

Jianyi Lin

Exact Algorithms for Size Constrained
Clustering

Ledizioni LediPublishing

Jianyi Lin
Department of Mathematics
University of Milan
Via C. Saldini n.50
20133 Milan - Italy

Advisor:
Prof. Alberto Bertoni
Department of Computer Science
University of Milan
Via Comelico 39, Milan, Italy

Series Editors:
Giovanni Naldi,
Coordinator of the PhD Program in Mathematics and Statistics for
Computational Sciences;
Bert van Geemen,
Coordinator of the PhD Program in Mathematics;
Luca Barbieri Viale,
Director of the Graduate School.

Editorial Assistant: Stefania Leonardi

© 2013 Jianyi Lin
Open Access copy available at air.unimi.it
First Edition: January 2013
ISBN 978-88-6705-065-9
All rights reserved for the print copy.
For the digital copy rights please refer to air.unimi.it

Ledizioni LediPublishing
Via Alamanni 11 – 20141 Milano – Italy
http://www.ledipublishing.com
info@ledipublishing.com

UNIVERSITÀ DEGLI STUDI DI MILANO

GRADUATE SCHOOL IN MATHEMATICAL SCIENCES

PHD PROGRAMME IN MATHEMATICS AND STATISTICS

FOR COMPUTATIONAL SCIENCES

Exact Algorithms for

Size Constrained Clustering

Jianyi Lin

To my family for giving me

this profound gift and unreserved support

throughout my life

Contents

Introduction . 1

References . 6

1 Clustering problems and preliminary results 9

1.1 Introduction . 9

1.2 Constrained Clustering Problems 11

1.3 Separation results . 14

1.4 One-dimensional case: String Property 17

1.5 An approximation result . 19

References . 22

2 Hardness . 23

2.1 Introduction . 23

2.2 Constrained k-clustering . 26

2.3 Localisation of the p-centroid . 29

2.4 Constrained clustering in fixed dimension 32

2.5 Relaxed Constraints Clustering 34

v

vi Contents

References . 42

3 Clustering in the Plane with Euclidean Norm 45

3.1 Introduction . 45

3.2 Size Constrained 2-Clusterings in the Plane 46

3.3 k-Sets . 54

3.4 Size Constrained 2-Clustering in the Plane 62

3.5 Dynamic Convex Hull . 67

References . 75

4 Clustering with norm Lp . 77

4.1 Separating hypersurfaces . 78

4.2 Semi-algebraic sets . 81

4.3 Cylindrical Decomposition . 87

4.4 Resultant and elimination . 99

4.5 Sturm sequences . 102

4.6 Cauchy’s Bound and Canny’s Gap 105

4.7 Comparison between two clusterings 107

4.8 Size constrained 2-clusterings . 112

4.8.1 Even p . 112

4.8.2 Odd p . 114

References . 118

Conclusions . 121

Introduction

Clustering or cluster analysis [5] is a method in unsupervised learn-

ing and one of the most used techniques in statistical data analysis.

Clustering has a wide range of applications in many areas like pat-

tern recognition, medical diagnostics, data mining, biology, market

research and image analysis among others. A cluster is a set of data

points that in some sense are similar to each other, and clustering is

a process of partitioning a data set into disjoint clusters. In distance

clustering, the similarity among data points is obtained by means of

a distance function.

Fixed a norm ‖ ‖p (p ≥ 1), given a point set X ⊂ Qd and

an integer k, clustering problem consists in finding a k-partition

{A1, ..., Ak} of X that minimises the function

W (A1, ..., Ak) =
k∑

i=1

∑

x∈Ai

‖x− Ci‖pp

1

2 Introduction

where Ci is the p-centroid of Ai, i.e.

Ci = argmin
µ

∑

x∈Ai

‖x− µ‖pp

Distance clustering is a difficult problem. For an arbitrary dimen-

sion d the problem is NP-hard even if the number k of clusters equals

2 [1]; the same occurs if d = 2 and k is arbitrary [8, 12]. For the Eu-

clidean distance, a well-known heuristic is Lloyd’s algorithm [6, 7],

also known as the k-Means Algorithm; since this is a heuristic proce-

dure, there is no guarantee that it converges to the global optimum.

This algorithm is usually very fast, but it can require exponential

time in the worst case [11].

In real-world problems, often people have some information on

the clusters: incorporating this information into traditional cluster-

ing algorithms can increase the clustering performance. Problems

that include background information are called constrained cluster-

ing problems and are divided in two classes.

On the one hand, clustering problems with instance-based con-

straints typically comprise a set of must-link constraints or cannot-

link constraints [13], defining pairs of elements that must be in-

cluded, respectively, in the same cluster or in different clusters.

On the other hand, clustering problems with cluster-based con-

straints [2, 10] incorporate constraints concerning the size of the pos-

sible clusters. Recently, in [14] cluster size constraints are used for

improving clustering accuracy; this approach, for instance, allows

one to avoid extremely small or large clusters in standard cluster

analysis.

