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Executive Summary 

This project provides algorithms to perform demand response using the thermal mass of a building. Using 

the thermal mass of the building is an attractive method for performing demand response because there is 

no need for capital expenditure. The algorithms rely on the thermal capacitance inherent in the building’s 

construction materials. A near-optimal “day ahead” predictive approach is developed that is meant to 

keep the building’s electrical demand constant during the high cost periods. This type of approach is 

appropriate for both time-of-use and critical peak pricing utility rate structures. The approach uses the 

past days data in order to determine the best temperature setpoints for the building during the high price 

periods on the next day. A second “model predictive approach” (MPC) uses a thermal model of the 

building to determine the best temperature for the next sample period. The approach uses constant 

feedback from the building and is capable of appropriately handling real time pricing. Both approaches 

are capable of using weather forecasts to improve performance. 

 

Algorithm performance was tested on a municipal library in Sacramento, CA and a large office building 

in Milwaukee, WI. In both cases the algorithms were capable of storing thermal energy in the building 

mass in such a way that the electrical demand was reduced during periods of high cost.  

Comparison of Actual Performance to Project Objectives  

As reported through the past two years, fluctuating business decisions regarding the prioritization of this 

work against other needs has had a continued impact on the actual performance to project objectives, 

resulting in early termination of work against this grant.    All work done under the grant to date is 

currently planned to be implemented into product in 2014.   

 

Project risks previously stated included 1) non-standardized industry utility rate structures and 2) 

availability of resources due to other committed project needs.    Both of these risks also impacted the 

progress of the project. 

 

There are several rate structures used in the industry. This made it necessary to develop two demand 

response algorithms that focused on the most common rates. A “day ahead” approach was developed 

suitable for the time-of-use and critical peak pricing rate structures and a “model predictive” approach 

was developed to additionally be suitable for real-time-pricing profiles. 

 

Secondly, development resources to produce the manufacture-ready proof of concept were not available 

due to previously stated business decisions and the need to focus on other committed projects.  Therefore, 

the project scope was changed to include a prototype to perform field tests of the algorithm. However, 

this prototype used a personal computer to communicate to the building automation system and was not 

commercially viable. This prototype was still able to meet the success criteria of demonstrating the 

capability of shifting electrical demand by controlling rate of heat transfer into and out of building mass 

and demonstrating an automated control system capable of reducing electrical demand during critical 

peak pricing events 
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Project Activity Summary 

Phase I: Development of the Project Management Plan (PMP) 
 
Task 1.0 – Project Management Plan (PMP)  
The initial project management plan was submitted in September of 2010 and included the risks and 

success criteria. 

 

Task 2.0 – Project Kickoff Meeting  
A JCI team, including Principal Investigator, Principal Project Director and Business Officer traveled to 
NETL in Morgantown, WV on October 6, 2010 to participate in the DOE kick-off meeting which consisted 
of a DOE briefing and JCI review of project and questions.   
 

Task 3.0 – Identify Prototype and Proof Of Concept (POC) Test Sites  
Three test sites were identified: a library in Sacramento, CA area, a building on the Louisiana State 

University (LSU) campus, and a large office building in Milwaukee, WI. Equipment problems and the 

lack of measurement instrumentation eventually precluded testing at the LSU building, but tests were 

successfully run at both the Sacramento and Milwaukee site. 

 

To perform testing at the Sacramento area library, the building first had to be brought under control. 

Minimum flow rates were lowered to prevent overcooling that was occurring. Additionally, after early 

testing in 2011 raised comfort concerns a wireless sensor was installed in the middle of the library’s open 

area and used as the main temperature control sensor. The prevented “hot spots” from forming as the old 

sensor was in a cool corner of the area. 

 

Testing at the Milwaukee office building required the installation of water inlet and outlet temperatures 

and flow at the air handling unit’s coil. This allowed for the calculation of the coil’s load which was used 

as a proxy for power as only the VAV boxes served by this AHU were used in the test (rather than the 

whole building as in the Sacramento area library. 

 

Task 4.0 – Phase I Project Briefing 
Our Phase I Project Briefing was presented on January 11, 2011 to the DOE.   
 

Phase II: Demand Response Controller Applied Research 
 
Task 5.0 – Develop Demand Response Algorithms 
Development of the demand response algorithms began by performing a literature search. This was 

performed by the Johnson Controls research team. The highest rated articles were reviewed by the 

algorithm development team to determine which research avenues showed that greatest promise towards 

the development of a commercially viable product in light of the three major utility rate structures: time-

of-use, critical peak pricing, and real-time-pricing. 

 

The techniques that showed the most promise were the near-optimal approaches by Lee and Braun from 

Purdue University [1-3] and model predictive control (MPC). The near-optimal approaches were designed 

to determine a setpoint trajectory that kept the power usage constant during the high cost part of the day. 

These approaches are suitable for time-of-use and critical peak pricing, whereas MPC is a real-time 

approach that uses feedback and is suitable for most pricing structures including real-time-pricing 

structures. In both cases it was noted that demand charges must be included in the algorithms. An 
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intellectual property assessment was performed and determined that there were no patents that would 

keep Johnson Controls from pursuing these lines of applied research in the field of demand response. 

 

Algorithms for both an improved near-optimal approach called the general linear systems approach (LSA) 

and MPC were developed. The details of this technology are included in the “Products Developed” 

section. The algorithms developed were tested using the MATLAB/Simulink simulation environment. To 

test the LSA method a Simulink model of a building was developed. The model included a biquadratic 

curve to model chiller performance, the airhandler’s and VAV box’s PID controllers, etc. To validate the 

MPC algorithm a state-space model of the building was constructed. This modeled the PID controller, 

heat transfer, and disturbances, but was simpler in design than the Simulink model in order to facilitate 

running with feedback. Initially, Energy Plus was considered as a simulation engine for the integrated 

predictive demand response controller. However, Energy Plus did not model the dynamics of internal 

loads or the controllers (i.e., as soon as the number of people in the area increased the amount of cooling 

supplied instantly increased to keep the temperature at setpoint, assuming the capacity existed to do so). 

This made it difficult to use Energy Plus as a simulation environment. Additionally, the chiller models 

used in the commercial reference buildings supplied by the U.S. Department of Energy, Energy 

Efficiency and Renewable Energy Office are not correct for Energy Plus simulation in the 2010 (1.3) 

version; however, the do appear to have been updated in the 2012 (1.4) version. (The 2012 version was 

not tested in this project to determine if the new chiller model had more reasonable response.) These 

chiller models use less energy as more cooling is supplied by the chiller. This problem is described in 

more detail in the computer simulation section. 

 

Using the test infrastructure, the developed algorithms were tested and the performance metrics 

“fractional demand” and the maximum and minimum temperature were observed. The fractional demand 

was defined as, 

 

 
controlleralconventionwithdemandpeak

controllerIPDRwithdemandpeak
demandfractional  . (1) 

 

These metrics can be directly linked to CTQ #1, 2. The fractional demand was determined to be less than 

0.9 on days for which the cooling load was within the top 10%. Additionally, the temperatures were kept 

within the specified temperature bounds for comfort. 

 

A Project Performance Report was developed and was delivered to the Project Management office per the 

project plan. 

 

Task 6.0 – Capture Business, Customer, and System Requirements 
The objective of this task was to define customer expectations, document a clear product definition, and 
develop a realistic business case.    
 
Work products completed for this task include, but are not limited to: 

Business plan development 
Demand Response Competitive Matrix 
Demand Response Vision Document 
Demand Response Concept Description 
Voice of Customer Interviews 
VSR (Vision, Scope and Requirements) document  
Requirements identification – Customer, User, Business 



Final Scientific Technical Report   
 

Copyright Johnson Controls, Inc. Inc., 2013 
Page - 5 of 48 

Engineering assessment and identification of critical system requirements is considered undone and 
cancelled due to postponement of this work until 2014. 
 

Task 7.0 – Phase II Project Briefing 
Phase II Project Briefing was not held.   Ongoing discussions have occurred during the past year to 

discuss the lack of progress due to business decisions against the original objective.    

 

Phase III: Demand Response Controller Prototype Product Development 
Per the projects change of scope, the tasks in this phase no longer included manufacturing reviews. 

Instead the prototype consisted of a personal computer that was able to communicate to the building’s 

building automation system.  

 

Task 8.0 – Create Concept Design 
An engineering test unit (ETU) was created that consisted of software running on a personal computer. 

The algorithms were coded in MATLAB and the output was sent to the building automation system over 

Ethernet using BACnet stack. This architecture of the ETU was tested on a hardware test bench including 

a Network Automation Engine (NAE) and a Field Equipment Controller (FEC) for more than two weeks 

before putting the ETU in the field to ensure proper communications and robustness of the failsafe.  A 

picture of the ETU architecture is given in Figure 1. 

 

Task 9.0 – Develop Demand Response Features 
Because the ETU consisted of MATLAB running on a personal computer, the algorithms could remain in 

the language they were developed in. The algorithms were simply integrated with the BACnet stack in 

MATLAB. 

