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We show how to find the physical Langevin equation describing the trajectories of particles un-
dergoing collisionless stochastic acceleration. These stochastic differential equations retain not only
one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic
equations. This opens the door to using stochastic variational integrators to perform simulations of
stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two
example problems.

Introduction. — The term “stochastic acceleration”
refers to the chaotic motion of particles subjected to a
prescribed random force. Such motion occurs in myriad
contexts; the turbulent electromagnetic fields present in
the interstellar medium and the RF wave fields found in
magnetic fusion devices are just two examples. In the as-
trophysical context, it is thought to be partially respon-
sible for the presence of cosmic rays in our solar system
[1]. In the magnetic fusion context, it might explain the
presence of certain high-energy tails observed in the Na-
tional Spherical Torus Experiment when neutral beams
are fired into RF-heated plasmas [2].

Robust modeling of stochastic acceleration requires
statistical approaches. The dominant approach is to em-
ploy the Fokker-Planck equation [3–7] for the one-particle
distribution function. However, when studying Richard-
son dispersion [8, 9], and more generally any phenomenon
governed by the two-particle distribution function [10],
the one-particle Fokker-Planck equation is insufficient.
A Langevin equation for particle trajectories is more
appropriate in these cases. Such a Langevin equation
would not only govern the evolution of the one- and two-
particle distribution functions, but also provide an at-
tractive means to perform Monte Carlo simulations of
stochastic acceleration. Currently, there are no satisfac-
tory methods for finding such a Langevin equation [11].

The purpose of this Letter is to describe, for the first
time, a systematic procedure for passing from a mi-
croscopic description of stochastic acceleration in terms
of Hamiltonian equations of motion to the physically-
correct Langevin equation for particle trajectories in the
long-time limit. We will also show that, aside from repro-
ducing the correct multi-particle statistics, this Langevin
equation inherits the Hamiltonian structure of the mi-
croscopic dynamics. Specifically, we will show that the
Langevin equation is a Hamiltonian stochastic differen-
tial equation (SDE) [12]. Thus, this work also provides

the first method for deriving Hamiltonian SDEs from first
principles.

We will focus our attention on a general class of
stochastic acceleration problems, such as those stud-
ied in [3–6]. These consist of a collection of non-
interacting particles moving through a prescribed Hamil-
tonian force field. By assumption, the force will consist
of a small-amplitude perturbation superimposed over a
time-independent background. The perturbed force felt
by a particle will be assumed to have a correlation time
much shorter than any bounce time associated with the
perturbation, zero mean, and temporally homogeneous
statistics. These assumptions preclude treating Coulomb
collisions because the polarization field produced by a
particle cannot be modeled as a prescribed field; the po-
larization force depends on the history of a particle’s or-
bit. They also preclude the treatment of strong turbu-
lence [13].
The main idea.— Mathematically, this type of prob-

lem can be described as follows. Each particle moves
through a 2n-dimensional single-particle phase space M
according to a dynamical law given by a time-dependent
vector field Xt; if zt ∈ M denotes the trajectory of a
particle in M , then

żt = Xt(zt). (1)

Because the only forces present are Hamiltonian, Xt must
be Hamiltonian in the sense that there is some Poisson
bracket {·, ·} and some time-dependent Hamiltonian, Ht,
such that żi = {zi, Ht}, where zi denotes an arbitrary
coordinate system on M [14]. By standard mathemati-
cal convention, this is written Xt = XHt

[15]. The pre-
sumed form of the force then implies Ht = H0 + εht,
where ε � 1, H0 describes the mean time-independent
background, and ht describes the small-amplitude ran-
dom perturbation. Moreover, Xht

evaluated on a particle
trajectory must have a correlation time τac much shorter
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than some constant τ , which, in turn, is much shorter
than any bounce time associated with the perturbation
τb, τac � τ � τb.

Our goal in this Letter is to find the correct coarse-
grained version of the microscopic equations of motion,
XHt

. Specifically, we seek a Langevin equation in the
form

δzt = X0(zt)dt+
∑
k≥1

Xk(zt)δW
k
t (2)

whose solutions correctly reproduce the late-time statis-
tical behavior of solutions to the microscopic equations
of motion. Here Xk are vector fields on M that must be
determined, W k are independent ordinary Wiener pro-
cesses, and δ denotes the Stratonovich differential [16]
(sometimes also written ◦d). We will identify the Xk by
demanding that Eq. (2) possess two properties: it must
generate the Fokker-Planck equations for the one- and
two-particle distribution functions, ft(z) and gt(z1, z2).
Baxendale [17] has proven that a Langevin equation is
uniquely determined by its one- and two- particle Fokker-
Planck equations. Therefore, these conditions uniquely
specify the Langevin equation we seek.

