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Executive Summary

Black carbon (BC) emissions from traditional cooking fires and other sources are significant 
anthropogenic drivers of radiative forcing. Clean cookstoves present a more energy-efficient and 
cleaner-burning vehicle for cooking than traditional wood-burning stoves, yet many existing cookstoves 
reduce emissions by only modest amounts. Further research into cookstove use, fuel types, and 
verification of emissions is needed as adoption rates for such stoves remain low. Accelerated innovation 
requires techniques for measuring and verifying such cookstove performance.

The overarching goal of the proposed program was to develop a low-cost, wireless instrument to 
provide a high-resolution profile of the cookstove BC emissions and usage in the field. We proposed 
transferring the complexity of analysis away from the sampling hardware at the measurement site and 
to software at a centrally located server to easily analyze data from thousands of sampling instruments.

We were able to build a low-cost field-based instrument that produces repeatable, low-cost estimates of 
cookstove usage, fuel estimates, and emission values with low variability. Emission values from our 
instrument were consistent with published ranges of emissions for similar stove and fuel types. The 
following significant results were demonstrated as part of this work:

• We developed a method to isolate black carbon from organic carbon by using a color 
transformation on the RGB components of filters exposed to cookstove emissions. Building on 
previous work by the authors on calculating aerosol concentrations from a single color channel 
in a photograph of an air filter that has been exposed to pollutants, this method can be 
integrated into the photographic method already published (Ramanathan et al., 2011).
Sensitivity of the measurement was related to the load on the filter. Percent relative difference 
between predicted and observed for OC is 0.1 ± 21.1% (mean ± SD) and for EC (proxy to BC) is 
1.6 ± 19.2%. This is a major step forward for inexpensive particulate analysis. Further, organic 
carbon is an important component of cookstove emissions and therefore necessary to measure 
when profiling cookstove emissions in the field.

• We developed mathematical models using temperature data to quantify the cooking duration 
and the amount of a known type of fuel used during cooking. As part of this work, a method for 
standard temperature measurements on any cookstove using a low-cost wireless temperature 
sensor was developed. In field trials using the wireless temperature sensor, estimated cooking 
time using the decision tree averaged 1.4 ± 0.6 h (n=31) for each event, which was not 
statistically different (P > 0.4; paired t-test) than observed cooking time of 1.5 ± 0.6 h; and fuel 
use was estimated with an average error relative to the reported fuel consumed of 15.5 ± 25.2% 
(absolute error of 26.3 ± 20.3%). Cooking duration and fuel weight are a second key component 
for calculating emissions in the field.

• We also demonstrated the ability to produce repeatable measurements of BC emissions 
produced by a cookstove using particles sampled with a filter inline with inexpensive gas 
sensors. Fuel weight and cooking duration is measured with the wireless temperature sensor. 
The emissions rates estimate for Hickory tests (n=5) averaged 0.65 ± 0.06, for Pine (n=4) 
averaged 0.52 ± 0.08 and that for charcoal (n=4) was 0.03 ± 0.01, indicating that with a 
consistent placement of the sampling tube, a repeatable estimate of emissions can be made 
with low variability. This method can aid researchers and manufacturers in improved cookstove 
design for testing under real-world conditions in the field, where a greater variation of data is 
encountered compared to laboratory analyses.

Taken together, these results make it possible to monitor the emissions of a clean cookstove in the field 
cost-effectively, without the use of a hood or any other labor-intensive or costly infrastructure.
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Comparison of Accomplishments with Goals

Increased adoption, performance development, and financing of clean cookstoves can be significantly 
bolstered and facilitated through in-situ techniques for measuring cookstove usage and emissions. 
Recent published work by the authors showed that it is possible to calculate aerosol concentrations 
from a single color channel in a photograph of an air filter that has been exposed to pollutants.

We proposed to show that this basic technique could be extended to enable:

1. The discernment of BC from other light-absorbing particulate matter on collected aerosol 
samples.

2. The automated detection of stove and fuel types as determined through the collection of 
temperature and stove use duration data.

3. The application of such data to generate an estimate of BC emissions from overall concentration 
levels.

Our results are summarized below and encapsulated in Table 1.