 

Task 10.0 – Test Functionality at Customer Facility 

 

 
 

Figure 1: Illustration of the cascaded model predictive control approach for demand response. 
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A test plan for each of the two test sites was made. In both cases, hypothetical pricing profiles were 

developed to facilitate testing. This allowed for the high cost times (or the real time pricing structure) to 

be modified. Both algorithms, the linear systems approach (LSA) and model predictive control (MPC) 

were tested at the library in Sacramento, CA. For comparison the original weighted average (WA) 

approach developed by Braun was also tested. To test the LSA and WA algorithms each algorithm was 

tested twice. Early weighted average tests (2011) raised comfort concerns that resulted in a new wireless 

temperature sensor to be used for control. All other testing was performed in 2012. The required training 

(2 days for WA and 1 day for LSA) was performed and then the algorithm was run for three event days. 

On the last event day the time of the high cost event or the comfort range was modified. When the tests 

for the “day-ahead” approaches were completed MPC tests began and continued through the remaining 

portion of the 2012 cooling season. 

 

Tests performed at the Sacramento area library were as follows: 

September 2011; Early Weighted average Tests. 

June 6, 2012 – June 21, 2012; Weighted average Test #1 

July 12, 2012 – August 1, 2012; Linear systems approach Test #1 

August 8, 2012 – August 17, 2012; Weighted average Test #2 

August 21, 2012 – September 13, 2012; Linear systems approach Test #2 

September 15, 2012 – November 6, 2012; Model Predictive Control 

 

 

MPC was the only algorithm tested at the Milwaukee office building. The testing was performed from 

Aug 15, 2012 to Oct 30, 2012.  

 

 

Selected test results are shown in Figures 2- 4. 
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(Wed)Jun 13, 2012; Weighted Average, Test 1. Additional enregy use during peak period, -62.1885 kWh. Additional energy use during off-peak period, 15.887 kWh. Energy Savings, 46.3015. Hypothetical cost savings, 24.4887.
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Figure 2: Field test result using the weighted average method to perform demand response 
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(Tue)Jul 17, 2012; Linear System Approach, Test 1. Additional enregy use during peak period, -53.8766 kWh. Additional energy use during off-peak period, -14.1821 kWh. Energy Savings, 68.0586. Hypothetical cost savings, 34.3781.
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Figure 3: Field test result using the linear system approach to perform demand response 
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Task 11.0 – Verify Critical System Requirements 
The test results showed that the temperatures remained within the specified comfort range and the 

fractional demand was less than 0.9 and often as low as 0.75. 

 
Task 12.0 – Phase III Project Briefing 
Phase III Project Briefing was not held.    

 
 
Phase IV: Proof of Concept (POC) Development of the Demand Response Controller 
 

Due to project postponement by business, Phase IV of this project ,development of a proof of concept 

system including the final packaging ready for manufacture, was not performed. Tasks 13.0 – 16.0 were 

deferred. 

 

Products Developed  

Because the product phase was deferred, the products developed will be focused on the algorithms, 

described subsequently in detail, and the patent applications that resulted from this project. The theory of 

the algorithms is developed in the sections below. 

 

 

8 10 12 14 16 18 20
70

71

72

73

74

Temperatures, RTP Test, Tuesday November 6th 2012

 

 

8 10 12 14 16 18 20
0

5

10

15

20

Powers

 

 

10 12 14 16 18 20

0.1

0.2

0.3

0.4

Energy Cost ($/kWh)

Zone Temperature

Setpoint

Power Setpoint

Power

Power Estimate

 
Figure 4: Field test result using the model predictive control to perform demand response 
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Algorithm 1.0:  General Linear System Approach to Demand Response 

 

Algorithm 1.1: Theory 
 The ultimate goal of any demand response program is to minimize the total cost for electricity. A 

general electrical utility charge can be expressed using both an energy charge and a demand charge. The 

problem becomes one of minimizing the utility cost Ju given by, 

     



n

i

iideu pcdttptcJ
1

max,, . (2) 

In (2) the first term is the energy charge which is the integral of the product of the a time-varying energy 

charge, ce(t), and the power, p(t), and the second term is the sum of n demand charges; cd,i is the cost of 

the peak demand for demand charge i, and pmax, i is the maximum power usage during the time periods for 

which demand charge i is active. The general linear system approach (LSA) to demand response uses 

linear system theory in order to attempt a minimization of this cost function. 

 A linear system is a system that satisfies superposition and homogeneity. Given system inputs 

u1(t) and u2(t) with system outputs y1(t) = H[u1(t)], y2(t) = H[u2(t)] a linear system must satisfy, 

         tutuHyty 2121 2   . (3) 

If the system is additionally a time invariant system, then the linear time-invariant system must also 

satisfy, 

       tuHty 11 . (4) 

 

That is, a shifting the input in time will produce the original output shifted in time by the same amount. 

 The output of a linear time invariant system can be found with knowledge of the inputs, u(t), and 

the impulse response, h(t), through the convolution integral; 

 

     




  dhtuty

.  (5) 

If an input were put through the system and the output noted, then if the derivative of the original input 

were passed through the system the output would be the derivative of the original output; i.e., 

 

 
       









  dhtu
dt

d
dhtu

dt

d

dt

tdy

. (6) 

This also holds if both the output and input were integrated with respect to time or even for another 

arbitrary linear time invariant system described by impulse response h2(t); 

           




















  dhdhtudhty 22 . (7) 
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In general, if an input-output pair of a linear, time-invariant system is known, then response of the system 

to a transformed version of the input can be predicted by performing the same transformation to the 

output. 

 The linear system approach to demand response uses the linear system theory presented above to 

determine an optimal setpoint trajectory to apply on the next demand limiting day. The algorithm is 

allowed to change the temperature setpoints of the zone controllers with the goal of controlling the power 

used by the HVAC equipment in some optimal manner. However, once the setpoint trajectory is chosen it 

is not changed throughout the day; thus, open loop control of the power is being used (of course the 

normal control loops for keeping the temperature at the temperature setpoint are still in place). A diagram 

indicating the system to be controlled is shown in Figure 5. Note that depending on the setup of the 

HVAC system it may be advantageous to conceptualize the input of the system as the derivative of the 

setpoint or even percent rate of change rather than the temperature setpoint itself. This would be done to 

account for different minimum and maximum temperatures across all the zones in the region or building. 

 To perform the linear system approach to demand response an initial training day is required. The 

setpoint trajectory for this day is predetermined, but should include a pre-cooling period and a demand 

limiting period, and be twice differentiable during the early start and demand limiting period. (The 

purpose of the early start period is to allow time for the power to decrease before the high price period 

begins). Figure 6 shows an example of a typical setpoint trajectory for the training period and the resultant 

cooling load (the heat rejected by the HVAC equipment). The output for this setpoint trajectory can be 

thought of as the output of the superposition of two setpoint trajectories. One in which the precooling 

temperature setpoint is maintained for the duration of the day, TL, and one in which the temperature 

setpoint is increased, TD. This is shown in Figure 7. Note that in order to avoid the necessity of an 

exorbitant amount of subscripts the T with be used to indicate a temperature setpoint while T will be used 

to indicate an actual temperature. Additionally, the subscript L stands for load under constant control, 

while D stands for deferred load, and DL stands for load under demand limiting control. This can apply to 

either the actual cooling load or the temperature setpoint the caused that load. 

 If the precooling period is long enough such that DLQ  has leveled off before the beginning of the 

early start period, then it should be relatively easy to make the same divisions shown in Figure 7 during 

the demand limiting period. It is only necessary to subtract the average cooling power over a time period 

just prior to the early start period. This is then subtracted from DLQ  during the demand limiting period in 

order to calculate the response due to the changing temperature trajectory (column 2 in Figure 7). 

 With the portion of DLQ  due to changing the temperature trajectory separated from the portion of 

 
 

Figure 5:  Input/Output model used for demand response 
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DLQ  due to leaving the temperature setpoint at the precooling temperature our goal is to find a linear 

system L that can be applied to DQ  due to changing the temperature setpoint trajectory during the early 

start and demand limiting period such that DQ  is transformed to some objective power trajectory that will 

result in minimizing the cost of electricity. Once L is found then the same linear system can be applied to 

the changing temperature setpoint, TD, before being added back to TL. If the following day is similar to the 

current day, then when the transformed setpoint trajectory, 

 T
+

DL = TL + L [TD], (8) 

 is applied to the building the used 


DLQ  will be given by, 

   objLDLDL QQQQQ  
L , (9) 

where the plus superscript indicates the next day. Therefore, when finding the best linear system objQ  

must be chosen such that when added to LQ  the desired value of the cooling power is obtained. 