In this work we consider two types of problems:

• Size Constrained Clustering Problem (SCC):

Given a point set X = {x1, x2, ..., xn} ⊂ Qd, an integer k > 1 and

Introduction 3

k positive integers m1,m2, ..., mk such that
∑k

1 mi = n, find a

k-clustering {A1, A2, ..., Ak} with

|Ai| = mi for i = 1, ..., k

that minimizes the cost

W (A1, A2, · · · , Ak) =

k∑

1

W (Ai).

• Relaxed Constraints Clustering Problem (RCC):

Given a point set X = {x1, ..., xn} ⊂ Qd, an integer k > 1 and a

set M = {m1,m2, ...,ms} of positive integers, find a k-clustering

{A1, ..., Ak} with

|Ai| ∈ M for all i = 1, ..., k

that minimises the cost

W (A1, A2, · · · , Ak) =
k∑

1

W (Ai).

The main result presented in Chapter 1 (Theorem 1.4) is a prop-

erty verified by the optimal solution of an instance of SCC with

k = 2: if {A, Ā} is the optimal 2-partition of X , then A is separated

from Ā by an hypersurface of the kind:

‖x− α‖pp − ‖x− β‖pp = c

In this work we show that SCC is a difficult problem. The main

hardness results we obtain in Chapter 2 are:

1) For every norm ‖ ‖p with p > 1, RCC with clustering size k fixed

is NP-hard, even in the case k = 2 and M = {n
2 } (Theorem 2.2).

4 Introduction

2) For every norm ‖ ‖p with p ≥ 1, SCC with dimension d fixed is

NP-hard, even in the case d = 1 (Theorem 2.5). Observe that

RCC in dimension 1 is solvable in polynomial time [9].

3) For the euclidean norm ‖ ‖2, RCC in dimension d = 2 is NP-

complete even if the possible size constraints are {2, 3} (Theorem

2.10)

For illustrating some subtleties in the case of ‖ ‖p with non-integer

rational p, we consider the problem p-LC of localising the centroid

of integers set {x1, ..., xn} (i.e. d = 1).

We prove that:

4) SQRT-Sum is polynomially reducible to 3
2 -LC (Theorem 2.4).

This puts in evidence that it is questionable whether p-LC is in NP.

Since we prove that the RCC problem in the plane with con-

straints {2, 3} is NP-complete, we can’t expect to obtain an exact

algorithm for the general RCC problem in the plane.

In Chapter 3 we investigate RCC in the plane with a fixed clus-

tering size k = 2. In particular, we consider the problems:

• 2-RCC in the Plane (briefly 2-RCC):

Given a point set X = {x1, ..., xn} ⊂ Q2 and M = {m,n − m},
find a 2-clustering {A, Ā} of X with |A| = m, |Ā| = n − m, that

minimises

W (A, Ā) = W (A) +W (Ā)

• Full 2-RCC in the plane (briefly Full 2-RCC):

Given a point set X = {x1, ..., xn} ⊂ Q2, find all the optimal 2-

clusterings πk = {Ak, Āk}, with |Ak| = k for all k, 1 ≤ k ≤ ⌊ |X|
2 ⌋.

The main results we obtain are:

1) There is an algorithm for solving Full 2-RCC problem in time

O(n2 · logn) (Theorem 3.2).

Introduction 5

2) There is an algorithm for solving 2-RCC problem in time O(n 3
√
k ·

log2 n) (Theorem 3.17).

It should be observed that, the algorithm to solve 2-RCC requires

methods related to the challenging problem [4] of Combinatorial Ge-

ometry of enumerating the k-sets of points X in the plane.

At the end, in Chapter 4 we study the problem 2-SCC in fixed

dimension d. We will prove that, by appropriately decomposing the

space of the parameter of the hypersurfaces separating the 2 clusters,

we obtain a set of 2-clusterings containing the optimal clustering of

size m, for every constraint size m, thus allowing us to compute the

optimal costs and the cardinality of the clusters, for every cluster

size constraint m. This method will be proved to have polynomial

time complexity with respect to the data set size n and the integer

p, for a fixed dimension d.

It is noteworthy to anticipate that in Chapter 4 we widely make

use of concepts and methods from Real Algebraic Geometry; in par-

ticular we apply the cylindrical algebraic decomposition [3] for solv-

ing the 2-SCC problem.

6 Introduction

References

1. D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of

Euclidean sum-of-squares clustering. Machine Learning, 75:245–249,

2009.

2. P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained K-Means

Clustering. Technical Report MSR-TR-2000-65, Miscrosoft Research

Publication, May 2000.

3. G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylin-

drical Algebraic Decomposition. In E. Barkhage, editor, Proc. 2nd GI

Conf. on Automata Theory and Formal Lang., volume 33 of LNCS,

pages 134–183, Berlin, 1975. Springer.