Goal 1, the separation of BC from other light-absorbing particulate matter on collected aerosol samples, 
consisted of three sub-goals: (a) Collect sample sets for testing and validation, (b) calculate spectral 
dependence of coarse absorption, and (c) isolate black carbon in the samples from other light absorbing 
or reflecting particles such as organic carbon (OC).

Accomplishments for Goal 1: Laboratory analyses of EC were made as a proxy to BC. (a) 32 analyzed 
filter samples were provided through collaborators as sample sets for comparing EC to OC content. A 
further 410 samples were obtained through the Desert Research Institute, collected in three major 
urban centers in the USA. A further 600 samples were provided by the ERA during laboratory 
experiments on cookstoves, although metadata is unavailable.

Of the 32 analyzed filter samples obtained, (b) the spectral dependence of coarse absorption was 
determined for EC and OC. Specifically, (c) the Lightness component of the CIE Lab color space can be 
used to detect EC and the Normalized Green to detect OC in different samples, but calibration of the 
source will need to be performed. For example, Indian samples contained colored OC but US urban 
samples, the 410 ERA filters, had no correlation between EC or OC and color. This was expected from 
the type of aerosols sampled (U.S. urban cities without significant biomass burning). Spectral analysis of 
the ERA 410 samples measured to a resolution of 3 nm indicated that the response of both EC and OC 
loadings were independent of wavelength (Figure 2). This supports the observation that different

qualities of pollutants will have to be 
calibrated separately. The ERA 600 data set 
did not have a sufficient range of OC values 
for such color analysis.

Goal 2, the automated detection of stove and 
fuel types as determined through the 
collection of temperature and stove use 
duration data, consisted of four sub-goals: (a) 
collect a sample dataset of temperatures 
during cooking for a set of common stove and 
fuel types, and (b) create an automated 
cooking classification from temperature 
readings to determine the duration of 
combustion, (c) the maximum temperatures
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Figure 1. OC laboratory analysis versus color (Normalized 
Green). Biomass burning (India samples) produce colored 
OC whereas aged aerosols above US urban centers (ERA 
410) with little or no biomass burning do not.
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produced by a unit of fuel, and (d) the rate at 
which the fuel was consumed.

Accomplishments for Goal 2: (a) 
standardization of the location for 
temperature sampling of the stove body was 
required for comparison. Thus, a single 
location was selected on the stove body and 
on a removable metal J-bar. The 
temperature at 2.5 cm from the top of the 
cookstove and on the J-bar were determined 
to be sensitive enough for reliably identifying 
when cooking starts and stops, and cool 
enough (experiencing less than 200°C) to 
avoid the required use of more expensive, 
very high temperature sensing components. 

The J-bar allowed measurement of cooking on more than one type of stove without re-calibration. 
Cooking events of different durations and intensities conducted in the laboratory had similar 
temperature signals when measured at 2.5 cm from the top of the cookstove body and at 2.5 cm from 
the top of the J-bar (Figure 3).

More than 25 individual cooking events were conducted with temperature at various locations and fuel 
weights and rates of addition recorded. Duration of cooking (b) was determined using a decision tree 
model, constructed using rpart (Therneau and Atkinson, 2002) to predict cooking time based on 
sequential 5-second periods within the cooking events of different durations and intensities for the 
temperature sensor positioned at 2.5 cm from the top of the cookstove and J-bar. The decision tree 
consisted of 7 "splits" that used the instantaneous temperature, threshold temperature reached during 
a single cooking event, and the 60 s average rate of change in temperature as parameters to predict 
cooking. The error of classification and the absolute cross-validated error rate for last decision on the 
tree was 2.9%. The classification correctly identified cooking 91.8% of the time and correctly identified

not cooking 94.8% of the time for the stove 
body. Cooking events that were misclassified 
as not cooking totaled 8.1 min and not 
cooking events misclassified as cooking 
totaled 20.8 min in the stove body model 
(74% of this misclassification occurred within 
the short-duration cooking tests). 
Classification of the J-bar resulted in a similar 
tree but with slightly better results.