 
 

Figure 6:  Temperature setpoint trajectory (input) and cooling power (output) for a typical training day. 
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 To make the problem of finding the linear system L more tractable, the class of linear operations 

can be constrained to include only a weighted sum of the proportional, integral, and derivative of the 

previous cooling powers; i.e., 

        
dt

Qd
wdQwtQwtQ D

t

DDD




   
0

L . (10) 

Other forms of the linear operator could be used; for example, we may try to find the weights of an FIR 

filter, etc. The problem is now one of finding the optimal weights. This can be performed as an 

optimization problem with a minimization of a cost function, 

       dttQtQJ
n

DL

objDw   L , (11) 

over the weights, where the integral is taken over the early start and demand limiting period (this period is 

represented as simply DL) and n is an even power.  

 Due to the nature of the electric utility tariff, equ.(2), the demand charge is based on peak load. If 

objQ  is constant during times of constant utility rate, then the peak demand would come at a time of peak 

deviation from objQ . For this reason it may be desirable to more heavily weight larger deviations from the 

cooling power objective. This can be performed by choosing n in equ. (11) to be a larger ( > 2) even 

integer. The infinity norm could be used in the cost function, but this tends to make finding the weights 

more difficult for standard optimization algorithms.  

 

Algorithm 1.2: Algorithm Description 
 

 In the simple case it is assumed that the energy cost is constant over the demand limiting period. 

Thus, the optimal deferred load, objQ , would be zero until the beginning of the demand limiting period 

 
 

Figure 7: Illustration of superposition in the general linear system approach to demand response. 
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and then be held constant at QT divided by the length of the demand limiting period. Here QT is the total 

deferred energy when the setpoint is changed from Tmin to Tmax, 

  




dles tt

DT dttQQ  , (12) 

where tes and tdl represent the early start and the demand limiting period, respectively. However, in 

practice having a rapid change in the objective function can lead to a non-smooth setpoint trajectory. 

Instead, the optimal deferred load is allowed to ramp up to a constant value during the early start period; 
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 To find the optimal deferred load, a training day setpoint trajectory is applied to the building. A 

typical training day setpoint trajectory may be parabolic during the early start period and linear during the 

demand limiting period and moves from the minimum (or precool) temperature to the maximum 

temperature. The load, DLQ , is monitored during the demand limiting period and DQ  is estimated. From 

DQ  it is possible to find QT and calculated the optimal deferred load using (13). 

 Once the optimal deferred load is found, the goal becomes finding the best linear operator that 

transforms the measured deferred load, DQ ,to the optimal deferred load. The basis functions for the 

deferred load are found during the early start and demand limiting period are found; 

          
 

dt

tQd
tQtQtQdQtQ D

DDD

t

t

DD

startes


     ,,

,

. (14) 

Note that in order to use more than one day of data to increase the span of the basis functions the deferred 

loads should be normalized by QT for that day and the optimal deferred load, objQ , should be written in 

normalized form. This procedure allows multiple days with slightly different QT to be used.  Similarly the 

basis functions for the system input are found; 

            
 

dt

tTd
tTtTtTtTdTtT D

DDD

t

t

DDD

startes


     ,,

,

. (15) 

 The derivative of the temperature setpoint is used as the more natural input to the system. This is done 

because a constant temperature setpoint derivative is expected to cause a constant deferred load, whereas 

a step in the setpoint will cause power to be deferred for a time period before returning to nearly the 

original power usage.  

 The constraints on the temperature, Tmin and Tmax, make it necessary that the temperature setpoint 

transitions from Tmin to Tmax during the early start and demand limiting period for near optimal control. 

This total change in temperature setpoint, 

 minmax TT T , (16) 



Final Scientific Technical Report   
 

Copyright Johnson Controls, Inc. Inc., 2013 
Page - 14 of 48 

must remain the same after the weights are applied to the input basis vectors. Thus, the average derivative 

of the temperature setpoint must remain constant after the weights are applied. To guarantee that this 

occurs, the input basis vectors are first scaled such that each has an average value equal to that of the 

temperature setpoint derivative. The scale factors are given by, 

 
 
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, (17) 

and 
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

 
. (18) 

 Of course, a scaled version of the input will result in a scaled version of the output due to 

linearity. Therefore, the output basis functions are similarly scaled before optimization is performed. Now 

to find the optimal weights, w
o
, to the problem; 

           
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minarg , (19) 

 ;1wtosubject  (20) 

i.e., the sum of all the weights must equal one. Note that wδ
o
, wφ

o
, wι

o
, Any of several optimization 

routines could be used in order to find the optimal weights. Once the weights are found they are applied to 

the temperature setpoint derivative basis functions to obtain a new temperature setpoint derivative, 


DT , 

for the next demand response day; 

      tTswtTwtTswT D

o

D

o

D

o

D 
 

, (21) 

The effect of scaling the integral and derivative portions and constraining the weights to sum to one is to 

force 


DT  to have the same average value as the training day, thus when the derivative is integrated to 

form the setpoint the total change will be equal to the maximum temperature minus the minimum 

temperature. 

 With the derivative of the temperature setpoint known for the next day TD
+
 is found using, 

    
 

t

t

DD

startes

dTtT

,

 , (22) 

which in turn is added to the constant temperature setpoint TL to obtain the temperature setpoint for the 

next demand response day. Each time a demand response temperature setpoint trajectory is run this 

increases the number of basis functions that are available. For example, on the second day the derivative, 

proportional part, and integral is available for both the training day and the first demand response day. 
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The optimization problem can be extended to have six weights in this case still all must add to one. A 

flow chart of the basic algorithm is shown in Figure 8. 

 To allow the algorithm to adapt (e.g. to seasonal changes) and to prevent “overtraining” (i.e. 

having too many parameters in the model) the oldest trajectories should be forgotten over time. For 

example, only the most recent N trajectories could be used.  

 A flow chart of the LSA method is shown in Figure 8. 
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Figure 8:  Flowchart of the basic linear system approach to demand response. 
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Algorithm 2.0:  Model Predictive Control for Demand Response 

 

 Model predictive control (MPC) can be thought of as unifying many different control theory 

areas:  Regularization, Estimation, and System Identification. In the MPC approach to demand response, 

System Identification is used to estimate a model (including the state estimator), and moving horizon 

control is then used to choose the best control sequence. 

 

Algorithm 2.1:  Cascaded approach to Model Predictive Control 

 The model predictive control (MPC) controller for demand response will use a cascaded strategy 

as depicted in Figure 9. The cascaded MPC approach has several advantages over using a single 

controller. Similar to cascaded PID control, cascading MPC controllers allows an inner controller 

(running at a smaller sampling interval) to quickly reject disturbances while the outer controller runs at a 

larger sampling interval while maintaining optimal power usage. Additionally, the outer and inner 

controller can be decoupled in location as well. For example, the outer controller may be implemented in 

the cloud whereas the inner controller may be run in a supervisory controller so that the smaller sampling 

interval is feasible. 

 In the cascaded strategy below, the inner MPC controller is responsible for keeping the buildings 

power, PB, at a power setpoint, Psp, by modulating the temperature setpoint, Tsp. The MPC controller 

calculates the necessary change in the temperature setpoint, spT , which is then integrated before being 

sent to the zone controllers in the building. The outer MPC controller uses the electric consumption and 

demand prices, CC,k and CD,k, respectively to calculate an amount of power that should be deferred, PD. 

The deferred power is subtracted from the typical building load found from past weather and power usage 

data. 

 The inner model predictive control (MPC) controller is responsible for controlling power. The 

controller determines the optimal derivative of the temperature setpoint based on a cost function that 

includes the predicted control error and the rate of change of the control action. These costs represent a 

tradeoff between speed of response and robustness to prediction inaccuracy due to model mismatch. If the 

cost corresponding to the rate of change is high the controller will not make overly aggressive control 

actions in a single step, which could cause instability if the predictions are not accurate. A PID controller 

could be used to perform this control; however, tuning would be difficult. The MPC controller, on the 

 
 

Figure 9: Illustration of the cascaded model predictive control approach for demand response. 
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other hand, is implicitly tuned by the presence of a plant model in the controller. Instead the design 

parameters for MPC control are the relative weighting of the control action to the predicted control error 

(a tradeoff between response time and robustness) and the control and prediction horizons (a tradeoff 

between computational complexity, control performance, and required dynamic response). 

 The outer model predictive control (MPC) controller is responsible for calculating the optimal 

power to defer (with the possibility of a negative deferred power meaning more power is used to cool the 

building) based on current and future electric prices, while still maintaining the temperature between the 

allowable limits. As long as the human comfort constraints are satisfied, there is no cost associated with 

allowing the temperature to fluctuate. Thus, the goal of the outer MPC controller is to minimize the cost 

of electricity, 

 

  iBiD
i

i

iiBiC PCtPCJ ,,,, max , (23) 

 

subject to the constraints, 

 

 iTTT iz  max,min . (24) 

 

To accomplish this goal a model that describes how deferred power affects the zone temperature(s) is 

required. Again, only in a simple single zone case would temperature itself be used. A transformation 

which normalizes all the temperatures onto a similar scale, could be used in lieu of the actual zone 

temperatures for a multiple zone system. 

