base class, and
generates concrete instances as needed. The nodes of a TaskGraph correspond to tasks to be
executed, which are objects of type Task. The edges correspond to data dependencies among
tasks. The taskgraph library’s runtime system interprets these dependencies as communication
channels and tasks communicate via active messages.

Each MPI process will be effectively transformed into a set of tasks that are executed by a group
of worker threads. The library supports task execution via one or more service threads, including
scheduling. In order to improve the success of hiding latency, we create more tasks than processing
cores; as noted by others, virtualization is important in hiding latency [19]. Worker threads run
to completion but the tasks do not. The combination of task virtualization and run to
completion behavior requires that we take measures to avoid deadlock. To this end, a task does
not explicitly wait on communication. The effect is to control when data becomes visible to the
task.

The underlying execution model of Bamboo is like dataflow, but with the provision for task state.
Tasks will generally alternate between the running and suspended states, for example, in an iterative
method. When a task finishes computing, it moves data along output edges and then it suspends,
at which point it is waiting on arriving data. The runtime services recognize task state and will
swap in a runnable task, which has met the conditions of its firing rule. A task’s firing rule is
simple: the task becomes runnable once it receives all required messages. When a task runs-or
becomes runnable-all its input data are guaranteed to be available. Any newly-arriving data will
not be visible to the task until after it has suspended; the task has received all the data it needs to
run, and any newly arriving data will be visible the next time the task runs. The resultant delays
in data visibility are fundamentally different in a task graph program and an MPI program and
required code motion transformations that are performed by the translator [13].

We used the ROSE compiler infrastructure [17] to implement Bamboo, which includes the EDG
front-end used to parse standard C source. This front-end generates an Intermediate
Representation (IR), which is an in-memory Abstract Syntax Tree (AST). Since EDG considers the
MPI calls as ordinary C function calls, we built a custom module sitting between the front and
middle ends to extract information about the parameters passed to MPI functions. The four main
modules of Bamboo built on top of ROSE’s middle-end modify the IR to create a new form that
conforms to the Tarragon API. The annotation handler extracts information from each Bamboo
directive along with the corresponding location within the IR; the analyzer and transformer modify
the IR to conform to the Tarragon model and the optimizer applies various transformations to
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improve the quality of the generated source code. Finally, the back-end completes the translation
process.

The communication avoiding multiplication application not only uses point-to-point message
passing calls,, but collective calls as well. We currently hand translate the collective calls into their
point-to-point counterparts, and automated translation is in progress.

New algorithms for ab-initio molecular dynamics

New massively parallel algorithms for hybrid DFT. We have developed a scalable parallel algorithm,
called the incomplete butterfly, that overcomes inefficiencies associated with calculating the exact
exchange interaction from Hartree-Fock theory and improves implementation of a hybrid exchange-
correlation functionals in density functional theory (DFT) - a quantum mechanical modeling method.
DFT is used to calculate the properties of solid state and molecular systems, and predicts structures,
properties, and reactivities for a wide variety of systems important to solar, hydrogen storage,
catalytic, nuclear, and environmental remediation technologies. But it frequently gives inaccurate
predictions. In this work parallel algorithms to distribute data and replicated data to overcome
bottlenecks associated with calculating the exact exchange term were developed. These algorithms
were implemented in a module in PNNL’s NWChem high-performance chemistry software package
that is used to calculate surfaces and condensed phase systems. The developments were then used to
perform hybrid-DFT calculations on several surface and condensed phase systems.

10000

~e-Algorith:
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Methods

Large Systems

Time Per Step (seconds)
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Fig. 4 (left) Exact exchange timings - 80 atom cell of hematite (cutoff energy=100Ry). These calculations were performed on
the Franklin Cray-XT4 computer system at NERSC. (Middle) Exact exchange timings - 576 atom cell of water (cutoff
energy=100Ry). These calculations were performed on the Hopper Cray-XE6 computer system at NERSC. (Right). Covers that
highlighted our work on hybrid DFT.

The algorithms scaled up to 25,000 CPUs for a modest-sized problem and can be applied to a wide
variety of plane wave programs. Recently they were demonstrated to scale to 100,000 CPUs on the
Hopper computer system at NERSC (Fig. 4). This work was featured on the [9] of the Journal of
Computational Chemistry [8]. This work was also featured in a cover article and a book chapter [10].
These covers are shown in Fig. 4.

Our initial translation of this algorithm with Bamboo did not show improvement. We also saw this problem
when translating the 3D FFT kernel. We are currently working on Bamboo as well as Tarragon to improve
the performance of the 3D FFT and the incomplete buttery kernels. This work has contributed to three
publications [8-10] that were featured as covers.

