
On the Quantitative Assessment of
Class Model Compositions: An Exploratory Study

Kleinner Oliveira1, Alessandro Garcia2, Jon Whittle2

1 Computer Science Department

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, RJ - Brazil

kleinner@gmail.com

2 Computing Department
Lancaster University – InfoLab 21

Lancaster - UK
{alessandro,jon}@comp.lancs.ac.uk

Abstract. Model composition can be viewed in model-driven engineering as an
operation where a set of activities should be performed to merge two input
models into a single output model. The latter aggregates syntactical and
semantic properties from the original models. However, given the growing
heterogeneity of model composition strategies, it is particularly challenging for
designers to objectively assess them given a particular problem at hand. The
key problem is that there is a lack of canonical set of indicators to quantify
harmful properties associated with the output models, such as composition
conflicts and modularity anomalies. This paper presents an inquisitive study in
order to capture an initial set of metrics for assessing and comparing model
composition strategies in two case studies. We apply a number of metrics to
quantify different conflict types and modularity properties arising at composite
class models produced with override and merge-based strategies. We have
observed that some of the quantitative indicators were effective to pinpoint
when a model composition strategy is not properly chosen. In some cases, the
output models exhibited non-obvious undesirable conflicts and anti-modularity
factors.

Keywords: Model Composition, MDE, Metrics, Assessment.

1 Introduction

Given the central role that model composition plays in model-driven engineering
nowadays, researchers are increasingly focusing on defining and improving
alternative techniques for composing structural or behavioural models. Model
composition can be defined by a composition operation, a special type of model
transformation, that takes two models Ma and Mb as input models and combines their
elements into an output model Mab. Several mechanisms have been proposed in order
to put model composition into practice (e.g., see [2, 3, 4, 5, 6]), based on related work

MODELS`08 Workshop ESMDE

1

mailto:kleinner@gmail.com
mailto:xyz@gmail.com

in many different domains, such as database integration [7], aspect-oriented modeling,
model transformation , and merging of state charts.

However, not much attention has been paid to the quality assessment of such model
composition techniques. Even worse, according to [5] there is very little experience
that can be used to determine the worth of current approaches. Given the growing
heterogeneity of model composition strategies [3], such as override and merge, it is
intrinsically difficult to systematically quantify undesirable phenomena that arise in
the output composite models, including abstract syntax conflicts and semantic
clashes. It is particularly challenging for researchers or designers to objectively assess
the output model and the composition strategy itself given the problem at hand.

In this paper we start to tackle such needs through an exploratory study (Section 2)
on assessing composition strategies for class models. The goal is to inquisitively
identify an initial set of indicators for the evaluation and comparison of alternative
composition strategies. We have applied a metrics suite (Section 3) to quantify the
conflicts rate and modularity properties arising in class model compositions based on
merge and override. Our long-term goal is to define a comprehensive assessment
framework intended to guide researchers and designers on the assessment of model
composition techniques. In our study, we have detected that some of the used
quantitative indicators were effective to determine when a model composition
strategy is not properly chosen (Section 4). In certain cases, the output models
exhibited non-obvious syntactic and semantic conflicts and a number of modularity
anomalies not existing in the original input models. We also contrast the initial
findings of our exploratory investigation with related work (Section 5). Finally, we
present some concluding remarks (Section 6).

2 Experimental Procedures

This section describes the experimental procedures used in our exploratory study.
Two case studies were performed in order to investigate possible problems associated
with the use of composition strategies for class models. The first study comprises a set
of real-life models for an Automated Highway Toll System. In this case, different
members of a distributed software development team were in charge of modeling
different use cases of the system. They would need to cope with model composition
problems when bringing the use cases together.

There are three packages, namely (for simplification) Packages A, B, and C, where
each of them implements a set of use cases. There are two explicit compositions
defined for these packages (Figure 1). Package A presents a UML class diagram that
specifies basically functionalities related to: create user account, add funds, and stop
toll booth. Package B specifies functionalities related to: synchronizes accounts,
process credit card, transponder and vehicle. While the Package C specifies
functionalities related to add transponder and start toll booth. The goal is to produce
an output Package that gathers all functionalities together. To this end, we need to
merge the Package A, B and C according to a particular composition strategy
(override or merge specifically). The choice of a particular composition strategy is

MODELS`08 Workshop ESMDE

2

very important to produce sound output models while not introducing modularity
impairments.