 

Algorithm 2.2:  System Identification for Model Predictive Control 

 System Identification is the process of determining a system of equations or algorithm for 

predicting future outputs of a system based on all previous input/output data. That is, the goal of system 

identification is to find a “model” that is able to accurately predict future outputs. The word “model” 

carries with it more information than just differential equations that describe the physics of the system 

being identified, but also the stochastic description of the disturbances and how these affect future 

outputs. Mathematically, system identification can be seen as a mapping from past inputs and outputs Zk-1, 

to a model M* where the set of all possible models M(θ) is parameterized by the vector θ. 

 
dD  M . (25) 

Model sets represented in state-space form with a steady-state Kalman gain will be considered; i.e., the 

model is given by 

                 1|ˆ1|ˆ|1ˆ  kkykyKkuBkkxAkkx  , (26) 

             ;0ˆ,1|ˆ1|ˆ xkuDkkxCkky  . (27) 

Here, all the system matrices (A, B, C, and D), the Kalman gain (K) and the initial state estimate (  0x̂ ) 

can all be parameterized in terms of θ. System identification is the process of finding the parameter vector 

θ that minimizes prediction error (or some function of prediction error) using the prediction procedure or 

model (M) implied by equations (26) and (27). 

  


,minarg* 1 tZJ , (28) 
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       


 
0

1 1|ˆ,
k

t kkykyZJ  , (29) 

where   is a non-negative function of the prediction error. 

 In offline system identification the goal is to identify a model, described by the parameter vector, 

θ*, which minimizes the cost function (28), over all the available input/output data Zt-1. The offline 

system identification algorithm is completely specified by the set of possible models, M(θ), the cost 

function, (29), and the optimization algorithm used to minimize the cost function. 

 There are several types of predictive models that could be used to define the model set, M(θ). 

Some common examples include autoregressive, moving average, exogenous (ARMAX) models, 

nonlinear, autoregressive neural networks (NARNET), transfer functions, and linear state-space models. 

If the problem is restricted to linear, grey-box modeling the natural model configuration is state-space 

model with Kalman predictor shown in (26) and (27). Grey-box modeling typically is done by 

parameterizing the physical differential equations describing the system to be identified. The differential 

equations can then be converted to state-space equations in a straight-forward manner. To model the 

building for demand response a simplified physical model is used. 

 A cost function must also be chosen. The form of the cost function, (29), is almost universal 

however the function inside the summation,  , can have many different forms, the most common of 

which is the squared error, 

          kekekkyky 21|ˆ   . (30) 

 Using the prediction error method described above, the inner and outer loops were estimated. 

 
Figure 10:  One step predicted output using the estimator shown in (26) and (27) and the estimated 
system matrices and Kalman gain. The third plot shows the base load as estimated by the Kalman filter. 
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Figure 10 shows the temperature, one-step predicted power, and the load estimate of the inner loop, 

whereas Figure 11 shows the predicted temperature, power, and load estimate of the outer loop. 

 

Algorithm 2.3:  Real-Time Control Trajectory Optimization 

Model Predictive Control (MPC) is a controller design methodology that has its roots in linear 

quadratic regulator (LQR) design found in modern control theory [4]. MPC has been widely adopted in 

the process control industry and a survey of the history of Model Predictive Control can be found in 

reference [5]. Central to MPC is the existence of a model that is utilized to project ahead in time the states 

of the system and the expected outputs. MPC literature [6, 7] uses several different modeling techniques 

to achieve a prediction of the future. For the purposes of this work we will use a state space modeling 

representation given in discrete-time as: 

 
     
     kDukCxky

kBukAxkx



1
 (31)  

Where x represents the states of the system and y represents the outputs of the system. In an MPC 

controller we have a model inside the controller in order to predict the future as shown in Figure 12. As 

shown in Figure 12 the controller block on the left determines the value of the manipulated variable as an 

input to the plant. In simulation environments there will be an expression for the plant model in addition 

to an expression for the MPC model inside of the controller block in order to predict the future values and 

minimize the error over a finite time horizon. Ideally these two models are a perfect match but in practice 

there are mismatches due to the difficulty in modeling the changing physical world. The model mismatch 

is anticipated in MPC theory and taken into account through feedback and weighting functions. LQR 

 
Figure 11:  One step predicted output using the estimator shown in (26) and (27) and the estimated 
system matrices and Kalman gain. The third plot shows the disturbance load as estimated by the Kalman 
filter. 
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theory specifies an optimization of the performance index (cost function, objective function) as the metric 

to determine the optimal u value at an instant in time k. The solution to the discrete-time LQR problem 

over a finite horizon is: 

   )1()(  kxkKku LQR  
(32)

 

where K is found by solving the dynamic Riccati equation. 

 

 

 

 

 

 

 

  

Figure 12:  MPC Block Diagram 

 

 In MPC terminology the control law expresses the cost function of an optimization problem to be 

minimized. Typical expressions for the control law are weighted sum of controller error and control effort 

in the manipulated variable.    

  
 


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k kjkujkjkrkjkyjJ
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22 )]|()[()]|()|()[(   (33) 

 Where Np is the prediction horizon, Nc  is the control horizon, δ and λ are weighting functions between 

the error and control effort terms.   

Minimizing J is an optimization problem subject to constraints on the manipulated variable u, the 

rate of u and constraints on the output variable y. Figure 13 illustrates the MPC optimization problem for 

a step in time. The upper graph illustrates the control action taken at time t while the lower graph 

illustrates the next step forward at t+1. At each step the entire manipulated input is calculated and the first 

value, u(1), is used in the MPC controller as the action to take. Better control is achieved through looking 

forward in the time horizon and minimizing the cost function. An additional option in control is now 
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exposed if we know of potential future changes in the reference setpoint r. One can deploy a look ahead 

strategy and incorporate future r values and take action before the setpoint change has happened.  

 

 
Figure 13:  MPC Visual Representation 

 

 In modern control the state space system of equ. (31) is characterized by matrices A, B, C, D.    

One might ask the question under what conditions can we derive and deploy a system where we know the 

parameters of our state space system? In general there are systems where you can specify in advance the 

model parameters. If you cannot define in advance or only have the form and order but not the actual 

values for the parameters we have a System Identification problem to solve. In System Identification 

theory one tries to identify and model the system. This model may be identified once or adaptively 

identified to account for model parameter changes as time progresses. The state space representation for a 

system with changing model can be expressed as: 

 
     
     kuDkxCky

kuBkxAkx

)()(

)()(1









 

(34)
 

where θ represents variable parameters in the system. 

 Up this point in the section we have been working with deterministic state space representations 

from within the MPC framework. While this represents a methodology for designing the MPC controller 

a more robust solution in the presence of disturbances can be achieved if a stochastic state space 

representation is formed. Additionally, we may not be able to directly measure all of the states and need 

an observer based design to estimate the states or the states that we can measure have noise distribution 

associated with their measurement. The stochastic state space representation for a system can be 

expressed as [8 – 10], 

 

     

     
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





 

(35)
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where w and v are process and measurement noise variables. The solution to the state estimation problem 

is given by  

                 1|ˆ1|ˆ|1ˆ  kkykyKkuBkkxAkkx  , (36) 

             ;0ˆ,1|ˆ1|ˆ xkuDkkxCkky  . (37) 

 where K is the Kalman gain and the hat notation implies estimate of the state and output respectively. 

The notation of (k + 1| k) means the value at k + 1 given the information at k. Therefore the first equation 

reads the estimate of the states at k + 1 given the information up to k and the second equation reads the 

estimate of the output at k given the information up to k -1. The estimate of the states and outputs are 

utilized through the control law optimization problem over the prediction and control horizons. 

 In design of an MPC controller we wish to compensate for an unmeasured disturbance to the 

system.  In MPC terminology this is termed as “offset free” or zero offset MPC controller. In classical 

controls the integral mode in PID controller serves to remove the steady state error of a variable.  

Similarly we can augment the state space description with an integrating disturbance d [10], 
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(38)

 

Rawlings shows how adding this disturbance to the state space description guarantees zero offset in the 

steady state.  Rawling’s further shows that the number of integrating disturbances to introduce equals the 

number of measurements in order to achieve zero offset independently of the controller tuning. 

Model Predictive Control is a unifying control methodology that incorporates technologies of 

feedback control, optimization over a time horizon with constraints, system identification for model 

parameters, state estimation theory for handling disturbances, and a robust mathematical framework to 

enable a state of the art controller. With all of these advantages one might ask what or the disadvantages 

of using MPC?  One obvious answer is does control of the system benefit from prediction forward in 

time? If there is no motivation to predict then classical control with adaptive PID for single loops or 

modern state space control with state feedback or observer is sufficient. Once the need for prediction is 

established then identifying model parameters in an automated way can be challenging.  In fact 

extremum-seeking control addresses the case where obtaining a model is not achievable [12], [13]. 