New parallel in time algorithms for molecular dynamics and ab initio molecular dynamics. Several
parallel in time algorithms have been developed and tested for molecular dynamics (MD) and ab-
initio molecular dynamics (AIMD) simulations. These algorithms transform standard forward ODE
solvers (i.e. xi+1 = fi(xi)) into fixed point root problems, F(X) = 0, which are then solved using a variety
of optimization techniques, including quasi-Newton and preconditioned quasi-Newton root finding
methods. To parallelize the algorithms the evaluation of F(X) was done in parallel. We also showed
that solving the root finding problem by preconditioned fixed point algorithm leads to the parareal
algorithm of Lions and Maday/[2].
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Very encouraging results were obtained with the application of these algorithms to AIMD simulations
based on the computationally expensive MP2 electronic structure method to HCl+4H20 clusters. We
demonstrated that our parallel in time algorithms were able to provide theoretical speedups up to 30
and actual speedups to 14.3. We were able to obtain an effective cost per time-step of less than 10
and 30 seconds in our AIMD simulations at the MP2/6-31G* and MP2/6-311+G* levels respectively.
With these timings, meaningful dynamic simulations can be done. We found that the preconditioned
quasi-Newton algorithm converged in fewer iterations. However, the measured speedup was highly
sensitive to the cost of preconditioner relative to the cost of the AIMD force. At the highest level
(MP2/6-311+G*) the parallel in time algorithms with a HF preconditioner scaled to 100 processors.
When the smaller the 6-31G* basis was used it was found that while the HF preconditioner greatly
improved the theoretical speedup (from 8.8 to 30) the best possible actual speedup (8.2) was
obtained without HF preconditioning.
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As an additional test of the performance of the algorithms we ran the HCI+4H20 clusters with an
even larger basis set (6-311++G(2d,2p) on the PNNL Chinook platform (Fig. 5). Using NWChem the
force parallelization saturates at approximately 64 processors. With this number of processors and
this basis the single step force calculation requires 32 second per step. By extending these
calculations with our parallel in time algorithms we were able to run the problem on 2560
processors and obtain a step time of 6.9 seconds. With this step time realistic dynamical simulations
are now possible at this level of theory. This work has been submitted to publication to the Journal of
Chemical Physics and is currently under review.

We are currently finishing up work to extend this approach to use of algorithms based on implicit
integrators. This type of approach might be able to resolve the multiple time-scales in a hierarchal
fashion as in multigrid solvers and by doing so could overcome the broadcast bottleneck since only a
fraction, At/AT, of the geometries need to be propagated to the finest level. The use of implicit
integrators that can produce a significant amount of energy drift when simulating long times is a
drawback of this approach. However, these problems can be overcome by using explicit integrators
at the finest level of time integration. Publication of this extended work is in preparation.

Electronic structure of highly correlated systems. In the last year of the project a student from UCSD

(Y. Chen) and PNNL have developed a new algorithm to model electron transfer in highly correlated
materials (These materials are essential components in many important applications, e.g., catalysis,
oxidation and reduction, respiration, etc.). This algorithm uses a local (or atomic) density of states as
a collective variable, S, in a free energy simulation based on Metadynamics (MTD) [3]. MTD is a non-
equilibrium molecular dynamics method that accelerates the sampling of the multidimensional free
energy surfaces of chemical reactions on a simulation time scale that is easily accessible on modern
computers. This is achieved by adding an external time-dependent bias potential which is a function of
the collective variables, S, to the Hamiltonian of the system. The bias potential discourages the system
from sampling previously visited values of S (i.e., encourages the system to explore new values of ),
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and its accumulation in low energy wells allows the system to cross energy barriers much more
quickly than would occur in standard molecular dynamics. This work is included in the latest release
of NWChem, version 6.4.

We are also developing new application software implementing dynamical mean field theory
(LDA+DMFT). This approach is designed to provide a manageable solution method for the electronic
structure problem for highly correlated materials. These materials (e.g., transition metal oxides) are
essential components in many important applications (e.g., catalysis, oxidation and reduction,
respiration, etc.) The lack of efficient methods of solution is a critical need for the development of
new high performance materials [1]. The DMFT approximation produces a highly heterogeneous
computational environment. The principal bottleneck is the solution to the electronic structure
problem for single highly correlated elements (e.g. Fe3*) interacting with an independent particle
band (LDA or DFT). Our objective is to develop a preliminary parallel impurity solver, which we will
incorporate in our mature DFT codes. UCSD and PNNL are currently working to complete the
development of new parallel algorithms for dynamical mean field theory (LDA+DMEFT).