4. P. Erdős, L. Lovász, A. Simmons, and E. G. Straus. Dissection graphs of

planar point sets. In A survey of combinatorial theory (Proc. Internat.

Sympos., Colorado State Univ., Fort Collins, Colo., 1971), pages 139–

149. North-Holland, Amsterdam, 1973.

5. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer-Verlag,

2nd edition, 2009.

6. S. Lloyd. Least squares quantization in PCM. IEEE Transactions on

Information Theory, 28(2):129–137, 1982.

7. J. B. MacQueen. Some method for the classification and analysis of

multivariate observations. In Proceedings of the 5th Berkeley Sympo-

sium on Mathematical Structures, pages 281–297, 1967.

8. M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The Planar k-Means

Problem is NP-Hard. In S. Das and R. Uehara, editors, WALCOM: Al-

gorithms and Computation, volume 5431 of Lecture Notes in Computer

Science, pages 274–285. Springer Berlin/Heidelberg, 2009.

9. F. Saccà. Problemi di Clustering con Vincoli: Algorithmi e Comp-

lessità. PhD thesis, University of Milan, Milan, 2010.

10. A. Tung, J. Han, L. Lakshmanan, and R. Ng. Constraint-Based Clus-

tering in Large Databases. In J. Van den Bussche and V. Vianu, editors,

Database Theory ICDT 2001, volume 1973 of Lecture Notes in Com-

puter Science, pages 405–419. Springer Berlin/Heidelberg, 2001.

11. A. Vattani. K-means requires exponentially many iterations even in

the plane. In Proceedings of the 25th Symposium on Computational

Geometry (SoCG), 2009.

References 7

12. A. Vattani. The hardness of k-means clustering in the plane.

manuscript, 2009.

13. K. Wagstaff and C. Cardie. Clustering with instance-level constraints.

In Proc. of the 17th Intl. Conf. on Machine Learning, pages 1103–1110,

2000.

14. S. Zhu, D. Wang, and T. Li. Data clustering with size constraints.

Knowledge-Based Systems, 23(8):883–889, 2010.

CHAPTER 1

Clustering problems and preliminary results

1.1 Introduction

Clustering is one of most used technique in statistical data analy-

sis, with applications in areas like pattern recognition, data mining,

image analysis among others [2]. A cluster is a set of data points

similar, and clustering is a process of partitioning a data set into

disjoint clusters. In distance clustering the similarity among points

is given by means of a distance function.

Fixed a norm ‖ ‖p (p ≥ 1), given a point set X ⊂ Qd and

an integer k, clustering problem consists in finding a k-partition

{A1, ..., Ak} of X that minimises the function

9

10 1 Clustering problems and preliminary results

W (A1, ..., Ak) =

k∑

i=1

∑

x∈Ai

‖x− Ci‖pp

where Ci is the p-centroid of Ai, i.e.

Ci = argmin
µ

∑

x∈Ai

‖x− µ‖pp

In the real world problems, often people have some information on

the clusters: problems that include such information are called con-

strained clustering. In this work we consider constraints concerning

the size of the possible clusters [3, 6, 8].

We will consider 2 kinds of problems, formally stated in Section

1.2.

In the first one, called Size Constrained Clustering Problem (SCC),

it is given in input X ⊂ Qd, an integer k and a vector (j1, ..., jk)

of positive integers s.t.
∑

ji = |X |. In this case, an adminissible

solution is a k-partition {A1, ..., Ak} of X s.t.

|A1| = j1, ..., |Ak| = jk.

In the second kind of problem, called Relaxed Constraints Clustering

(RCC), it is given in inputX, k and a setM = {g1, ..., gs} of integers.
An admissible solution is a k-partition {A1, ..., Ak} of X s.t.

|Aj | ∈ M for all 1 ≤ j ≤ k.

The main result of this chapter (Theorem 1.4) is a property (Sep-

aration Property), verified by the optimal solution of an instance of

SCC with k = 2: if {A, Ā} is the optimal 2-partition of X , then A

is separated from Ā by an hypersurface of the kind:

1.2 Constrained Clustering Problems 11

‖x− α‖pp − ‖x− β‖pp = c

In Section 1.4 some consequences of the Separation property in

1-dimensional case (i.e. X ⊂ R1) are studied. In Theorem 1.6 we ex-

tend to the constrained clustering a property observed in the cluster-

ing problem by Fisher [4] in case of Euclidean norm, and by Novick

[5] in case of norm ‖ ‖p, with p > 1.

At the end, in Section 1.5, it is observed that the p-centroid (in-

teger p > 1) C of a set X ⊂ Q1 is not in general a rational number,

and a method for approximating C by a rational number is given.

Part of the results of this chapter are published in [1].

1.2 Constrained Clustering Problems

In this section we introduce formally the problem of Size Constrained

Clustering, that will be studied in this work from the point of view

of computational complexity of exact algorithms for solving it.