Additionally identifying Kalman gain for state estimation involves complexity not usually found in 

traditional control systems. At the current time the process control industry [14] has done the cost benefit 

analysis and determine the benefit of MPC far outweigh the cost of understanding the complexity 

involved. As the HVAC industry moves from traditional low level PID control on end devices to more 

supervisory controls incorporating the uncertainties of disturbances such as pricing, weather, people 

movement, electrical loads, it is expected that MPC in the HVAC industry will also follow the same 

trajectory as in process controls and will be warmly embraced. 

Classical control the design parameters are PID gain values and are set to achieve desired dynamic 

and steady state behavior. If adaptive tuning is enabled conditions and constraints on the tuner to 

guarantee stability must be set. In modern control the state feedback gain or observer with state feedback 

gain parameters are design to place the poles at desired locations. In the minimization conducted in 

equation (33) we have the prediction horizon, control horizon, error weighting, control action weighting, 

along with constraints on input and outputs. In this section we give some insight into what selections 

should be made in designing an MPC controller. The sampling and control execution interval should be 

selected as in classical control with τ/10 rule of thumb. 
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Prediction and Control Horizons 

 In MPC we are asked to minimize the cost over the time horizon in equation (33). One might ask 

the question how do we select the number of samples required for the prediction and control horizons and 

what effect does it have on our controller performance? Reference [7] has studied this problem in detail 

and has concluded, very obviously, that the time horizons must be long enough to include the dynamics of 

the system. Given the time constant of a system, τ, an appropriate amount of time would be 5τ. Also 

concluded in the study is that the prediction horizon, Np, must capture the dynamics but the control 

horizon, Nc, does not have to be of the same order and most times little benefit is achieved by having the 

control horizon beyond a portion of the prediction horizon. Recall that only the first value in the control 

vector, u, is actually used and the remaining manipulated variables are utilized in predicting forward. For 

the purposes of the Demand Response MPC we will choose the prediction horizon equal to the control 

horizon and equal to 5 times the longest time constant. In the presence of an adaptive System 

Identification model the time horizon will also be variable. It is expected that the time horizons will be 

constant during a day period and if recursive System Identification is deployed that the changes are small 

and will not significantly change the prior choice of the prediction and control horizon. 

Weighting of Cost Function Terms 

In equation (33) we also have the ability to adjust the relative importance of the output, δ, with 

respect to a reference profile versus control effort, λ, in changing the manipulated variable. An example 

of using weights in an MPC problem would be to set a zero weight to the importance of the error between 

the output and the reference but constrain the output between a minimum and maximum value. This 

allows us to minimize the control effort while staying within the constraints of the desired output. 

Selection of weights is specific to the problem being solved and there are no rule of thumb that can be 

applied. 

Equation (23) gives the basic cost function to be minimized. To implement this in real time 

systems the time horizon needs to be chosen and the cost function needs to be periodically minimized at 

execution intervals. It is worth noting that Equation (23) is a linear equation with the first term and has a 

max function in the second term. Reference [11] illustrates how Equation (23) can be rewritten as a linear 

equation by utilizing constraints on the optimization problem. The resulting cost function can then be 

expressed as:  

  
 


pN
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j

RjRjiiik PDCtPECJ
1 1

. (39) 

subject to constraints, 

 

 Rkji PPP  )( . (40) 

 

For all i samples in the horizon and j regions for demand charge. PR represents the maximum Power in the 

region from current or past days in the month. The value of PR is initially set to zero and increases due to 

constraints on the zone temperature.  It is important to note that regions can and do overlap in time.  An 

example is the “Anytime” demand charge which relates to power at any instant in time is a shared Region 

with the Peak Region which is a demand charge associated with the Peak Region between noon and 6pm.    

Demand charge constraints can be masked during the time of day that they are inactive. During the time 

horizon portion of the calculation at k, only some of the Peak region would have constraints since a 

portion of the time we are not in the Peak region. Similarly only the early portion of the time horizon is in 

the Partial Peak region so those constraints would be active but the constraints relating to later in the time 

horizon would not be in force. This is done utilizing a masking procedure in implementation once the 

regions of interest have been identified.  The masking procedure zeros out a particular constraint equation 

if the region of interest is not valid. As an example consider at time k + 1 where the peak region is not 
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active.  The constraint equation associated with Pk+1 for the peak region will set to zero and not constraint 

the optimization solution.  Alternatively at time k + 20 the constraint equation associated with Pk+20 will 

be in force since at that part of the time horizon we are in the peak region. In the Matlab implementation 

the user specifies the regions as an input into the function and the region vectors are used to mask 

constraints as we walk through the execution during the day.  
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Figure 14:  Illustration of Time Horizon and Partial Peak and Peak Regions 

To facilitate implementation of constraints for zone temperature the addition of Tz for each sample in the 

prediction horizon must be added to the optimization problem. In this case the Tz values have a zero cost 

and are not part of the minimization but must be added to the cost function in Matlab to be able to write 

inequality constraints associated with their values.   

 iTTT iizi  max,min  (41) 

For implementation with the Matlab Linprog (Linear Programming) function both sides of the inequality 

constraints must be written as a less than or equal to condition. 

 
iTT

TT

iiz

iiz





min,

max,
 (42) 

 In addition to inequality constraints there are equality constraints to specify due to the state space 

representation given in Equation (38). To implement in Matlab using Linprog function one has to 

rearrange the equation so that there are states on the left and inputs on the right side of Equation (38).  

Additionally the estimate of Tz and Ts from measurement or state estimate must be seeded as an equality 

constraint at time k.   

The cost function for the inner loop MPC is defined by the Matlab toolbox as: 
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Figure 15:  MPC cost function in Matlab  

 

Figure 16 shows the feedback control system with control variables y, reference inputs r, manipulated 

variables u, and disturbances d, u. 

 

 

  
Figure 16:  MPC naming convention in Matlab 

 

With the predefined cost function the task to complete is defining the system model, variables for the 

inner loop and defining the constraints for the MPC object in Matlab. The number of outputs, y,  and 

reference inputs, r, is determined by the plant model state space matrix C.  The number of manipulated 

variables is determined by the number of inputs to the state space, in this case only Tsp. The type of this 

variable must be set in Matlab through the ‘setmpcsignals’ function to type ‘MV’.  The sampling time and 

execution time of the inner loop is set to 30 seconds in order to capture the dynamics of the system. The 

number of samples in the prediction horizon and control horizon will be 30 samples maximum in order to 

cover the behavior between outer loop samples at 900 seconds and more importantly to make sure the 

inner loop is at steady state by the end of the time horizon. The actual number of samples in the time 

horizon can be calculated from the dynamics in the A matrix of the state space system and therefore when 

an update to the system model is given, new time horizon variables can be calculated.   

 Constraints and weights work together to define the operation of the MPC controller. The 

constraints give limits that the inputs and outputs must maintain and the weights help guide the objective 

function mathematically to optimally reach the best value of the manipulated variables within the time 

horizon. For output weights zero weight is given to the zone temperature and the min and max is 

established to keep within the comfort zone. The manipulated variable Tsp also has to be within a min and 

a max and the rate min and max to accurately reflect the behavior of the controller in the time horizon. 

This has implications that the MPC controller has to query the controller to find out its temperature 
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setpoint min and max.  This keeps the MPC controller and the actual device limits in synch for 

predictions and also prevents a setpoint coming out of the controller being out of range.   

 

Algorithm 3.0:  Product Considerations 

Although the product proof of concept was eliminated from the scope of the project. A study of the 

considerations for moving the algorithms described into a product was performed. These  

 

Algorithm 3.1:  Algorithm Commissioning Steps 

The high level architecture for Demand Response involves zone temperature setpoint modifications 

during the daily time periods. Figure 17 shows the block diagram of a single DR algorithm.  Parameters 

enter the algorithm and determine based on the time of day the setpoint trajectory that must be used in a 

region to achieve the desired load management.  

 

AHU

Region

Demand

Response 

Algorithm

Parameters Tsp

TRegion

PRegion

 
 

Figure 17:  Demand Response High Level Architecture 

 

In Figure 17 the measured zone temperature TRegion and the zone power proxy PRegion may be fed back into 

the DR algorithm if the MPC DR algorithm is deployed.  The user specifies the comfort range by setting 

Tzmin and Tzmax for the region. Figure 18 shows a typical daily cycle with precool and demand limit times. 

 

Tmax

Tmin

Precooling Demand Limiting

t
Recovery/Hold

Tsp,  Tz

 
Figure 18:  Demand Response Daily Cycle 

 

 

A “Region” is defined as a collection of zones all having the same Air Handling Unit (AHU).  The 

rationale behind choosing this point to deploy the Demand Response algorithm stems from the ability to 

identify a model for the space and keep the number of load management entities of a reasonable number 

for monitoring operation.  Figure 9 shows the deployment of five DR implementations across a building 

with 5 AHUs.   
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Figure 19:  Demand Response Deployment 

 

 

 

Within a Region the zone temperatures are gathered by a local application and an overall Region 

temperature (TRegion) is used to represent the temperature in the Region and is used for feedback in the 

MPC Demand Response algorithm.  Figure 20 shows the details of multiple zones as a collection to 

represent a Region.  The Demand Response algorithm gives a single setpoint temperature for the Region 

and there is a local application that distributes this setpoint temperature to each zone.  At the time the 

product is installed on the site the customer can define excluded zones and offset zones where the comfort 

minimums and maximums can be shifted from the overall values specified for a particular zone in a 

Region.  Each zone control maintains it own control system and is not impacted in any way with the 

Demand Response algorithm.  The modification is to the temperature setpoint given to the zone. 
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Figure 20:  Demand Response Local App 

 

 

A model for the behavior of each Region is developed as part of the installation process and the proxy for 

the HVAC power minimums and maximums are established.  The model is used to optimally determine 

the setpoint trajectory in the LSA case.  The model in the MPC DR algorithm is used to predict over a 

future time horizon the behavior of the Region and optimally determine the temperature setpoint on an 

interval as small as 30 seconds. 