Application progress

The interaction between the application side and the computer science/implementation effort of the
program is critical to insure that the developments lead to actual improvement in simulation performance
for problem that are important to the DOE mission. In the following we highlight some of the progress that
was partially supported by this program during this period.

Calculation of electronic structure of the mineral/fluid interface of high correlated materials:
Iron oxide (hematite (a-Fe,03)) and oxihydroxide minerals (goethite FeEOOH) commonly occur in natural
environments and are associated with natural and biochemical oxidation/reduction processes, biomineral

& respiration, etc.. In addition, hematite is easily synthesized and

b because of its favorable electronic structure properties is an attractive
candidate for material applications such a solar energy conversion
materials, catalysis, gas sensors etc. A long-term goal of this program
is to evaluate electron transport/transfer processes between transition
metal oxides and reduced metal ions (e.g., Fe*(aq)/Fe’*(crys.)
electron exchange) in the interface region. Specific targets for this
program period were are the calculation and optimization of surface
interface reconstructions using various higher levels of electronic
structure methods, particularly the methods discussed above for
highly correlated materials. The breaking of symmetry at the mineral
surface, the disorder of the interface regions, the extreme dynamics of

Fig. 6. Optimized geothite surface- the fluid phase, and the highly correlated nature of the solid phase
water interface. Gold ; iron: White; create a difficult modeling problem for condensed matter theories.
oxygen: Pink; hydrogen. The software tools developed in the program and discussed above

were essential to the progress during the period of this project. Fig. 6

o o4 S T G A illustrates the results of a 1% principle dynamics calculation of the
Skt e M %5 fluid/mineral interface.

MP2/3:216 Simulation of reaction dynamics in microsolvated environments (e.g.,
aerosols, fluid interfaces): HC1+4H,0O clusters are a well-studied
example of microsolvation, and they are thought to relate to acid
chemistry at the air/water interface. As shown Fig. 7 the parallel-in-
time simulation of the proton shuttling very little energy drift was
seen in both simulations up to 1.2 and 2.5 ps maintaining energy
conservation. Prior AIMD simulations (at the less accurate
DFT+GGA level) of this "smallest acid droplet" have shown that
adding a fourth water to HCI-3H,O cluster results in a spontaneous
dissociation of the proton into the water. In our calculations we found
that the initial potential energy of the cluster was very sensitive to the

MP2/6-31G*

Fig. 7. MP2 dynamics of the HCI-4 H20 system. Note the
conservation of the total energy (red line).
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basis set size, less stable at the MP2/3-21G level compared to the MP2/6-31G* level. This lead to almost
immediate dissociation when using the smaller basis set. Whereas at the MP2/6-31G* no dissociation was
observed up to 2.5 ps. The simulations here provide a very preliminary view of the dynamics at the MP2
level and are meant to illustrate the performance of the algorithms. However, the basis set sensitivity seen
in these simulations suggests that more complete calculations at the MP2 level could lead to new
interpretations of acid dissociation in microclusters. Fig. 7 (illustrates the dynamics of this system at
different levels of approximation (MP2 levels).

Prediction of the reaction mechanisms of important enzyme reactions.

While the general acid/base character of the
trans esterification step of the RNase A
enzyme reaction is well accepted, the nature
and roles of the structures encountered in the
transition region are still not well established
(even after 60 years of study) and greatly
affect the interpretation of reaction rates.
Because of the ubiquitous nature of this
reaction, it is important to have a correct
interpretation of the mechanism. With this
objective we have calculated two thermally
optimized minimum energy free energy
reaction paths based on a thorough analysis of
all existing structural data for this enzyme and

identified by an unbiased search of reaction

Fig. 8. TPB structure of the stabile intermediate in the active . . ;
coordinates. A highly reliable quantum

site RNase A. The active site residues, waters and two . .
nucleotides of the RNA trimer are represented by sticks and chemistry method is used to calculate the
the TBP phosphorane is depicted as balls and sticks. A zoom-  interactions in the QM region, which includes

up of the rest of the enzyme is shown as ribbon. the catalytic pocket and the reactive part of the
substrate (roughly 100 atoms). The remaining

enzyme, substrate and solvent are calculated
with a molecular mechanics model (30,000 atoms). Together these dynamical calculations pose a very
challenging computational environment.