Hereafter, for a positive integer d, we consider the space Rd

equipped with the p-norm denoted by ‖ · ‖p, with fixed p ≥ 1, where

‖(α1, α2, ..., αd)‖p = (
∑ |αi|p)

1
p .

Let X = {x1, x2, ..., xn} ⊂ Qd. A k-clustering is a k-partition of

X , i.e. a family {A1, A2, ..., Ak} of k nonempty subsets ofX such that
⋃k

i=1 Ai = X and Ai∩Aj = ∅, for i 6= j. Every Ai is called a cluster.

The p-centroid (or simply centroid when p is clearly understood) CA

of a cluster A ⊆ X is

CA = argmin
µ∈Rd

∑

x∈A

‖x− µ‖pp

12 1 Clustering problems and preliminary results

If p > 1 it is well-known that the centroid is unique in one-

dimensional case [5], and remains unique in multi-dimensional case

by easily treating each component separately; in particular when

p = 2 the centroid is the mean CA = (
∑

x∈A x)/|A|. In the case

p = 1 we can have different centroids; one of them is the componen-

twise median.

The cost W (A) of a cluster A is

W (A) =
∑

x∈A

‖x− CA‖pp (1.1)

while the cost of a k-clustering {A1, A2, ..., Ak} isW (A1, A2, · · · , Ak)

=
∑k

1 W (Ai). The classical Clustering Problem is formulated as fol-

lows.

Definition 1.1 (Clustering Problem). Given a point set X =

{x1, x2, ..., xn} ⊂ Qd and an integer k > 1, find a k-clustering

{A1, A2, ..., Ak} that minimizes the cost

W (A1, A2, · · · , Ak) =
k∑

1

W (Ai).

In this work we are interested in a version of clustering problem,

where the cardinalities of the clusters are constrained. Formally, the

problem can be stated as follows:

Definition 1.2 (Size Constrained Clustering Problem (SCC)).

Given a point set X = {x1, x2, ..., xn} ⊂ Qd, an integer k > 1 and

k positive integers m1,m2, ..., mk such that
∑k

1 mi = n, find a

k-clustering {A1, A2, ..., Ak} with

|Ai| = mi for i = 1, ..., k

that minimizes the cost

1.2 Constrained Clustering Problems 13

W (A1, A2, · · · , Ak) =

k∑

1

W (Ai).

Moreover, we relaxed the size constraints of the clustering, thus

defining a weaker version of SCC, as follows.

Definition 1.3 (Relaxed Constraints Clustering Problem

(RCC)).

Given a point set X = {x1, ..., xn} ⊂ Qd, an integer k > 1 and

a set M = {m1, ...,ms} of positive integers, finda a k-clustering

{A1, ..., Ak} with

|Ai| ∈ M for all i = 1, ..., k

that minimises the cost

W (A1, A2, · · · , Ak) =
k∑

1

W (Ai).

W.l.o.g. we can make the assumption that X = {x1, ..., xn} is com-

posed by vectors of positive integer coordinates represented in binary

notation, whose size is
∑ |xk|b, where |xk|b is the number of bits of

xk ∈ Nd.

Observe that this is equivalent to considering {x1, ..., xn} ⊂ Qd,

the set of rational coordinate points, since the solution of the prob-

lems is invariant to translating and scaling. In fact, the instances

X1 = {x1, ..., xn}
X2 = {x1 + a, ..., xn + a}
X3 = {λx1, ..., λxn}

14 1 Clustering problems and preliminary results

do admit the same optimal solution. When d = 1 we can also assume

that X is composed by positive integers x1 < x2 < ... < xn.

We stress that in the SCC problem the integers n, k and d are

part of the instance. On the contrary, if d is fixed the problem is

called SCC-d; if k is fixed the problem is called k-SCC; furthermore,

if both d and k are fixed the problem is called k-SCC-d. However,

when it is clear from the context which are the fixed parameters, we

will simply write SCC (RCC) instead of k-SCC, k-RCC and so on.

1.3 Separation results

In this section we prove a separation property that is verified for

the optimal solution of 2-SCC. We first need a simple lemma stating

that if p > 1 then the centroid of a set of points moves whenever one

of the points changes. The property is not true in the case p = 1.

Lemma 1.1. Given n + 1 reals x1, x2, ..., xn, x̄1 and p > 1, let

C(x1, x2, ..., xn) be the centroid of {x1, x2, ..., xn} and C(x̄1, x2, ..., xn)

be the centroid of {x̄1, x2, ..., xn}. If x̄1 6= x1, then C(x1, x2, ..., xn) 6=
C(x̄1, x2, x3, ..., xn).

Proof. Let’s suppose that C(x1, x2, ..., xn) = C(x̄1, x2, x3, ..., xn) =

C. Setting F (µ) =
∑

i |xi − µ|p, since F (µ) is strictly convex [5,

Rem. 2], it follows that F ′(C) = 0 =
∑

sgn(xi − C)|xi − C|p−1.