Identifying the Langevin equation.— The one-particle
Fokker-Planck equation associated to Eq. (2) is given by
[16, 17]

∂ft
∂t

= −div(ftX0) +
1

2

∑
k≥1

div(div(ftXk)Xk)

= A1ft, (3)

while the two-particle Fokker-Planck equation [17, 18] is
given by

∂gt
∂t

=A
(1)
1 gt +A

(2)
1 gt

+
∑
k≥1

div(1)div(2) : gtXk(z1)⊗Xk(z2). (4)

The divergence operators in these expressions are defined
relative to the Liouville volume form and the colon in-
dicates the full contraction of second-rank tensors, a :
b ≡ aijbij . Because these equations follow from Eq. (2)
via rigorous mathematics, we will refer to them as the
mathematical Fokker-Planck equations.

On the other hand, standard coarse-graining proce-
dures [19] lead to the late-time evolution laws for the one-
and two-particle distribution functions associated to the
microscopic equations of motion, Eq. (1). The physical
one-particle Fokker-Planck equation is given by

∂ft
∂t

= −
{
ft, H0 +

ε2

τ
E[s2]

}
+
ε2

2τ
E[{{ft, s1} , s1}]

= A1ft, (5)

while the physical two-particle Fokker-Planck equation is
given by

∂gt
∂t

= A
(1)
1 gt +A

(2)
1 gt +

ε2

τ
E[α : d(1)d(2)gt]. (6)

The notation introduced in these two equations is defined
as follows: E denotes an expectation value; the functions
s1, s2 are defined by

s1 =

∫ τ

0

exp(λXH0)∗hτ−λdλ (7a)

s2 =
1

2

∫ τ

0

∫ a

0

{exp(bXH0
)∗hτ−b, exp(aXH0

)∗hτ−a}dbda;

(7b)

exp(Y ) : M → M denotes the time-one advance map
of the dynamical system defined by the vector field Y ;
(exp(Y )∗h)(z) ≡ h(exp(−Y )(z)); the superscripts in-
dicate which argument of gt that A1 and the exte-
rior derivative d should be applied to; and α(z1, z2) ≡
E[Xs1(z1)⊗Xs1(z2)] is the two-point covariance tensor.

The Xk must be chosen so that the mathematical
Fokker-Planck equations, Eqs. (3) and (4), are equivalent
to the physical Fokker-Planck equations, Eqs. (5) and (6).
However, a direct comparison of these two pairs of equa-
tions is difficult with Eqs. (5) and (6) in their current
form. To eliminate this issue, we will obtain a special de-
composition of the two-point covariance tensor α(z1, z2).

As a first step, notice that if we fix a one-form ξ ∈
T ∗z1M , then we can define a vector field Yξ on M by
contracting ξ with α on the left according to

Yξ(z2) = α(z1, z2)(ξ, ·)
= E[ξ(Xs1(z1))Xs1(z2)]. (8)

By forming all possible linear combinations of vector
fields of this form, we can construct a (potentially in-
finite dimensional) linear space of vector fields [20, 21],
which we will denote H,

H = {linear combinations of Yξ, ξ ∈ T ∗M}. (9)

Because each Yξ is of the form Yξ(z) = XH̄(z) with
H̄(z) = E[ξ(Xs1(zo))s1(z)], and the sum of Hamiltonian
vector fields is again Hamiltonian, H consists entirely of
Hamiltonian vector fields. Moreover, following Baxen-
dale [17, 21], we see that H is a real Hilbert space whose
inner product is defined by the formula

〈Yξ, Yη〉H = α(z1, z2)(ξ, η)

= E[ξ(Xs1(z1))η(Xs1(z2))], (10)

where ξ ∈ T ∗z1M and η ∈ T ∗z2M . Therefore we may
choose an orthonormal basis {ek}k≥1 for H, where each
ek must be of the form ek = XHk

. A simple calculation
then leads to the desired decomposition of α:

α(z1, z2) =
∑
k≥1

XHk
(z1)⊗XHk

(z2). (11)
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Using this decomposition of the two-point covariance
tensor, it is straightforward to manipulate Eqs. (5) and
(6) into the same form as Eqs. (3) and (4). After doing
so, it is trivial to identify the correct Xk. Indeed, we
have found that the physical Langevin equation is given
by

δzt = XH̃0
(zt)dt+

∑
k≥1

XH̃k
(zt)δW

k
t , (12)

where

H̃0 = H0 +
ε2

τ
E[s2], H̃k =

ε√
τ
Hk (13)

Recall that the XHk
are defined to be an orthonormal

basis of the Hilbert space H defined in Eq. (9).
Because the coefficients in the Langevin equation for

stochastic acceleration, Eq. (12), are all Hamiltonian vec-
tor fields, this equation is an example of a stochastic
Hamiltonian system, the foundations of which are devel-
oped in [12]. It is in this sense that the Langevin equa-
tion for stochastic acceleration inherits the Hamiltonian
structure of the microscopic equations.

Example 1.— We will find the physical Langevin equa-
tion for two example stochastic acceleration problems.
First, consider a single-species, unmagnetized plasma
subjected to a random weak electrostatic pulse at τ -
second intervals. Assume that the pulses are uniform
in space and constant in magnitude, but uniformly and
independently distributed in direction. Thus, the k’th
pulse is generated by a potential of the form φk(x, t) =
(zk ·x)φou(t−kτ), where zk is a random vector uniformly
distributed over the unit sphere and u(t) is a temporal
windowing function localized at t = τ/2.

In order to find the Langevin equation governing the
plasma dynamics at times much longer than τ , we must
(a) calculate s1 and s2 using Eqs. (7a) and (7b), (b) find
an orthonormal basis {XHk

}k≥1 for the space H defined

in Eq. (9), and (c) write down Eq. (12) with H̃0 and H̃k

calculated using Eq. (13). The results of these three steps
are as follows.

(a) A quick calculation shows that

s1 = moz · x−m1z · v (14a)

s2 = const (14b)

where mo = (q/m)φo
∫ τ

0
u(s)ds, m1 = (q/m)φo

∫ τ
0

(τ −
s)u(s)ds, and q/m is the charge-to-mass ratio.

(b) Each Yξ must be of the form Yξ = Xgβγ
, where

gβγ(x,v) =
1

3
(m1β +moγ) · (m1v −mox), (15)

and β,γ are arbitrary constant 3-component vectors. Us-
ing this expression, it is simple to find an orthonormal
basis for H. One is given by {XH̄k

}k=1..3, with

Hi(x,v) =
1√
3
ei · (m1v −mox), (16)

where {ei}i=1..3 is the standard basis for R3.
(c) Finally, the physical Langevin equation is given by

δxi = vidt+
1√
3τ
m1δW

i (17a)

δvi =
1√
3τ
moδW

i, (17b)

where i = 1, 2, 3.
As is readily verified, the one-particle Fokker-Planck

equation for this SDE is given by

∂ft
∂t

+ v · ∇ft =
1

6τ
(m2

1∇2ft +mom1∇ · ∇vft

+mom1∇v · ∇ft +m2
o∇2

vft). (18)

On the other hand, given an arbitrary function φ(x,v),
the SDE

δxi =vidt+
m1√
3τ

(
cos(φ)δW 1,i − sin(φ)δW 2,i

)
(19a)

δvi =
mo√
3τ

(
cos(φ)δW 1,i − sin(φ)δW 2,i

)
, (19b)

where the W 1,i,W 2,j are six independent ordinary
Wiener processes, will also generate Eq. (18). How-
ever, when φ is not constant, the two-particle Fokker-
Planck equation generated by Eq. (19) will differ from the
two-point Fokker-Planck equation generated by Eq. (17).
This can be verified using Eq. (6). The procedure identi-
fied here selects φ = 0 as the physical choice.