The results support a novel reaction mechanism in the proton initially coordinating the O2" on the ribose
migrates to the non-bridging O1P in the initial part of the reaction path rather than directly to the general base
His12. With this transfer the structures in the transition region are associative, barriers are low (endocyclic TS1
with barrier 9.84 kcal/mol and exocyclic TS2 with barrier 7.54 kcals/mol) with a metastable intermediate, see
Fig. 8, in agreement with many observations. Since this is an exceedingly well-studied reaction mechanism the
still existing controversies over essential points in the interpretation are especially important to resolve.

Conclusion

We have developed a translator, called Bamboo, to re-engineer MPI code to tolerate latency. We found that
Bamboo improved performance at scale on two important application motifs: structured grid and dense matrix
linear algebra. We have validated the premise that, by interpreting an MPI program in terms of data driven
execution, we can overlap communication with computation and thereby improve performance. Moreover,
performance meets or exceeds that of labor-intensive hand coding, at scale. Bamboo also improved
performance of communication avoiding matrix multiplication. The translated code not only avoids
communication, but also tolerates what it cannot avoid. We believe that this dual strategy will become more
widespread as data motion costs continue to grow.

Though Bamboo relies on programmer annotations to guide the transformation process, our experience is that
these annotations are intuitive and modest in number. We target MPI because it is the dominant means of
building parallel scalable applications. However, our approach is not limited to MPI and also applies to other
data motion libraries such as GasNet [18]. More generally, our technique for treating MPI illustrates an
approach for delivering an embedded domain specific language, in which the methods of a library API in effect
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become primitive language constructs. In the case of Bamboo, the translator treats the MPI API as an
embedded domain specific language. However, Bamboo is more than a means of hiding latency that avoids
costly code restructuring. It also serves as an example of the power of semantic level optimization in realizing
domain specific optimization.

Bamboo has some limitations, which we are currently addressing. First, it handles only the fundamental
communication primitives covering a small subset of MPI. We are adding support, for example, for
communicators and for collectives. We plan to translate collectives into their components, i.e. point-to-point
primitives, to take advantage of improved finer grained pipelining. Second, we have validated Bamboo against
just two application motifs. In the future we plan to look new motifs such as the Fast Fourier Transform that
exhibit vastly different communication patterns.

Besides using the Bamboo framework to maximize the overlap between computation and communication in
existing algorithms for molecular simulation, new algorithms also need to be designed which reduce the
amount data being communicated relative to the computation being done. In this project we have developed
several new algorithms for molecular simulation along these lines, including massively parallel algorithms for
hybrid DFT, and parallel in time algorithms for molecular dynamics and ab-initio molecular dynamics. These
algorithms have the advantage over traditional algorithms for ab-initio molecular dynamics in that the amount
data being communicated is significantly less than what is being computed. As expected these algorithms have
been shown to scale to very large numbers of cores (e.g. 100K for hybrid DFT), however, the drawback of
these types of algorithms is that they contain very complex communication patterns and are highly sensitive to
the scheduling and processor layout used. It is expected that as the Bamboo framework becomes more mature
will be able to alleviate most of these problems, and these new algorithms will be able to take advantage of the
exascale computing.

Presently the application of simulation technology to real technological problems such as drug discovery,
development of high performance materials, and enhanced performance of wastes isolation technologies (CO,
sequestration, nuclear waste cleanup, etc.) is limited because of the chemical complexity, particle number, and
force interaction accuracy required for predictive reliability. In this program an effort was made to use the
developments of the program in actual simulations of real technological problems. This both rigorously
constrained the path of development and provided positive feedback to the computer science and
implementation aspects of the program. However, in addition to this there was significant progress in the
interpretation of real problems. These included:

¢ The first time simulation of the dynamics of the liquid mineral surface interface. This has application
to problems such as the development of reliable environmental waste isolation strategies and the
development of more energy efficient catalytic processes.

¢ The first time simulation of microsolvation using a high level solution of the electronic structure
calculation. These calculations demonstrated of the importance of accurate (and very expensive) force
calculation for accurate simulation. This class of simulation is important to the interpretation of many
environmental and biochemical problems.

¢ Calculation of the reactive mechanism for bio enzyme reactions using very high particle number
models (including the enzyme, the substrate and the solution) and high accuracy 1* principle force
calculations. A novel enzyme reaction mechanism was discovered for a highly studied key phosphoryl
transfer reaction.
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LIST OF ACRONYMS AND ABBREVIATIONS

MPI: Message Passing Interface
NUMA: Non-uniform Memory Access
MD: Molecular Dynamics

AIMD: ab-initio molecular dynamics
MTD: Metadynamics

AST: Abstract Syntax Tree
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