 Deployment of the Demand Response solution for load management is expected to add to the list 

of possible modes of operation of the equipment.  One can think of the Demand Response as the final 

supervisory algorithm to be utilized in the space to manage the temperature setpoint.  Specifically the 

following list of conditions must exist before enabling Demand Response: 

 

 The equipment must be scheduled on. Adjustments for earlier precool may necessitate moving the 

on schedule time to earlier in the morning depending on the site and current operation. 

 The air side economizer must be off.  If the economizer is running then we are using outside air to 

assist with our cooling operation and the load to the chiller is not representative.  This is not a 

recommendation to turn off the economizer but rather monitor its use and do not enable the DR 

algorithm when the economizer is in use.  

 The discharge air temperature of the AHU is on setpoint.  Typically this value is around 55 

degrees F and  not being on setpoint indicates that there may be an issue with the chilled water 

provided to the AHU.  Alternatively one could monitor the chilled water value if available.  This 

requirement is within 2 degree F over a 15 minute monitoring interval. 

 The zone control temperatures are within setpoint.  This requirement is targeted at zones that are 

not staying in control and perhaps have been flagged by Fault Detection and Diagnostics as not in 

control.  Zones not in control can be removed by the local DR application and not included in the 

calculation for TRegion.  This requirement is within 2 degree F over a 60 minute monitoring 

interval.  (the 60 minute value will be programmable to 4-5 time constants of the zone) 

 

 

Algorithm 3.2:  Algorithm Commissioning Steps 

 

 The following steps must be implemented to implement the algorithms on a customer site 

for the linear systems approach (LSA). 

1. Identification of N Regions for the site which may include a single or multiple buildings. 

2. Define the DR Local Apps 

2.1. Exclude zones from Regions where desired 
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2.2. Offset zones from Regions where desired for localized human comfort 

2.3. Determine batch or interactive connection 

2.4. Determine active days for the DR algorithm 

3. For each Region identify the Tmin, Tmax, tstart, tend, tprecool (see Figure 17) 

4. For each Region identify if needed the CPP parameters, PeakPrice, CPPPrice, OffPeakPrice, tCPP. 

(see Figure 18). 

5. Monitor and verify good control for 2 days, discharge air temperature, zone temperatures 

6. Review and modify if needed the equipment schedule based on desired tstart, tend, tprecool 

7. Review air side economizer enable/disable based on outside air temperature 

8. Setup trends for TRegion and PRegion and Toa 

9. Enable setpoint variation for 2 observer days. This Tsp will stay within the comfort range. 

10. Enable the LSA DR solution in Panoptix and the DR local app. 

11. Monitor the trends in Regions for the first month 

12. Solicit human comfort input and adjust the comfort zone accordingly 

13. After a full month evaluate the monthly bill with respect to the cost savings reported by the 

monetization output. 

 

 The following steps must be implemented to implement the algorithms on a customer site 

for the model predictive control (MPC). 

1. Identification of N Regions for the site which may include a single or multiple buildings. 

2. Define the DR Local Apps 

2.1. Exclude zones from Regions where desired 

2.2. Offset zones from Regions where desired for localized human comfort 

2.3. Determine batch or interactive connection 

2.4. Determine active days for the DR algorithm 

3. For each Region identify the Tmin, Tmax. 

4. For each Region obtain the weather and pricing data.  (This is expected in most cases to be the 

same for each Region) 

5. Monitor and verify good control for 2 days, discharge air temperature, zone temperatures 

6. Review and modify if needed the equipment schedule based on desired response.  Is the schedule 

turned on so late that the equipment runs full out and cannot precool the Region in time for the 

demand limit time ? 

7. Review air side economizer enable/disable based on outside air temperature 

8. Setup trends for TRegion and PRegion 

9. Enable setpoint variation for 2-3 observer days. This Tsp will stay within the comfort range. 

10. Enable the MPC DR solution in Panoptix and the DR local app. 

11. Monitor the trends in Regions for the first month 

12. Solicit human comfort input and adjust the comfort zone accordingly 

13. After a full month evaluate the monthly bill with respect to the cost savings reported by the 

monetization output. 

 

Algorithm 4.0:  Intellectual Property Developed 

 

1. Innovation Disclosure #66:  Systems and Methods for Detecting and Cleansing Bad Data in BAS 

Systems 

a. Provisional Application #081445-0569:  Systems and Methods for Data Quality Control and 

Cleansing 

b. Conversion to Non-Provisional #081445-0607 

2. Innovation Disclosure #74:  Demand Response by Controlling to a Power Setpoint  
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a. Non-Provisional Application #081445-0573:  Systems and Methods for Controlling Energy 

Use in a Building Management System Using Energy Budgets 

3. Innovation Disclosure #104:  A Linear System Approach to Demand Response  

a. Non-Provisional Application #081445-0577:  Systems and Methods for Controlling Energy 

Use in a Building Management System Using Energy Budgets 

4. Innovation Disclosure #177:  Models in Cascaded Model Predictive Control for Demand Response  

a. Non-Provisional Application #081445-0604:  Systems and Methods for Energy Cost 

Optimization in a Building System. filed with a non-publication request 

b.  Non-Provisional Application #081445-0616:  Systems and Methods for Cascaded Model 

Predictive Control. filed with a non-publication request 

5. Innovation Disclosure # 179:  System Identification for Demand Response (under patent application 

review) 

a. Non-Provisional Application #081445-0606:  System Identification and Model Development. 

filed with a non-publication request 

 

Test Site Results  

Three different algorithms for performing demand response were tested on a library in the Sacramento, 
California area. A modified version of the weighted average (WA) method described in [2]-[3], the linear 
systems approach (LSA) method described previously, and the model predictive control (MPC) method 
also described previously were each tested. The results from the tests are shown in this section and 
summarized in the subsequent tables. 
 The figures show the baseline power usage along with the one standard error confidence 
interval. The purpose of the baseline is to show the expected power usage of the building if no demand 
response were performed. The plots also show the actual power usage and a smoothed version of the 
actual power usage. The power usage of the building was smoothed and added to the plots because the 
staged cooling caused large spikes in the power usage as the stages cycled. 

 
Results 1.0:  Determination of the Baseline 

 Determining the base load during the day a demand response action was taken is part of 
measurement and verification for demand response. Several papers can be found on this subject [15]-
[16]; however, utilities have not standardized on a single methodology for finding the base load. 
 In order to see the effect of the demand response algorithms (which use thermal energy storage 
in the mass of the building) tested at the Valley Hi-North Library in Sacramento, CA an approach similar 
to those with the morning adjustment from ref. [15] will be used. However, the approach described 
here must account for several other factors not considered in [15]. For example, each day at Valley Hi-
North Library has a different occupancy schedule and days when testing was performed have different 
setpoints (all day) than on non-test days.  
 
Results 1.1:  Baseline Methodology 
 The base load on any given test day will be a scaled version of the daily average load profile, 

    tpctp daywsb )( . (43) 
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The method for determining both the scale factor and the profile is given in the following sections. 
 
Results 1.2:  Daily Profile 
 The daily base load consists of finding the general shape of the load profile. The shape of this 
profile is constrained to a function that is piecewise quadratic, continuous, and smooth to the first 
derivative. A single region of this function is dedicated to each hour of the day except during start-up 
and shut-off of the HVAC system. The hour ± 30 minutes of these times is subdivided into regions that 
span only 15 minutes. 
 To estimate p(day)(t) first each of the non-test days was scaled (during the occupied hours) so 
that they had the same mean from 12:12 to 12:54. Then the piecewise quadratic was fit to the data 
using a least squares optimization routine. A (independent) daily profile was calculated for each day of 
the week the library was open. 
 