The inadequacy of Eq. (19) can also be understood in-
tuitively as follows. Chaotic motions of any two parti-
cles experiencing the electrostatic pulses are “synchro-
nized” since the pulses are independent of x and v. The
Langevin equation (19), on the other hand, desynchro-
nizes particle trajectories by involving additional Wiener
processes, in spite of giving the correct one-particle
Fokker-Planck equation.
Example 2.— Next, consider a minority population

of magnetized fast ions moving through a plane lower-
hybrid wave that propagates perpendicular to the mag-
netic field. Assume the wave has a high harmonic num-
ber and a wavelength small compared to a typical ion
gyroradius. Karney [22] has shown that the dynamics
of the perpendicular velocity of these ions are governed
by a canonical time-dependent Hamiltonian system with
Hamiltonian

Ht = I − ε sin(
√

2I sin θ − νt), (20)

where I is the normalized magnetic moment, t the time
normalized by the gyroperiod, θ the gyrophase, ν the
harmonic number, and ε the normalized wave amplitude.
Moreover, when ε exceeds a threshold value, an ion’s mo-
tion becomes stochastic. This stochastic motion comes
as the result of the effective randomization of the wave
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phase felt by an ion after a gyroperiod. Thus, above the
stochastic threshold, we can model the wave phase as be-
ing randomized every gyroperiod by a random variable η.
This allows us to apply the formalism developed in this
Letter to find the physical Langevin equation describing
the stochastic particle trajectories at times much longer
than the gyroperiod.

As in the previous example, the first step is to calculate
s1 and s2. Set τ = 2π and adopt the rough approxima-
tion

∞∑
n=−∞

Jn
ν − n

exp(inθ) ≈ Jno

δ
exp(inoθ), (21)

where ν = no+δ, |δ| < 1
2 , and Jn = Jn(

√
2I) denotes the

Bessel function of the first kind [23]. This approximation
amounts to selecting the most slowly varying term in
the sum in Eq. (21). Then, upon directly evaluating the
integrals in Eqs. (7a) and (7b), the resulting expressions
for s1 and E[s2] are

s1 = 2πsinc(πδ)Jno
sin(noθ + η) (22a)

E[s2] =
π

2

∞∑
m=−∞

J2
m+1 − J2

m−1

m− ν

+
π

2
sinc(2πδ)

J2
no+1 − J2

no−1

δ
, (22b)

where η is a random variable uniformly distributed over
the interval [0, 2π] and sinc(x) = sin(x)/x.

Next, the space H can be constructed using the above
expression for s1. In this case, H is two-dimensional and
has a basis {XH1 , XH2}, where

H1(I, θ) =
√

2πsinc(πδ)Jno
(
√

2I) cos(noθ) (23a)

H2(I, θ) =
√

2πsinc(πδ)Jno
(
√

2I) sin(noθ). (23b)

Finally, the coefficients for the Langevin equation,
Eq. (12), can be derived using Eq. (13). The result is

δI =ε
√
πsinc(πδ)noJno

(
√

2I)

×
(
sin(noθ)δW

1 − cos(noθ)δW
2
)

(24a)

δθ =

(
1 +

ε2

2π

∂

∂I
E[s2]

)
dt

+

(
ε

√
π

2I
sinc(πδ)J ′no

(
√

2I)

×
(
cos(noθ)δW

1 + sin(noθ)δW
2
))

. (24b)

The diffusion of the magnetic moment I predicted by
Eq. (24) has already been studied by Karney [22]. How-
ever, Eq. (24) extends and compliments Karney’s results
by predicting the appropriate diffusion in gyrophase, as
well as the correct two-particle statistics.

Concluding remarks. — We have shown how to de-
rive the physical Langevin equation for particle trajec-
tories undergoing stochastic acceleration. This SDE cor-
rectly generates the correct one- and two-particle Fokker-
Planck equations and inherits the Hamiltonian struc-
ture of the microscopic equations of motion. This in-
heritance is theoretically satisfying because it is a direct
consequence of demanding consistency with the physi-
cal one- and two-particle Fokker-Planck equations. It
also highlights the importance of Hamiltonian Langevin
equations.

A Hamiltonian Langevin equation [12] is a
Stratonovich SDE of the form given in Eq. (12). If
a loop of initial conditions for this SDE evolves under
a given realization of the noise, then the action of that
loop is constant in time. In addition, these equations
arise from a stochastic action principle [12] for which
Noether’s theorem applies. Thus, by showing the
physical Langevin equation is Hamiltonian, we have also
identified potentially powerful tools for the analysis of
stochastic acceleration. In particular, using the methods
of Bou-Rabee [24], the stochastic action principle can
be used to develop variational integrators for Eq. (12).
Because these integrators are known to possess supe-
rior long-term statistical fidelity [25], this approach
may prove to be useful in Monte Carlo simulations of
stochastic acceleration.
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