A field test of the cooking time algorithm was 
performed with collaborators in India. Four 
households were monitored for stove 
temperature and cooking times were 
recorded by an independent observer. 
Estimates of cooking time using the decision 
tree agreed well with the observed time in 
the field (Figure 4). Estimated cooking time 
using the decision tree averaged 1.4 ± 0.6 h

High power Simmering Stove fan off

Time (min from start of fire)
Figure 3. Representative temperatures of the stove body 
at 2.5 cm from the top (solid line), the J-bar at 2.5 cm 
(long dash), and in the pot of water on the stove (dotted 
line) during a 60 minute modified Water Boiling Test. 
Vertical lines indicate the separation between the "high 
power" start to bring water to a boil, the "low power" 
(simmering) phase, and the last fuel addition after which 
cooking ceased and the internal fan was turned off.

BC max 
OC max 
BC mid 
OC mid

Wavelength (nm)

Figure 2. Spectral dependence of max EC loading (32.6 fig 
cm'2), mid EC (16.05 fig cm'2), max OC (70.4 fig cm'2), and 
mid OC (35.4 fig cm'2) measured to 3 nm resolution.
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(n=31) for each event, which was not 
statistically different (P > 0.4; paired t-test) 
than observed cooking time of 1.5 ± 0.6 h.
The total amount of observed cooking time 
was 45.3 hours and for the decision tree it 
was predicted at 44.3 h. A regression of 
observed to predicted had a slope of 0.76 and 
an r2 of 0.82 indicating a high degree of 
accuracy in predicting cooking time.

An energy balance model (Lewis and Nobel, 
1977) was constructed to relate the 
temperature increases of the stove produced 
by a unit of fuel (c), and the rate at which the 
fuel was consumed (d). Specifically, 
parameters of longwave radiation, 

convection, and heat storage were considered for each cooking trial during conditions of thermal 
equilibrium before cooking (net energy equal to zero); any excess of energy entering the system was 
thus due to the combustion of fuel. Excess energy was then smoothed with a bisquare kernel weight 
function and regressed against the amount of energy contained in dry, non-resinous wood (1.9 MJ g-1; 
Ashton and Cassidy, 2007, p 189) to determine a transfer coefficient.

The total energy dissipated, as measured by the J-bar at the 2.5 cm position in MJ m"2 assuming a 
uniformly heated 1 m2 area, was closely related to the total wood fuel, of various types, in kg used 
during complete laboratory cooking cycles (Figure 5). Oak was used for cooking events for different 
durations of high or low power cooking. Additional wood types, Hickory and Pine, were also used during 
one-hour mixed-power cooking tests. Specifically, the relationship had an intercept of 0.008 and a slope 
of 0.077 with r2 of 0.97. The relationship between total energy measured by the J-bar and the total 
energy contained in the fuel used was linear, indicating a constant relationship across all tested fuel

addition rates and wood types. The total 
amount of energy in the fuel lost to heating 
of the stove body using the J-bar estimation 
was 3.9%. An additional cooking test using 
charcoal was conducted, resulting in a 
different regression of energy to fuel weight 
consumed. The relationship for charcoal had 
a slope of 0.04 kg fuel per MJ m"2 energy 
dissipated, about 52% of that of wood, with 
an r2 of 0.98 when the intercept is set to zero. 
Charcoal had about twice the energy content 
of wood (Figure 5), similar to other studies 
(e.g., Pereira et al., 2012), which would 
confound fuel estimations if fuel type were 
unknown. Thus, predicting fuel accurately in 
the field may be limited by uncontrolled 
conditions.

A field trial, similar to that for cooking 
duration, was also conducted to compare fuel

Oak high power 
Oak low power 
Hickory mixed power 
Pine mixed power 
Charcoal mixed power

Energy dissipated at 2.5 cm on J-bar (MJ m"2) 

Figure 5. Total energy dissipated by the J-bar at the 2.5 
cm position versus the total fuel used during complete 
cooking cycles. Values are summed 5 s samples of energy 
balance over the course of laboratory cooking using Oak 
under high power (open circles) and low power (crossed 
circles) fuel addition rates along with mixed-power 
cooking using Hickory (open squares) and Pine (open 
triangle). Charcoal (closed triangles) was also used in 
mixed-power cooking trials.