Analogously, we have 0 = sgn(x̄1 − C)|x̄1 − C|p−1 +
∑n

2 sgn(xi −
C)|xi −C|p−1. This implies that sgn(x̄1−C)|x̄1−C|p−1 = sgn(x1 −
C)|x1 − C|p−1, that is x1 = x̄1. ⊓⊔
Corollary 1.2. Fixed p > 1, let C be the centroid of {x1, x2, ...,

xn} ⊂ Rd and C̄ the centroid of {x̄1, x2, x3, ..., xn} ⊂ Rd, where

x̄1 6= x1. Then:

1.3 Separation results 15

n∑

i=1

‖xi − C‖pp <

n∑

i=1

‖xi − C̄‖pp

Proof. Since x̄1 6= x1 there is a component (say ℓ, with 1 ≤ ℓ ≤ d)

of x1 different from the corresponding component of x̄1. Notice that

the ℓ-component of the centroid of a point set depends only on the

ℓ-component of these points. By Lemma 1.1, the ℓ-component of C

is different from the ℓ-component of C̄, hence C 6= C̄. Since C is

the unique minimum point of the function
∑

i ‖xi − µ‖pp, the thesis

follows. ⊓⊔

Proposition 1.3. Fixed p > 1, let {A,B} be the optimal solution

of a 2-SCC problem on the instance X ⊂ Rd with |A| = k. If x ∈ A

and y ∈ B, it holds:

‖x− CA‖pp + ‖y − CB‖pp < ‖x− CB‖pp + ‖y − CA‖pp

Proof. Since {A,B} is a partition, then x 6= y. Suppose by contra-

diction that:

‖x− CA‖pp + ‖y − CB‖pp ≥ ‖x− CB‖pp + ‖y − CA‖pp (1.2)

For S ⊂ X we set FS(µ) =
∑

x∈S ‖x− µ‖pp. Then, we obtain:

W (A,B) = FA(CA) + FB(CB)

= FAr{x}(CA) + ‖x− CA‖pp + FBr{y}(CB) + ‖y − CB‖pp
(by (1.2)) ≥ FAr{x}(CA) + ‖y − CA‖pp + FBr{y}(CB) + ‖x− CB‖pp

= FAr{x}∪{y}(CA) + FBr{y}∪{x}(CB)

(by Cor. 1.2) > FAr{x}∪{y}(CAr{x}∪{y}) + FBr{y}∪{x}(CBr{y}∪{x})

= W (Ar {x} ∪ {y}, B r {y} ∪ {x})

16 1 Clustering problems and preliminary results

This is a contradiction, since A 6= A r {x} ∪ {y}, but |A| = |A r

{x} ∪ {y}| = k. This would imply that {A,B} is not the optimal

solution. ⊓⊔

Theorem 1.4 (Separation Property). Fixed p > 1, let {A,B} be
an optimal solution of a 2-SCC on the instance {x1, x2, ..., xn} ⊂ Rd

with size constraint |A| = k. Then we have that:

1. CA 6= CB

2. there exists c ∈ R such that:

x ∈ A implies ‖x− CA‖pp − ‖x− CB‖pp < c

x ∈ B implies ‖x− CA‖pp − ‖x− CB‖pp > c

Proof. We notice that, by Proposition 1.3, if xi ∈ A and xj ∈ B it

holds:

‖xi − CA‖pp − ‖xi − CB‖pp < ‖xj − CA‖pp − ‖xj − CB‖pp (1.3)

Since xi 6= xj it follows that CA 6= CB, otherwise (1.3) yields 0 < 0.

Let α = maxx∈A ‖x − CA‖pp − ‖x − CB‖pp and β = minx∈B ‖x −
CA‖pp − ‖x − CB‖pp. By (1.3) we obtain α < β. Setting c = α+β

2 , it

holds α < c < β, hence:

x ∈ A implies ‖x− CA‖pp − ‖x− CB‖pp ≤ α < c

x ∈ B implies ‖x− CA‖pp − ‖x− CB‖pp ≥ β > c

⊓⊔

The previous theorem states that, in Rd the hypersurface of equation

‖x− CA‖pp − ‖x− CB‖pp = c (1.4)

is well-defined and strictly separates the sets A and B of an optimal

solution. In the particular case p = 2, the hypersurface becomes a

1.4 One-dimensional case: String Property 17

hyperplane; in fact we have that (1.4) reduces to

〈x, (CB − CA)〉 =
c+ ‖CB‖22 − ‖CA‖22

2

which is the equation of the bisecting plane in Rd (here 〈·, ·〉 denotes
the scalar product).

1.4 One-dimensional case: String Property

In this section we consider the case d = 1, i.e. X = {x1, x2, ..., xn}
where xi ∈ R for each i, and we show a structural property (usually

named String Property, a term coined by Vinod [7] and used in

literature) of the optimal size constrained k-clustering. In this way

we extend to the constrained clustering a property observed in the

clustering problem by Fisher [4] in the case p = 2, and Novick [5] in

the case p > 1.