Results 1.2:  Weather and Occupancy Adjustment 
 To account for different daily schedules, each of the five days the library is open was treated 
separately using the same procedure detailed here. Each non-test day of a given day of the week is to be 
scaled up or down (during the operating hours of the air handler) to account for weather and occupancy 
changes. This is equivalent to what is called morning adjustment in the measurement and verification 
literature. However, in the present case there is no time in the morning when the setpoints are the 
same. Thus, the morning adjustment must be done in a way that accounts for the different temperature 
setpoints. The time chosen to perform the morning adjustment was 12:12 to 12:54. 
 For each of the non-test days for a given day of the week the average outside air temperature 
and average building power was calculated from between 12:12 and 12:54. This time was chosen 
because it was just before the demand response period began on the test days. Thus, this represents the 
time at which the temperature setpoint has been constant for the longest period of time. The setpoint 
was subtracted from the average outside air temperature and linear regression (ordinary least squares) 
was performed in order to obtain the increase in average building power per increase in temperature 
difference at that time. This is shown in the following equations: 

   YXXX TT 1
 , (44) 

where X is a n(day) by 2 matrix with the first column being a column of ones and the second a column 
with the average temperature difference from 12:12 to 12:54 for each non-test day of this particular day 
of the week. Y is a column vector containing the average power during the same time frame. β is the 
vector of linear regression coefficients of which the second element is the increase in average building 
power per increase in temperature difference, βToa. 
 The effective cooling setpoint in the main space is 2 oF cooler on test days compared to non test 
days during the morning adjustment period. If it is assumed that at steady-state the amount of cooling 
power required is only dependent on the difference between the outdoor air temperature and the 
cooling setpoint it is possible to adjust the power for the 2 oF difference by scaling the baseline such that 
the average power from 12:12 to 12:54 on a test day is greater than that of the baseline by the amount 
required to compensate for the extra 2 oF in temperature difference. Mathematically the scale factor of 
the baseline for a specific test day is a constant given by, 
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where the overbar represents the average over the specified time period. When substituted back into 

(43) it is possible to see that the average of the baseline over the time period will be   ToaF 2  less 

than the average of the actual. 

 

 
Results 2.0:  Weighted Average 

 All weighted average tests were performed assuming a “Time of Use” or “Critical Peak Pricing” 
electrical cost profile were the cost was specified as $0.08 /kWh during off-peak hours and $0.50 /kWh 
during peak hours. In each case precooling was performed from the time the HVAC system came on 
until peak hours began. 
 Test set WA1 consisted of five tests during June of 2012. In these tests the on-peak hours were 
specified as 13:00 to 17:00 (the last test lengthened the on-peak hours to 13:00 to 18:00) and the 
temperature was allowed to vary between 71 and 75 oF. The results are tabulated below. Energy and 
cost savings are calculated during the time the HVAC system is operational. Fractional demand is 
calculated using the smoothed values during the demand response period. 
 
Table 1: Results from Weighted Average Testing June 2012. 
Test Precooling 

Period 
Demand 

Response 
Period 

Coast 
Period 

Extra energy 
used during 
precooling 

(kWh) 

Deferred 
energy 
during 

demand 
response 

(kWh) 

Deferred 
energy 

during coast 
period 
(kWh) 

Energy 
Savings 
(kWh) 

Hypothetical 
Cost Savings 

($) 

Fractional 
Demand 

1 9-13 13-17 17-18 36.9 34.1 10.5 7.7 18.4 1.02 

2 8-13 13-17 17-18 44.1 136 25.5 117.4 68.0 0.67 

3 9-13 13-17 17-18 28.7 55.9 10.4 37.6 26.0 0.87 

4 8-13 13-17 None 28.5 120.6 None 92.4 56.4 0.84 

5 9-13 13-18 None 34.7 86.9 None 52.3 36.7 0.86 
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(Wed)Jun 06, 2012; Weighted Average, Linear Training. Additional enregy use during: 1)Peak period, -34.0749 kWh. 2)Precool period, 36.9465 kWh. 3)Coast period, -10.5387 kWh. Energy Savings, 7.6671. Cost savings, 18.3579. Fractional Demand, 1.0197.
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Figure 21: Weighted Average Training Day 1 (Test 1) 
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(Fri)Jun 08, 2012; Weighted Average, Step Training. Additional enregy use during: 1)Peak period, -135.985 kWh. 2)Precool period, 44.0893 kWh. 3)Coast period, -25.5424 kWh. Energy Savings, 117.4381. Cost savings, 67.9578. Fractional Demand, 0.6739.
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  Figure 22: Weighted Average Training Day 2 (Test 2) 
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(Wed)Jun 13, 2012; Weighted Average, Test 1. Additional enregy use during: 1)Peak period, -55.8877 kWh. 2)Precool period, 28.6788 kWh. 3)Coast period, -10.4363 kWh. Energy Savings, 37.6452. Cost savings, 26.0351. Fractional Demand, 0.86645.
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  Figure 23: Weighted Average Run 1 (Test 3) 
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(Sat)Jun 16, 2012; Weighted Average, Test 2. Additional enregy use during: 1)Peak period, -120.5582 kWh. 2)Precool period, 28.5355 kWh. 3)Coast period, -0.36985 kWh. Energy Savings, 92.3926. Cost savings, 56.4042. Fractional Demand, 0.84148.
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  Figure 24: Weighted Average Run 2 (Test 4) 
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(Thu)Jun 21, 2012; Weighted Average, Test 3. Additional enregy use during: 1)Peak period, -86.9135 kWh. 2)Precool period, 34.6921 kWh. 3)Coast period, -0.12259 kWh. Energy Savings, 52.3439. Cost savings, 36.6959. Fractional Demand, 0.86098.
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  Figure 25: Weighted Average Run 3, Long demand response period (Test 5) 

 
 Each Test, Including the training days, showed significant cost savings given the CPP cost profile. 
More surprisingly, the tests also all showed significant energy savings. It is hypothesized that while the 
building may be using more “chilled air” energy at the terminal unit to keep the temperature at the 
precooling setpoint in the morning than is saved while deferring energy use in the afternoon, the 
“chilled air” energy costs less to produce during the morning due to increased efficiency of the cooling 
system when the wet bulb temperature of the outside air is lower. Additionally, all tests reached the 
goal of a fractional demand less than 0.9 except the first training day where the linear setpoint 
trajectory does not pull down the power use fast enough to limit the demand during the demand 
response period. 
 Test set WA2 consisted of four tests during August of 2012. In these tests the on-peak hours 
were specified as 13:00 to 17:00 and the temperature was allowed to vary between 71 and 76 oF. The 
results are tabulated below. . Energy and cost savings are calculated during the time the HVAC system is 
operational. Fractional demand is calculated using the smoothed values during the demand response 
period. 
 
Table 2: Results from Weighted Average Testing August 2012. 
Test Precooling 

Period 
Demand 

Response 
Period 

Coast 
Period 

Extra energy 
used during 
precooling 

(kWh) 

Deferred 
energy 
during 

demand 
response 

(kWh) 

Deferred 
energy 

during coast 
period 
(kWh) 

Energy 
Savings 
(kWh) 

Hypothetical 
Cost Savings 

($) 

Fractional 
Demand 

10 9-13 13-17 17-18 19.4 19.9 -3.5 -3.1 8.2 1.0 

11 9-13 13-17 17-20 53.7 120 109 175 65.0 0.76 

12 9-13 13-17 17-18 26.5 45.1 12.6 31.2 23.9 0.85 

13 8-13 13-17 17-18 19.0 48.3 18.9 48.3 27.4 0.80 
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(Wed)Aug 08, 2012; Weighted Average, Linear Training 2. Additional enregy use during: 1)Peak period, -19.8833 kWh. 2)Precool period, 19.4206 kWh. 3)Coast period, 3.5322 kWh. Energy Savings, -3.0694. Cost savings, 8.2316. Fractional Demand, 1.0067.
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Figure 26: Weighted Average Training Day 1b (Test 10) 
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(Tue)Aug 14, 2012; Weighted Average, Step Training 2. Additional enregy use during: 1)Peak period, -119.562 kWh. 2)Precool period, 53.6794 kWh. 3)Coast period, -109.0766 kWh. Energy Savings, 174.9592. Cost savings, 65.0961. Fractional Demand, 0.76032.
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Figure 27: Weighted Average Training Day 2b (Test 11) 
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(Thu)Aug 16, 2012; Weighted Average, Test 4. Additional enregy use during: 1)Peak period, -45.0651 kWh. 2)Precool period, 26.5132 kWh. 3)Coast period, -12.6028 kWh. Energy Savings, 31.1547. Cost savings, 23.902. Fractional Demand, 0.85304.
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Figure 28: Weighted Average Run 4 (Test 12) 
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(Fri)Aug 17, 2012; Weighted Average, Test 5. Additional enregy use during: 1)Peak period, -48.3463 kWh. 2)Precool period, 18.9824 kWh. 3)Coast period, -18.9247 kWh. Energy Savings, 48.2886. Cost savings, 27.401. Fractional Demand, 0.80927.
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Figure 29: Weighted Average Run 5 (Test 13) 

 
 
 The second set of WA test showed very similar results to those of the first set. Only the linear 
training day did not show a net energy savings and a fractional demand of less than 0.9. 
 