Observed cooking time (h)
Figure 4. Reported cooking time in during 31 cooking 
events in 4 households related to predicted cooking time 
based on stove temperature using the decision tree.
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use with estimates. Fuel use was primarily 
under-estimated with an average error 
relative to the reported fuel consumed of 
15.5 ± 25.2% (absolute error of 26.3 ± 20.3%). 
A regression of observed to predicted had a 
slope of 0.53 and an r2 of 0.33.

Goal 3, the generation of an estimate of BC 
emissions, consisted of determining a method 
to relate BC loading collected on a filter to 
the fuel type, cooking duration, and total 
emissions produced during combustion. We 
employed a carbon balance method for 
estimating total emissions (Roden et al.

2009). Specifically, this approach relies on the ratio between BC and a fuel "proxy" (CO plus C02, the 
gaseous products of combustion) in the exhaust gas to determine an emission factor. Samples were 
taken at 1.2 m above the cookstove so that initial dilution occurred through natural plume rise and the 
carbon contained in wood fuel was assumed to be 50% (Lowe et al., 2000).

Accomplishments for Goal 3: Five water boiling tests using air-dried Hickory, four with pine, and four 
with natural wood charcoal were conducted to test the variability of estimating emissions using a high- 
particulate producing fuel (Hickory and Pine) and a low particulate fuel (charcoal)(Figure 6). An average 
of about 720 g of Hickory, 650 g of Pine, and 430 g of charcoal were burned per hour-long cooking 
event. The emissions rates estimate for Hickory averaged 0.652 ± 0.058, for Pine averaged 0.517 ±
0.078 and that for charcoal was 0.031 ± 0.007, indicating that with a consistent placement of the 
sampling tube, a repeatable estimate of emissions can be made with low variability. A published value 
for a battery-operated forced-draft stove (the type used in our study) indicated a similar emissions rate 
for wood (0.477 mg g'1; MacCarty et al., 2011, indicated on Figure 6 by the star). The r2 value for the 
linear fit to the data for wood was 0.88 and that for charcoal was 0.56. The dilution factor (averaging 
105.4 ± 13.5, similar to 100 as cited by Roden et al., 2009) varied about ± 23% from the mean with 
ambient conditions (wind) and was not correlated with the emissions factor, indicating that it was 
possible to collect a representative sample of emissions with only a single inlet tube opening placed 
above the stove during cooking.

A Charcoal 
o Pine 
□ Hickory

★ MacCarty

Fuel consumed (g)

Figure 6. Emissions measured from cooking with two 
different types of wood and from charcoal.
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Table 1. Description of Original, Accomplished, and Unfinished Goals for Phase I.

Original Exit Criteria for Goal 1 Accomplished Exit Criteria Unfinished Exit Criteria

1.1 Collect sample set. 100 filter 
samples for analysis, data for
OC, EC, BC, spectral absorption, 
and coarse absorption for each 
sample.

410 filter samples from EPA urban 
areas analyzed for EC and OC and 
color analysis. 32 Indian filter 
samples analyzed for OC, EC, and 
coarse absorption. 600 EPA filters 
sampled for EC only.

1.2 Calculate Spectral
Dependence of Absorption. Our 
instrument produces spectral 
dependence values that are 
within ± 30% of those produced 
by the gold standard measures.

Spectral dependence was 
independent of EC and OC on the
410 filters spectrally analyzed to a 
resolution of 3 nm but dependent on 
coarse absorption for 32 Indian 
filters; percent relative average error 
of 0.1% ± 21.1% (mean ± SD).

1.3 Isolate Black Carbon. 
Completed when our instrument 
produces BC values that are 
within ± 30% of those produced 
by gold-standard measures.

Percent relative difference between 
predicted and observed for OC is
18.4 ± 14.4% (mean ± SD) and for EC 
(proxy to BC) is 3.2 ± 2.5%.

Original Exit Criteria for Goal 2 Accomplished Exit Criteria Unfinished Exit Criteria

2.1 Collect sample data set. 
Ground-truth emissions
established for 2 different 
stoves, 3 different fuel types, 
over 20 cooking events, fuel 
weight consumption, and 
cooking duration.

Standardization of the location for 
temperature sampling eliminated 
need for multiple stoves. Emissions 
established within published values 
for 3 fuel types. Fuel weight and 
cooking duration established over 25 
cooking events.