Definition 1.4. A k-clustering {A1, A2, ..., Ak} of X = {x1, x2, ...,

xn} is said to have the String Property iff for all xi, xj and xl, and

for all As, if xi, xj ∈ As and xi < xl < xj then xl ∈ As.

In the case of 1-dimensional clustering with euclidean norm (p = 2),

it is proved that any optimal solution has the String Property [4].

In [5] this result is extended to every norm ‖ · ‖p with p > 1.

In this section we further extend this result to the 1-dimensional

size constrained clustering problem.

First of all, we treat the case of clusterings composed by 2 clusters.

Proposition 1.5. Let {A,B} be an optimal 2-clustering for the 2-

SCC problem on instance {x1, x2, ..., xn} with |A| = k. Then {A,B}
has the String Property.

18 1 Clustering problems and preliminary results

Proof. Consider the function f(x) = |x − CA|p − |x − CB |p, where
CA, CB are the centroids of A,B respectively. By Theorem 1.4 there

exists c such that x ∈ A implies f(x) < c, while x ∈ B implies

f(x) > c. Now, suppose CA < CB. We have that:

if x > CB then f ′(x) = p((x− CA)
p−1 − (x − CB)

p−1) > 0

if CB ≥ x > CA then f ′(x) = p((x− CA)
p−1 + (CB − x)p−1) > 0

if CA ≥ x then f ′(x) = p(−(CA − x)p−1 + (CB − x)p−1) > 0

Therefore f(x) is increasing; moreover it can be easily observed that

limx→+∞ f(x) = +∞ and limx→−∞ f(x) = −∞. Since f(x) is con-

tinuous, we conclude that there is a unique x∗ such that f(x∗) = c;

moreover: x ∈ A implies x < x∗, x ∈ B implies x > x∗. This means

that, under the assumption CA < CB , {A,B} has the String Prop-

erty. Analogous reasoning applies when CA > CB , thus yielding the

String Property again. ⊓⊔

We notice that the two half-lines H = {x|f(x) < c} and H̄ =

{x|f(x) > c} are disjoint sets; furthermore A is contained in one

half-line, while B is contained in the other one. We now extend the

previous result to the k-SCC.

Theorem 1.6. Let {A1, A2, ...Ak} be an optimal k-clustering for

SCC on instance X = {x1, x2, ..., xn} with constraints {m1,m2, ...,

mk}. Then {A1, A2, ..., Ak} has the String Property.

Proof. Let us reason by induction on k ≥ 2. The case k = 2 is clearly

solved by Proposition 1.5. For k > 2, given an optimal k-clustering

{A1, A2, ..., Ak}, for any j we denote vj = minAj , Vj = maxAj ,

and set c = min vj = vℓ. Let us consider any index i 6= ℓ; obvi-

ously vi > vℓ. We want to show that also vi > Vℓ holds. In fact,

consider the 2-SCC problem on instance Aℓ ∪ Ai with constraints

{mℓ,mi}; its optimal solution {Aℓ, Ai} verifies the String Property

1.5 An approximation result 19

because of Proposition 1.5, and hence Vℓ ≤ vi. As a consequence,

every Ai(i 6= ℓ) is contained in the half-line H = {x|x > Vℓ}, while
Aℓ is contained in the complementary half-line HC = {x|x ≤ Vℓ}.
Let’s now consider the optimal solution {A1, ..., Aℓ−1, Aℓ+1, ..., Ak}
to the (k − 1)-SCC problem on instance X r Aℓ with constraints

{m1, ...,mℓ−1,mℓ+1,

...,mk}. By induction hypothesis, {A1, ..., Aℓ−1, Aℓ+1, ..., Ak} veri-

fies the String Property, and hence by the discussion above also

{A1, ..., Aℓ, ..., Ak} does. ⊓⊔

1.5 An approximation result

For integer p > 2, the p-centroid C of a set Y of integer numbers

is an algebraic number, not necessarily rational. In this section we

develop a method for obtaining an approximation of C and of W (Y)

by means of rational numbers. This method will be used in the fol-

lowing chapters for comparing two clusterings.

Given a set Y of integers y1 < y2 < ... < ym, let j be the index

such that the p-centroid C of Y verifies

yj ≤ C < yj+1

Fixed ε (0 < ε < 1
2), we call ε-approximation of C a number C̄ with

{
C ≤ C̄ ≤ C + ε if yj+1 − C > C − yj
C − ε ≤ C̄ ≤ C otherwise.

In any case, it holds |C̄ −C| ≤ ε. The intuitive idea of these techni-

calities means that C̄ must be either a left or a right approximation

of C in such a way as to ensure that yj ≤ C̄ < yj+1.