Figure 1. Example of composition of an automated highway toll system.

The second study consists of a literature-based [11] example of a calculator that is
depicted in Figure 2. It has two packages: (1) Package A presents a UML class
diagram that specifies a Calculator to implement two basic functionalities: sum and
subtraction; and (2) Package B represents a Calculator that implements three
functionalities: sum, division, and multiplication. The goal is to produce an output
Calculator that contains four operations: sum, subtraction, division, multiplication. To
do this, we need to put these functionalities together in a single Package by merging
Package A and Package B.

Our aim is to assess in which ways the composition strategies (override and merge
specifically) impact on the input models’ properties. The merge strategy usage is
more appropriate when the input design models contain specifications for different
requirements of a software system. On the other hand, the override strategy can be
indicated when elements in an existing model need to be somehow evolved or
changed. The semantics of the override strategy [3] can be briefly defined as: (i) for
all elements in the Package A and Package B that are corresponding, the Package A’s
element should override its corresponding element; and (ii) elements in the Package A
and B that are not involved in a correspondence match remain unchanged and they are
inserted into the output model (Package AB).

The semantics of the merge strategy [3] can also be defined as: (i) for all
elements in the Package A and Package B that are corresponding elements, they
should be combined; and (ii) elements in the Package A and B that are not involved in
a correspondence match remain unchanged and they are inserted into the output
model (Package AB). However, when we put these elements together in the output
model (as the result of either overriding corresponding elements or adding elements in

MODELS`08 Workshop ESMDE

3

the Package AB directly) may result in some problems such as semantic clashes. We
will propose a metrics suite to provide ways to assess how useful or harmful such
composition relationships are following a specific composition strategy. The goal is to
provide initial support for designers and researchers objectively analyze which
composition strategy minimizes the conflicts rate while maximizing modularity
benefits in the output model.

Figure 2. Example of composition of calculators

3 A Metrics Suite for Model Composition

This section presents the metrics suite defined for assessing the model compositions
in our exploratory study. This framework guides the researchers for assessing and
coping with difficulties of UML model composition assessment.

3.1 Quantifying Composition Conflicts Rate

Number of Abstract Syntax Conflicts (NAbSC)
This metric counts the number of abstract syntax conflicts in a class model. Abstract
syntax conflicts occur when a model does not comply with the UML metamodel’
metaclasses and their structural relationships. It is a well-known problem, for
instance, in graph transformations. The goal is to quantify and check inconsistencies
of the target models against the UML metamodel. Once all the conflicts have been
addressed (i.e. NAbSC = 0), the output model can be considered as compliant to he
UML metamodel. Otherwise, the output model is an invalid or non-compliant model.

, ∑
=

=
SM

i
ikNAbSC

1

where:
SM – a set of model elements.

– the number of AbSC of the i-th model element. ik

MODELS`08 Workshop ESMDE

4

Number of Semantic Clash Conflicts (NSCC)
This metric counts the number of semantic clash conflicts in a model. A semantic
clash conflict occurs when model elements have different names, however, with same
semantic value. We need to quantify such conflicts in order to identify unexpected
semantic clash problems in the output models. For instance, models with semantic
clashes may become ambiguous and inconsistent. In addition, it may affect the model
understandability or complicate some tasks such as model transformation and code
generation. If the NSCC has a high value, it may imply that the output model is
useless. This metric is given by the formula:

∑
=

=
SM

i
iwNSCC

12
1

 ,
where:
SM – a set of model elements.

iw – a boolean value that represents if an i-th model

Number of Compositions of a Model Element (NCME)
This metric counts the number of compositions that a model element has participated.
The number of compositions may be an effective indicator of semantic mix conflict.
When model elements are composed, their semantics are mixed and it may lead to
unsound model elements. For example, a design pattern assigns roles to their
participant classes, which define the functionality of the participants in the pattern
context. When UML class diagrams are merged such roles may be modified having
negative impacts on quality attributes of the design pattern. This metric is given by
the formula:

MNCME = , where:
M – the number of compositions that a model element has
participated during the composition process.