2.2 Automate Cooking 
Classification. Automatically 
determine the stove type, fuel 
type, and cooking duration to 
within ± 25%.

Stove type not important with use of 
J-bar. The field classification had an 
error of 18.6 ± 19.5%, correctly 
identified cooking 91.8% of the time.

Fuel type was determined to 
be impossible to ascertain 
from temperature alone.

Original Exit Criteria for Goal 3 Accomplished Exit Criteria Unfinished Exit Criteria

3.1 Measure Black Carbon
Emissions. A cost-effective
solution to measure BC 
emissions with accuracy to 
within ± 30% as compared with 
gold standard.

A repeatable, low-cost estimate of 
emissions can be made with low 
variability that determines emission 
values consistent with published 
ranges of emissions.
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Summary of Project Activities

Table 2. An updated calendar version of the activities for the entire period of funding.
2012 2013

|Task June July Aug Sept Oct Nov Dec Jan Feb Mar 1 Apr | May June July Aug

1.0 Isolate black carbon from other particulates

1.1 Collect Sample Set for Validation

1.2 Calculate Spectral Dependence of Absorption

1.3 Isolate Black Carbon

2.0 Automated detection of stove type, fuel, and cooking duration

2.1 Collect Sample Dataset

2.2 Automate Cooking Classification

2.3 Sensor Development

3.0 Measure Black Carbon Emissions

3.1 Develop method and laboratory setup

3.2 Laboratory Testing

3.3 Map BC, stove, fuel, duration to BC emissions

4.0 Management & Reporting

4.2 Quarterly Reviews

4.3 Final Report

▲ ▲ ▲ ▲ ▲
A

Approaches and problems encountered are listed by section hypothesis:

1. It is possible to isolate true black carbon from background materials (dust, organic carbon) by using 
all the color channels in the visible spectrum.

Approach: Following the same methodology already established for determining BC using images of 
exposed filters, laboratory-analyzed filters with OC data were examined.

Results: OC was detectable on exposed filters using the coarse absorption average pixel values in 
images transformed to remove lightness-darkness effect on color (CIE Lab and Chromatic color 
spaces).

Problems: Dust and other contaminants remain to be analyzed on filters due to the speed at which 
such external laboratory analyses are made. Additionally, the threshold for separating BC from OC 
occurred at low filter loading such that no separation could be established.

Impact and solutions: The impact is moderate, because an estimate of OC can be established for 
filters with a threshold of loading. This is a limitation of the method employed and we are currently 
exploring other methods, including inexpensive spectrometry that may be more sensitive. The 
impact of waiting for laboratory results is significant for estimating dust or other contaminants, 
although this was a minor aspect of the project and is thus deemed of low importance.

2. There is a temperature signature that identifies the cooking duration, type of stove and the type of 
fuel used during cooking.

Approach: Laboratory testing of one stove with temperature modeling during repeated cooking 
events of different duration and fuel types.

Problems: Because different stoves have different temperature characteristics, a universal model for 
stove temperature could not be established. Additionally, different fuel types could be confounded 
with different rates of fuel addition (e.g., high quality fuel added at a low rate produced a nearly 
identical temperature signature as a low quality fuel added at a higher rate).

Impact and solutions: The impact of the necessity to standardize a measurement method was high, 
but in a positive scope. This re-directed our efforts to avoid variations due to stove design, and
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develop a standard "J-bar" that could be used in conjunction with any stove type, thus creating a 
repeatable measurement device. With the J-bar, a universal cooking time algorithm and estimates 
of fuel mass used (provided the information of fuel type) was achieved. We feel that this is an 
optimal solution. If resources are available, the characterization of individual stove models can be 
accomplished as needed following our model of the J-bar.

The ability to detect fuel type by temperature signature alone was deemed an intractable problem 
at this time with this level of technology. In impact to our goals can be low if methods, such as self­
reporting of fuel type use, or regional estimates of fuel type are employed.

3. It is possible to relate BC concentration measured using a filter to total cookstove emissions in the 
field.

Approach: Given the temperature signature of the J-bar and the fuel type, the cooking duration can 
be calculated as above. With this information, data from two small and inexpensive gas sensors (CO 
and CO2) in-line with the gas sampler used for filter-based particulate capture was combined with 
the carbon balance method for accurately and reliably estimating emissions.