20 1 Clustering problems and preliminary results

Proposition 1.7. Given an integer p > 2 and m integers 1 ≤ y1 <

y2 < ... < ym, let C be the p-centroid of Y = {y1, ..., ym} and W (Y)

be the cost function defined in (1.1). Then there are polynomials

A(x) =
∑p−1

0 aix
i and B(x) =

∑p
0 bix

i such that:

1. C is a root of A(x);

2. W (Y) = B(C);

3. |ai|, |bi| ≤ m · (ym + 1)p for every i;

4. |B(C) −B(C̄)| ≤ ε · yp−1
m · p ·m.

Proof. We know that there is j such that yj ≤ C < yj+1. Consider

the polynomials:

B(x) =

j
∑

i=1

(x − yi)
p +

m∑

i=j+1

(yi − x)p =

p
∑

0

bix
i

A(x) =
1

p
B′(x) =

j
∑

i=1

(x− yi)
p−1 −

m∑

i=j+1

(yi − x)p−1 =

p−1
∑

0

aix
i

The centroid C satisfies A(C) = 0; moreover W (Y) = B(C). Ob-

serve now that, denoting with [xi]B(x) the coefficient of xi in B(x):

|bi| = |[xi]B(x)| ≤ [xi]

m∑

h=1

(yh + x)p ≤
m∑

h=1

(yh + 1)p ≤ m(ym + 1)p

|ai| ≤ [xi]

m∑

h=1

(yh + x)p−1 ≤
m∑

h=1

(yh + 1)p−1 ≤ m(ym + 1)p−1

≤ m(ym + 1)p

As for the last point we can write |B(C) −B(C̄)| as:

1.5 An approximation result 21

∣
∣
∣
∣
∣
∣





j
∑

1

(C − yi)
p +

m∑

j+1

(yi − C)p



−





j
∑

1

(C̄ − yi)
p +

m∑

j+1

(yi − C̄)p





∣
∣
∣
∣
∣
∣

=

=

∣
∣
∣
∣
∣
∣





j
∑

1

(C − yi
︸ ︷︷ ︸

u

)p − (C̄ − yi
︸ ︷︷ ︸

ū

)p



+





m∑

j+1

(yi − C
︸ ︷︷ ︸

−u

)p − (yi − C̄
︸ ︷︷ ︸

−ū

)p





∣
∣
∣
∣
∣
∣

Fixed the index i in the first summation, denote u = C − yi and

ū = C̄ − yi. Since |u|, |ū| ≤ ym, it holds: |up − ūp| = |(u− ū)(up−1 +

up−2ū+...+ūp−1)| ≤ ε·p·yp−1
m . Observe that every single term in the

last parenthesis is uhūp−1−h = (C − yi)
h(C̄ − yi)

p−1−h ≤ yp−1
m , thus

yielding |up−ūp| ≤ εpyp−1
m . On the other hand, when fixing the index

i in the second summation, the same upper bound is obtainable. We

can conclude that |B(C)−B(C̄)| ≤ mεpyp−1
m . ⊓⊔

22 1 Clustering problems and preliminary results

References

1. A. Bertoni, M. Goldwurm, J. Lin, and F. Saccà. Size constrained distance

clustering: separation properties and some complexity results. To appear

in Fundamenta Informaticae, 2012.

2. C. Bishop. Pattern recognition and machine learning. Springer, 2006.

3. P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained K-Means

Clustering. Technical Report MSR-TR-2000-65, Miscrosoft Research

Publication, May 2000.

4. W. D. Fisher. On grouping for maximum homogeneity. Journal of the

American Statistical Association, 53(284):789–798, 1958.

5. B. Novick. Norm statistics and the complexity of clustering problems.

Discrete Applied Mathematics, 157:1831–1839, 2009.

6. A. Tung, J. Han, L. Lakshmanan, and R. Ng. Constraint-Based Clus-

tering in Large Databases. In J. Van den Bussche and V. Vianu, editors,

Database Theory ICDT 2001, volume 1973 of Lecture Notes in Computer

Science, pages 405–419. Springer Berlin/Heidelberg, 2001.

7. H. D. Vinod. Integer Programming and the Theory of Grouping. Journal

of the American Statistical Association, 64(326):506–519, 1969.

8. S. Zhu, D. Wang, and T. Li. Data clustering with size constraints.

Knowledge-Based Systems, 23(8):883–889, 2010.

CHAPTER 2

Hardness

2.1 Introduction

In this chapter we show that the size constrained clustering is a dif-

ficult problem.

At this regard, fixed a norm ‖ ‖p with p ≥ 1, we recall the two

variants of size constrained clustering problem SCC and RCC, in-

troduced in Chapter 1.

• Size Constrained Clustering Problem (SCC): Given a point set

X = {x1, x2, ..., xn} ⊂ Qd, an integer k > 1 and k positive in-

tegers m1,m2, ..., mk such that
∑k

1 mi = n, find a k-clustering

{A1, A2, ..., Ak} with

|Ai| = mi for i = 1, ..., k

23

24 2 Hardness

that minimizes the cost

W (A1, A2, · · · , Ak) =

k∑

1

W (Ai).