Number of Behavioral Feature Conflicts (NBFC)
This metric counts the number of behavioral feature conflicts in a class. A behavioral
feature conflict may occur when a class: (1) has two (or more) methods that are used
with the same purpose, and (2) refers to a method that no longer exists, or exists
under a different behavior that is not expected. The high NBFC measure may
represent some undesirable model composition phenomena. This metric is determined
by the formula:

BNBFC = , where:
B – the number of behavioral feature (method) conflicts in a class

Number of Unmeaning Model Elements (NUME)
This metric counts the number of unmeaning model elements in a model. During the
composition process, the model elements are manipulated and sometimes some
elements are not referred nor make reference to other elements, that is, they are
isolated. This metric is given by the formula:

where:
U – the number of unmeaning model element in a mode.

UNUME = ,

MODELS`08 Workshop ESMDE

5

3.2 Quantifying Modularity Anomalies in Composite Models

We have also applied some classical metrics intended to measure some modularity-
related characteristics of a class, such as coupling degree, number of attributes, and
operations. These metrics are described in Table II. Due to space constraints, these
metrics are briefly presented. In fact, most of these metrics (e.g. NATC and CBC)
were originally defined by other authors and their definitions can be found in their
respective publications [14, 17]. The goal of using these metrics is to assess how the
composition process affects the output models regarding some design principles, such
as low coupling, when we specify different composition strategies. In addition, in
many cases, composition strategies can artificially lead to the introduction of design
anomalies (“bad smells”), such as “Temporary Field”; this bad smell can be identified
comparing the NATC of a class in the output model against the respective classes in
the input models used for the composition.

 Table I. The Class-level Modularity Metrics

Metric Description
Number of Attributes in a
Class (NATC)

Counts the number of attributes in a class.

Number of Operations in a Class
(NOPC)

Counts the number of operation in a class.

Number of Associations between
Classes (NASC)

Counts the number of associations per class; the new
language produced from a model composition may not
be consistent with the domain defined previously.

Coupling between Classes (CBC)

Counts the number of all dependencies of a class to
other classes in the system.

Number of Subclasses of a Class
(NSUBC)

Counts the number of children of a class.

Number of Superclasses of a
Class (NSUPC)

Counts the parents of a class.

4. Results and Discussion

Quantitative assessment is an effective way to supply measures and evidence that may
improve our understanding about model-driven engineering techniques, in our case,
model composition. Although quantitative studies have some disadvantages, they are
very useful because they boil a complex situation down to simple numbers that are
easier to grasp and discuss. This section provides a general analysis and discussion of
the data that have been collected from applying the set of defined metrics to model
compositions derived in the two case studies (Section 2).

Graphics are used to represent the data gathered in the measurement process. The
Y-axis presents the absolute values gathered by the metrics. Each pair of bars is
attached to an integer value, which represents the measure. The X-axis specifies the
metric itself. These graphics help analyzing how the composition of the input models
affects (or not) the output model regarding a particular metric. These graphics support
an analysis of how the change of composition strategy affect (or not) the output
model. The results shown in the graphics were gathered according to the model point

MODELS`08 Workshop ESMDE

6

of view; that is, they represent the total of metric values associated with all the model
elements for each model (output model) that is being considered.

Figure 3 depicts the overall composition results between Package A, B and C of
the Automated Highway Toll System following the override and merge strategy. We
compare the output model produced by the override and merge strategy and it is
possible to observe that no measure was detected to the metrics such as NSUNC,
NSUPC, NAbSC, and NSCC. On the other hand, the NOPC metrics have a higher
measurement following merge strategy than override strategy. This observation can
indicate a negative point considering reusability. Although not showing differences
between each other with regard to the NASC, NSUBC, and NSUPC metrics, the
output models presents significant differences, for example, the Package BAC
produced by the merge strategy presents all functionalities defined in the Package A,
B and C, while the Package BAC produced by the override strategy contains only
functionalities defined in the Package B.

According to the measures concerning the number of associations between
classes (NASC), the number of abstract syntax conflicts (NAbSC), and the number of
subclasses (NSUBC) and superclasses of a class (NSUPC), no significant difference
was detected in favor of a specific composition strategy when applied to the two case
studies. The measures of NSUBC and NSUPC can be easily explained because both
case studies do not exhibit a hierarchy-depth in their inheritance relationships. On the
other hand, the measure of NASC supplies evidence of that number of associations of
a Class contains is independent of type of composition strategy.