 
 
 
 
 
 
 
 
 



Final Scientific Technical Report   
 

Copyright Johnson Controls, Inc. Inc., 2013 
Page - 39 of 48 

 
 
 
Results 2.0:  Linear Systems Approach 

 
 The LSA test were divided into two test sets. Test sets 1 and 2 were performed assuming a 
“Time of Use” or “Critical Peak Pricing” electrical cost profile were the cost was specified as $0.08 /kWh 
during off-peak hours and $0.50 /kWh during peak hours.  
 Test set LSA1 consisted of five tests during July of 2012. In these tests the on-peak hours were 
specified as 13:30 to 17:30 (the last test lengthened the on-peak hours to 13:30 to 18:00) and the 
temperature was allowed to vary between 71 and 75 oF. The results are tabulated below. Energy and 
cost savings are calculated during the time the HVAC system is operational. Fractional demand is 
calculated using the smoothed values during the demand response period. 
 
Table 3: Results from Linear Systems Approach July 2012. 
Test Precooling 

Period 
Demand 

Response 
Period 

Coast 
Period 

Extra energy 
used during 
precooling 

(kWh) 

Deferred 
energy 
during 

demand 
response 

(kWh) 

Deferred 
energy 

during coast 
period 
(kWh) 

Energy 
Savings 
(kWh) 

Hypothetical 
Cost Savings 

($) 

Fractional 
Demand 

6 9-13.5 13.5-17.5 17.5-18 21.5 94.2 18.7 91.3 47.1 0.83 

7 9-13.5 13.5-17.5 17.5-20 17.2 59.2 32.6 74.5 30.9 0.80 

8 9-13.5 13.5-17.5 17.5-18 21.5 23.2 2.7 4.3 10.1 0.89 

9 9-13.5 13.5-18.5 18.5-20 43.1 70.8 58.3 86.0 36.8 0.84 
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Table 3: Results from Linear Systems Approach Testing July 2012 
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(Thu)Jul 12, 2012; Linear System Approach, Training. Additional enregy use during: 1)Peak period, -94.1808 kWh. 2)Precool period, 21.5488 kWh. 3)Coast period, -18.6819 kWh. Energy Savings, 91.3139. Cost savings, 47.1336. Fractional Demand, 0.83263.
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Figure 30: Linear Systems Approach Training Day  (Test 6) 
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(Tue)Jul 17, 2012; Linear System Approach, Test 1. Additional enregy use during: 1)Peak period, -59.226 kWh. 2)Precool period, 17.2448 kWh. 3)Coast period, -32.5579 kWh. Energy Savings, 74.539. Cost savings, 30.9339. Fractional Demand, 0.7981.
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Figure 31: Linear Systems Approach Run 1  (Test 7) 
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(Thu)Jul 19, 2012; Linear System Approach, Test 1b. Additional enregy use during: 1)Peak period, -23.1539 kWh. 2)Precool period, 21.5453 kWh. 3)Coast period, -2.7385 kWh. Energy Savings, 4.3472. Cost savings, 10.1279. Fractional Demand, 0.89466.
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Figure 32: Linear Systems Approach Run 2 (Test 8) 
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(Tue)Jul 24, 2012; Linear System Approach, Test 2. Additional enregy use during: 1)Peak period, -70.8253 kWh. 2)Precool period, 43.086 kWh. 3)Coast period, -58.2609 kWh. Energy Savings, 86.0002. Cost savings, 36.8028. Fractional Demand, 0.84477.
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Figure 33: Linear Systems Approach Run 3 (Test 9) 

 
 

 These tests are similar to those of the WA method; however, there are some significant 
improvements. The LSA method only requires one training day and that training day had a fractional 
demand of less than 0.9. Additionally, the power usage during the demand limiting period is flatter. This 
is a desirable property if demand charges were also in place.  
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 Test set LSA2 consisted of five tests during August of 2012. In these tests the on-peak hours 
were specified as 13:30 to 17:30 and the temperature was allowed to vary between 71 and 76 oF. The 
results are tabulated below. Energy and cost savings are calculated during the time the HVAC system is 
operational. Fractional demand is calculated using the smoothed values during the demand response 
period. 
 
Table 4: Results from Linear Systems Approach Testing Aug 2012 
Test Precooling 

Period 
Demand 

Response 
Period 

Coast 
Period 

Extra energy 
used during 
precooling 

(kWh) 

Deferred 
energy 
during 

demand 
response 

(kWh) 

Deferred 
energy 

during coast 
period 
(kWh) 

Energy 
Savings 
(kWh) 

Hypothetical 
Cost Savings 

($) 

Fractional 
Demand 

14 9-13.5 13.5-17.5 17.5-18 13.0 43.0 8.8 38.9 23.5 0.98 

15 8-13.5 13.5-17.5 17.5-18 34.2 76.4 11.9 54.1 36.6 0.78 

16 9-13.5 13.5-17.5 17.5-20 31.0 74.7 50.9 94.7 39.2 0.91 
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(Wed)Aug 22, 2012; Linear System Approach, Training 2. Additional enregy use during: 1)Peak period, -43.0336 kWh. 2)Precool period, 12.9562 kWh. 3)Coast period, -8.7916 kWh. Energy Savings, 38.8691. Cost savings, 23.4881. Fractional Demand, 0.97577.
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Figure 34: Linear Systems Approach Training Day b (Test 14) 
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(Fri)Aug 24, 2012; Linear System Approach, Test 4. Additional enregy use during: 1)Peak period, -76.4163 kWh. 2)Precool period, 34.2239 kWh. 3)Coast period, -11.9191 kWh. Energy Savings, 54.1115. Cost savings, 36.6124. Fractional Demand, 0.78305.
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Figure 35: Linear Systems Approach Run 4 (Test 15) 
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(Tue)Aug 28, 2012; Linear System Approach, Test 5. Additional enregy use during: 1)Peak period, -74.7033 kWh. 2)Precool period, 30.9827 kWh. 3)Coast period, -50.9469 kWh. Energy Savings, 94.6675. Cost savings, 39.1513. Fractional Demand, 0.91373.

 

 

Baseline Estimate

Upper Confidence Limit (of the Baseline)

Lower Confidence Limit (of the Baseline)

DR Power

Smoothed DR Power

 
Figure 36: Linear Systems Approach Run 5 (Test 16) 

 
 
 The results of test set LSA 2 are similar to those of LSA1. In this case, however, the training day’s 
fractional demand was greater than 0.9. 
 
 
Results 3.0:  Model Predictive Control Results 

 After performing training days in order to obtain a model of the relationship between the 
buildings power usage and the temperature setpoint, two model predictive control tests were run in 
October – November of 2012. In these tests the temperature setpoint was allowed to vary between 71 
and 73 degrees.  
 During test MPC 1 a simple time of use rate was used. As expected the controller kept the 
temperature low during the morning and allowed the temperature to increase during the high cost time 
period in order to reduce power. In this particular test, little savings versus the baseline were realized. 
However, this is likely due to a failure of the baseline to adequately represent what the constant 
setpoint controller would have done on that day rather than the predictive controller failing to optimize 
cost. 
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Figure 37: Results of Model Predictive Control Applied to Time-of-Use rate. 
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 During test MPC2 a hypothetical real-time-pricing profile was used as shown in the figure below. 
As expected the predictive controller allows the temperature to rise during high cost times in order to 
reduce power. Using model predictive control the total cost was $107.14, whereas baseline energy 
usage was $131.54. This represents a savings of $24.40 or 19%. 
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Figure 38: Results of Model Predictive Control Applied to Real-Time-Pricing rate.



 

Conclusion 

 Two new predictive controllers for performing demand response were demonstrated. The 

first of the control algorithms (LSA) is based on linear systems theory and is applicable to time-

of-use and day-ahead critical peak pricing utility rates. The second of the control algorithms 

(MPC) uses model predictive control to develop the optimal setpoint trajectory through time as 

energy rates change. Model predictive control lends itself well to real-time-pricing rates, though 

it can be used for other types of time varying electrical rates such as time-of-use and day-ahead 

critical peak pricing. 

 While neither of the new predictive control algorithms were moved into a Johnson 

Controls product, both were demonstrated in field tests where the control algorithm running in 

MATLAB communicated zone temperature setpoints to the individual VAV boxes. Because only 

zone temperature setpoint was manipulated little configuration was need. Only the correct 

BACnet points for the zone temperature setpoints, the zone temperatures, and the power usage 

needed to be mapped back to the algorithm. Methods for implementing these algorithms into a 

product were also given so that the algorithms can be quickly productized when demand 

response becomes a business priority. 

 In the presence of time varying utility rates both methods showed good promise for 

performing demand response, often saving more than 20% in electrical cost. The model 

predictive control algorithm shows great promise for real-time-pricing rates; however, more time 

is required to sort out some of the implementation details before a viable product would result 

(e.g., anti-windup, etc.).  

 Additionally, our field tests showed that demand response not only realized a cost 

savings, but also an energy savings. The energy savings likely occurs due to the natural 

efficiencies of using chillers during the morning when wet-bulb temperatures are low. The fact 

that energy can be saved by performing demand response means that every building is a potential 

user of these algorithms regardless of the cost structure employed by the utility, a fact that should 

inspire future research in the area of demand response. 
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