Problems: Inexpensive gas sensors were calibrated and found to be acceptable for this use, although 
the reliability of the sensors was moderate - sensor failure occurred several times for the CO2 
sensor specifically.

Impact and solutions: Sensor failure was low-impact because of the concurrent and parallel use of a 
high-end gas analysis system. Nevertheless, we are exploring alternative sensors to find more 
reliable hardware.

Products Developed and Technology Transfer

A publication is being submitted to the journal Energy for Sustainable Development, titled WiTSS: A 
Wireless Temperature Sensing System to Measure Cookstove Usage and Consumption of Hard wood 
Fuel.

Models for (1) cooking time estimates, (2) fuel consumption, and (3) carbon emissions have been 
established:
1. Cooking time model

a. The cooking time model consists of a decision tree (Therneau and Atkinson, 2002) to predict 
cooking time based on sequential 5-second periods within a cooking event using the 
instantaneous temperature, threshold temperature reached during a single cooking event, and 
the 60 s average rate of change in temperature as parameters to predict cooking. Assumptions 
include a standard placement of the temperature sensor and stove design, although we have 
shown that different placements and different stove models can be used with adjustment to the 
parameters of the model. Intended use is on the backend server where temperature data is 
sent and also to be implemented on small microcontrollers in the field.

b. Performance criteria are related to error of misclassification of time as cooking or not cooking.
c. Test results from the laboratory indicate that the error of classification and the absolute cross- 

validated error rate for last decision on the tree was 2.9%. The classification correctly identified 
cooking 91.8% of the time and correctly identified not cooking 94.8% of the time for the stove 
body in the laboratory. Cooking events that were misclassified as not cooking totaled 8.1 min 
and not cooking events misclassified as cooking totaled 20.8 min in the stove body model (74% 
of this misclassification occurred within the short-duration cooking tests in the laboratory).
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d.

f.

g-

Test results from the field indicated good performance of the model with the observed cooking 
time. Estimated cooking time in the field averaged 1.4 ± 0.6 h (n=31) for each event, which was 
not statistically different (P > 0.4; paired t-test) than observed cooking time of 1.5 ± 0.6 h. 
Specifically, the average difference between observed and estimated cooking time (average 
error) was 0.03 ± 0.31 h (the absolute value difference averaged 0.23 ± 0.20h) with a maximum 
error of 0.83 h. The total amount of observed cooking time was 45.3 hours and for the decision 
tree it was predicted at 44.3 h. A regression of observed to predicted had a slope of 0.76 and an 
r2 of 0.82.
The hypothesis of the model is that cooking on a wood burning stove heats the stove body 
sufficiently and predictably for estimating cooking duration. The heat generated by a short 
cooking event is sufficient to pass model temperature thresholds and rates of temperature 
change. Longer cooking duration is proportional to longer periods of time between model 
temperature thresholds and is different from short cooking events only in duration for the 
specific model parameters.
The model is generated from instantaneous temperature, threshold temperature reached 
during a single cooking event, and the 60 s average rate of change in stove temperature. Each 
value of the three parameters above is assigned a category of "cooking" or "not cooking" and 
the model is generated with the freely available statistical analysis program R (version 2.13.1; R 
Development Core Team, 2011) and the recursive partitioning and regression tree (rpart version 
3.1-50; Therneau and Atkinson, 2002) algorithm. The result is a decision tree (Figure 7) that can 
be implemented with current or historical data sets.
The decision tree model is currently included in the submitted article to the journal Energy for 
Sustainable Development (see above).
Hardware requirements include a temperature sensor and data logging capabilities with a

temperature resolution greater than 
10 degrees C and a frequency of data 
collection greater than once every 5 
minutes.

h. No additional documentation 
(e.g., users guide) is provided beyond 
the available documentation for rpart 
version 3.1-50 (Therneau and 
Atkinson, 2002).