Package BAC produced by the override strategy provided higher results in two
measurements, NCME and NUME. When EntranceLightInterface is inserted in the
Package BAC this class becomes unmeaning, because of the class that it makes
relationship, PackageA.BoothController, no longer exists (PackageA.BoothController
is overridden by the PackageB.BoothController). The NASC and CBC measurement
have same values. So the coupling in the Package BAC is independent of the kind of
composition strategy in this case.

Figure 3. Comparison between output models produced following

override and merge strategy.

MODELS`08 Workshop ESMDE

7

The measurement regarding the output Calculators has provided some results that
are depicted in Figure 4. We compare the output Calculators produced following
override and merge strategy. Although not showing differences between each other
regarding the NASC, NSUBC, and NSUPC metrics, the output models present
significant differences. The Package AB produced by the merge strategy has higher
values for some metric measures such as NATC, NOPC, CBC, NSCC, NCME, and
NBFC. On the other hand, Package AB produced by the override strategy provided
higher results in one only measure, NUME, because two enumerations,
CalculatorType and ExpressionType, are unmeaning in the Package.

Figure 4. Comparison between calculators produced following override and

merge strategy.

According to the data gathered, the most useful metrics in this exploratory study
were as follows. First, number of semantic clash conflicts (NSCC) as it indicated the
presence of a significative number of negative semantic clashes. This measure served
as warnings of not helpful output models using a particular composition strategy
through the identification of ambiguity and inconsistency arising in semantic clashes.
The observation of Figure 3 provides evidence of the effectiveness of this metrics.
Second, number of unmeaning model elements (NUME) supplied evidence that
override strategy is potentially harmful when used beyond the purposed of evolving
or changing an existing model. The output models, based on override-driven
compositions, had elements that are not referred nor make reference to other
elements, that is, they are isolated (unmeaning in the package). Thus, regarding this
metric the better strategy to be applied in the case studies was the merge strategy.

Finally, after observing all the conflict rate and modularity results, the metrics
indicated that the merge strategy is the best strategy to be used in our two case
studies. This finding is also mainly based on the measures of NUME and NSCC
(discussed above). Moreover, we should highlight that, as expected, it is particularly
challenging for researches to objectively assess the output models and identify
conflicts associated with some metrics such as NUME, NAbSC and NSCC.
Therefore, the issue of improving automated support for measuring conflict rates
should be a topic of future work.

5. Related Work

There is little related work focusing on either the quantitative assessment of models in
general or on the quantitative assessment of model compositions. Up to now, most

MODELS`08 Workshop ESMDE

8

approaches involving model composition rest on subjective assessment criteria. Even
worse, they lead to dependence on experts who have built up an arsenal of mentally-
held indicators to evaluate the growing complexity of design models in general [5].
As a consequence, the truth is that modelers ultimately rely on feedback from experts
to determine “how good” the input models and their compositions are. According to
[5], the state of the practice in assessing model quality provides evidence that
modeling is still in the craftsmanship era and when we assess model composition this
problem is accentuated.

To the best of our knowledge, the need for assessing models during a model
composition process neither have been pointed out nor even proposed by current
model composition techniques [2, 3, 4, 8, 9]. For example, the UML built-in
composition mechanism, namely package merge, does not define metrics or criteria to
assess the merged UML models. Moreover, it has been found to be incomplete,
ambiguous and inconsistent [6].

The lack of quantitative indicators for model compositions hinder our process of
understanding better side effects peculiar to certain model composition strategies.
Many different types of metrics have been developed during the past few decades for
different UML models. These metrics have certainly helped designers analyze their
UML models to some extent. However, as researchers’ focus has shifted to the
activities related to model management (such as model composition, evolution and
transformation), hence the shortcomings and limitation of UML model metrics have
become more apparent. Some authors [1, 12, 13-18] have proposed a set of metrics
that consider UML model’s properties. These works have shown that their measures
satisfy some properties expected for good measures of design models. However, these
metrics can not be employed to assess problems that may arise in a model
composition process such as semantic clashes.