2. Fuel consumption model
a. An energy balance model was 

constructed to estimate the rate of 
energy released during burning of 
wood fuel during a WBT, and 
ultimately to calculate the weight of 
wood burned by the FD stove. 
Calculations were based on heat 
transfer and storage processes (Lewis 
and Nobel, 1977) with the 
assumption that absorption of 
shortwave radiation was zero for 
shaded cooking conditions, heat 
conduction into the ground was

Temperature slope (20 min) < 0.0

Stove body < 76.9°C Stove body < 22.2”C

Figure 7: Decision tree model for identifying cooking 
periods. Left-handed branches satisfy the True case for 
the Boolean decision described at the top of each branch. 
Resulting end points are labeled as "Not" (period before 
or after cooking) or "Cooking" (period during active 
cooking). Below the category results in parentheses are 
the number of 5 second intervals correctly categorized 
with the percentage of intervals correctly categorization 
below that during model construction.
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b.
c.

e.

2500

2000

1500

1000

500

negligible through the stove supports contacting the ground, and latent heat loss was zero (no 
evaporation from the stove surface). Additionally, the combustion chamber was assumed to 
change temperature proportional to the temperature measured on the stove body or J-bar and 
the hardwood fuel used (oak) contained 1.9 MJ g 1 (FAO 2002).
Performance criteria are related to error of estimates of fuel used compared to that observed. 
Test results from the laboratory indicated that the total energy dissipated was closely related to 
the total fuel in kg used during complete laboratory cooking cycles (Figure 5). A field trial, 
similar to that for cooking duration, was also conducted (Figure 8). Fuel use was slightly under­

estimated with an average percent 
error relative to the reported fuel 
consumed of 15.5 ± 25.2%. A 
regression of observed to predicted 
had a slope of 0.53 and an r2 of 0.33. 
Different fuel types and the effect of 
moisture content on fuel calorific 
value can alter the energy balance 
results considerably, indicating that a 
calibration for fuel type and 
conditions may be necessary to 
increase accuracy of predictions. 
Thus, predicting fuel accurately in the 
field may be limited by uncontrolled 
conditions.

d. The theory behind the model
is that all energy released by the burning of fuel can be accounted for with a constant 
proportion of that energy being dissipated by the stove ("waste heat") that can be measured. 
The energy that is released from the fuel and that heats the stove results in repeatable increases 
in temperature, if the stove does not change in material composition. The change in 
temperature can be modeled by a simple summation (Equation 1) of the radiative cooling of the 
stove when it is above ambient temperature, the loss of heat of the stove body to the air 
(convection), and the heat stored in the body of the stove. The proportion for the stove tested 
was 3.9% for the temperature measured by the J-bar (96.1% of the energy in the fuel is spent 
heating the pan or is lost to the exhaust plume). Thus, the amount of fuel used can be back- 
calculated using this proportion.
A net energy balance was calculated with stove- and laboratory-specific parameters fit for each 
cooking trial during conditions of thermal equilibrium before cooking (net energy equal to zero); 
any excess of energy entering the system was thus due to the combustion of fuel. Excess energy 
was then smoothed with a bisquare kernel weight function and regressed against the amount of 
energy contained in dry, non-resinous wood (1.9 MJ g"1; Ashton and Cassidy, 2007, p 189) to 
determine a transfer coefficient. Thus,

1000 1500 2000 2500

Reported fuel consumed (g)
Figure 8. Reported fuel consumption in Ashrafpur, India, 
during 37 cooking events among 4 households related to 
predicted fuel consumed based on the energy balance of 
the stoves.

Energy flux = net longwave radiation + net convection + heat storage Eq. 1

The net longwave radiation exchange of the stove with the surrounding environment was 
calculated in Watts m"2 as:

Net longwave exchange = eo(74(stove) - T4(environment)) Eq. 2

where e is the emissivity of the stainless steel body of the stove (set to 0.7; Cverna, 2002), a is 
the Stefan-Boltzman constant, T(stove) is the temperature of the stove body in Kelvin and
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^"(environment) is the temperature of the surroundings, set to the linear change in temperature 
between the initial stove temperature from before cooking began to the temperature projected 
after cooking stopped. Projected temperature after cooking was modeled on stove body 
temperature after cooking ceased following an exponential decay to ambient temperature to 
account for localized heating of the laboratory. Convection was calculated as:

Convection = hc (T(stove) - T(air)) Eq. 3

where hc is the heat convection coefficient, set to 10 W m"2 °C_1 for low wind conditions across a 
similarly sized cylindrical object (Lewis and Nobel, 1977) and T(air) is the air temperature, set to 
the environmental temperature as above. Heat storage was calculated as:

Heat storage = Cp m (AT(stove)/At) Eq. 4

where Cp is the heat capacity (0.9 J g"1 K"1 for Fire Brick; Lienhard and Lienhard, 2003) of mass m 
(5 kg; the combustion chamber), AT(stove) is the change in temperature in time At of the stove.

f. The fuel consumption model is currently included in the submitted article to the journal Energy 
for Sustainable Development (see above).

g. Hardware requirements include a temperature sensor and data logging capabilities with a 
temperature resolution greater than 10 °C and a frequency of data collection greater than once 
every 5 minutes.

h. No additional documentation (e.g., users guide) is provided.

3. Carbon emissions model
a. We employed a carbon balance method for estimating total emissions (Roden et al. 2009). 

Specifically, this approach relies on the ratio between BC and a fuel “proxy" (CO plus CO2, the 
gaseous products of combustion) in the exhaust gas to determine an emission factor. Samples 
were taken at 1.2 m above the cookstove so that initial dilution occurred through natural plume 
rise and the carbon contained in wood fuel was assumed to be 50% and in charcoal fuel to be 
90% (Lowe et al., 2000).

b. Performance criteria are such that emissions estimates are within 20% of those in the literature.
c. Five water boiling tests using air-dried Hickory and four with natural wood charcoal were 

conducted in the laboratory to test the variability of estimating emissions using a high- 
particulate producing fuel (Hickory and Pine) and a low particulate fuel (charcoal). The 
emissions estimate for Hickory was 0.652 ± 0.058, for Pine was 0.517 ± 0.078, and that for 
charcoal was 0.033 ± 0.005, indicating that with a consistent placement of the sampling tube, a 
repeatable estimate of emissions can be made with low variability. Values are consistent with 
published values. The dilution factor varied about 34% with ambient conditions (wind) and 
averaged19.2 g carbon captured per kg of carbon burned and was not correlated with the 
emissions factor, indicating that the assumption of a representative sample was met with only a 
single inlet tube opening placed above the stove during cooking.

d. The theory behind the carbon balance model is that all the carbon in the fuel that is burned can 
be accounted for. The products of combustion of fuel are only (1) ash that stays in the 
combustion chamber, (2) carbon particulates that escape in the cooking plume, (3) the gaseous 
products of carbon dioxide (CO2) and carbon monoxide (CO). Assuming that a representative 
sample is taken from the plume zone of carbon particulates, CO and CO2, then a proportion of 
the carbon sampled from the fuel can be constructed (a dilution factor) and that is used to 
calculate the total carbon particulates, total CO2, and total CO emissions.

e. The amount of carbon particles captured on a filter during sampling of the cooking exhaust 
plume was estimated from photographs of the filter placed on a reference chart (Ramanathan

CIRRUS SENSE LLC
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et al., 2011). The amount of CO2 captured during sampling was measured in parts-per-million 
(ppm) by a laboratory-grade infrared gas analyzer (Model 6262, LI-COR Biosciences, Lincoln, 
Nebraska USA) simultaneously with an inexpensive sensor (Telaire T6613, General Electric 
Company, Measurement and Control, Fremont, CA USA). The amount of CO captured during 
sampling was measured in ppm by an inexpensive sensor (MQ-7, Hanwei Electronics Co., Ltd., 
China). All gas sensors were calibrated with 1000 ppm laboratory-grade standard gas mixtures 
obtained through Mesa Specialty Gasses and Equipment (Santa Ana, CA, USA). Gas 
concentration was converted to mass of carbon using molecular mass values (12.01 g mol"1) and 
the ideal gas law (PV = nRT) with air temperature measured away from the cook stove. Mass of 
carbon particles was summed with mass of gases sampled to calculate the dilution factor.

f. The carbon emissions model is currently included in the submitted article to the journal Energy 
for Sustainable Development (see above).

g. Hardware requirements include an air temperature sensor, a pump and filter assembly for 
collecting carbon particulates, and CO2 and CO gas sensors.

h. No additional documentation (e.g., users guide) is provided.
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