6. Concluding Remarks and Future Work

If models are seen as primary development and transformation artifacts in model-
driven engineering, then software designers naturally become concerned with how
their quality is evaluated. In order to be considered for use in mainstream software
development, model composition techniques should be supplemented with quality
criteria and indicators. These elements are fundamental for developing and analyzing
composition processes and output models. We presented an exploratory study and an
initial metrics suite for assessing class model compositions generated by a selected set
of model composition strategies. Such metrics are applied to output models and some
analysis are performed according to the data gathered.

Our initial evaluation has demonstrated the feasibility of our candidate set of
metrics for quantifying modularity properties and conflict rates in composition
processes. Obviously, more investigations on its applicability to large UML model
compositions are required. Further empirical evaluations are indeed fundamental to
validate our quantitative indicators in real-world design settings involving UML
model compositions. Thus, future work will concentrate on designing and carrying
out a family of empirical studies to assess, for example, compositions of the most
popular OMG’s UML profiles in realistic scenarios. Finally, we should point out that

MODELS`08 Workshop ESMDE

9

model composition assessment is in initial stage and there is very little experience that
can be used to determine the feasibility of current approaches. Moreover, its
empirical-driven improvement, supported by a comprehensive set of well-validated
metrics suite, is absolutely necessary to the evolution of model-driven engineering
field. This work represents one of the first stepping stones towards this end.

References

1. J. Aranda, N. Ernst, J. Horkoff, and S. Easterbrook. A Framework for Empirical Evaluation
of Model Comprehensibility. In International Workshop on Modeling in Software
Engineering (MiSE), pp. 20-26, May, 2007.

2. G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A Manifesto
for Model Merging. In International Workshop on Global Integrated Model Management
(GaMMa’06), pages 5–12, Shanghai, China, May 2006. ACM Press.

3 S. Clarke and R. Walker. Composition Patterns: an Approach to Designing Reusable
Aspects. 23rd Intl. Conf. on Software Engineering, pp. 5–14, Toronto, Canada, 2001.

4 T. Cotternier, A. van den Berg, and T. Elrad. Modeling Aspect-Oriented Composition. In
7th International Workshop n Aspect-Oriented Modeling co-located with (MODELS’ 05),
Montego Bay, Jamaica, October 2005.

5 R. France and B. Rumpe. Model-Driven Development of Complex Software: A Research
Roadmap. In Future of Software Engineering (FOSE’07) co-located with ICSE’07, pages
37–54, Minnesota, EUA, May 2007.

6 OMG, Unified Modeling Language: Infrastructure version 2.1, Object Management Group,
February 2007.

7 E. Rahm and P. Bernstein. A Survey of Approaches to Automatic Schema Matching. VLDB
Journal: Very Large Data Bases, 10(4):334–350, 2001.

8 R. Reddy, R. France, S. Ghosh, F. Fleurey, and B. Baudry. Model Composition – a
Signature-Based Approach. In Aspect Oriented Modeling (AOM) Workshop, Montego Bay,
Jamaica, October 2005.

9 Y. Reddy, R. France, G. Straw, N. M. J. Bieman, E. Song, and G. Georg. Directives for
Composing Aspect-Oriented Design Class Models. Transactions of Aspect-Oriented
Software Development, 1(1):75–105, 2006.

10 B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19–25,
2003.

11. Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, 1995.

12. Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994

13. A. Baroni, Quantitative assessment of UML dynamic models, SIGSOFT Software Eng.
Notes, vol. 30, no. 5, pp. 366-369, 2005.

14. Baroni, A.L., Abreu, F.B. and Guerreiro, P. The State-of-the Art of UML Design Metrics.
Technical Report, Universidade Nova de Lisboa, Monte da Caparica, 2005.

15. Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, June 1994

16. A. Baroni, Quantitative assessment of UML dynamic models, SIGSOFT Software Eng.
Notes, vol. 30, no. 5, pp. 366-369, 2005.

17. A. Baroni, F. Abreu, and P. Guerreiro. The State-of-the Art of UML Design Metrics.
Technical Report, Universidade Nova de Lisboa, Monte da Caparica, 2005.

18. M. Genero, M. Piattini-Velthuis, J. Lemus, and L. Reynoso Metrics for UML Models,
UPGRADE, vol. 5, number 2, April, 2002.

MODELS`08 Workshop ESMDE

10