• Relaxed Constraints Clustering Problem (RCC): Given a point

set X = {x1, ..., xn} ⊂ Qd, an integer k > 1 and a set M =

{m1,m2, ...,ms} of positive integers, find a k-clustering {A1, ..., Ak}
with

|Ai| ∈ M for all i = 1, ..., k

that minimises the cost

W (A1, A2, · · · , Ak) =

k∑

1

W (Ai).

Remind from Chapter 1 that we make the assumption that X =

{x1, ..., xn} is composed by vectors of positive integer coordinates

represented in binary notation.

In the following, we will fix some of the parameters of the prob-

lems, such as the dimension d or the clustering size k (i.e. number of

clusters). When the set M ⊂ N is fixed (i.e. not part of the instance)

we denote the problem RCC with M-RCC.

It is simple to observe that the SCC problem with k = 2, is a

particular case of RCC. Indeed, if in the instance of SCC the vector

(m1, ...,mk) with
∑k

1 mi = n is such that k = 2, then such a vector

is (m1, n−m1). The SCC problem on such an instance is equivalent

to the RCC problem with constraints M = {m1, n−m1}.
Moreover, observe that various clustering problems can be formu-

lated as RCC. For instance the clustering problem without con-

straints is a particular instance of RCC where M = {1, ..., n}, and

2.1 Introduction 25

the clustering problems with size inequality constraints [14, 16], e.g.

2 ≤ |Ai| ≤ 10, can be formulated as RCC.

The main hardness results we obtain are:

1) For every norm ‖ ‖p with p > 1, RCC with fixed clustering size k

is NP-hard, even in the case k = 2 and M = {n
2 } (Theorem 2.2).

2) For every norm ‖ ‖p with p ≥ 1, SCC with dimension d fixed is

NP-hard, even in the case d = 1 (Theorem 2.5). Observe that

RCC in dimension 1 is solvable in polynomial time [13].

3) For the euclidean norm ‖ ‖2, RCC in dimension d = 2 is NP-

complete even if the possible size constraints are {2, 3} (Theorem

2.10)

For illustrating some subtleties in the case of ‖ ‖p with non-integer

rational p, we consider the problem p-LC of localising the centroid

of integers set {x1, ..., xn} (i.e. d = 1).

We prove that:

4) SQRT-Sum is polynomially reducible to 3
2 -LC (Theorem 2.4).

This puts in evidence that it is questionable whether p-LC is in NP.

This chapter is organised as follows: in Section 2.2 we will obtain

that the size constrained clustering problem with fixed k is NP-hard,

in Section 2.3 we will see that when p ≥ 1 is non-integer the problem

of localising of p-centroid is in CH, in Section 2.4 we investigate the

SCC when fixing the dimension d, and in Section 2.5 we will show

the hardness of the relaxed version of SCC.

26 2 Hardness

2.2 Constrained k-clustering

Let’s assume in this section that the norm is ‖ ‖p, with p > 1. We

will see that even fixing the number k of clusters, the solution of the

size constrained k-clustering SCC (with dimension d given in input),

will be hard to determine. In particular, we consider the special case

where k = 2 and constraints are (n2 ,
n
2). More precisely:

Definition 2.1 (Half-Partition (HP)). Given d and X = {x1, ...,

x2n} ⊂ Nd, find the optimal 2-clustering {A,B} of X with |A| =
|B| = n.

When d = 1, we call the problem HP-1. Before proceeding, we recall

from Chapter 1 that in dimension d = 1, i.e. when X = {x1, ..., xn}
where xi ∈ R for each i, the Separation Property of the optimal size

constrained clustering turns out to be the so-called

String Property: a k-clustering {A1, A2, ..., Ak} of X = {x1, x2, ...

, xn} ⊂ R is said to have the String Property iff for all xi, xj and xl,

and for all As, if xi, xj ∈ As and xi < xl < xj then xl ∈ As.

In particular, if k = 2 the String Property states that there is i,

1 ≤ i ≤ n, such that {x1, ..., xi} is contained in a suitable half-line

H , while {xi+1, ..., xn} is contained in the complement H̄ .

HP-1 is solvable in polynomial time for any p > 1. Indeed, given

the ordered reals x1 < x2 < ... < x2n, the unique partition {A,B}
that verifies the String Property with |A| = |B| = n is

π = {{x1, ..., xn}, {xn+1, ..., x2n}}

which hence turns out to be the optimal solution. Essentially, it

sufficies to sort the given point set. It follows that, for any p > 1:

Fact 2.1. HP-1 is solvable in time O(n logn) (for any p > 1).

2.2 Constrained k-clustering 27

On the contrary, the problem turns to be complex when the dimen-

sion d is arbitrary; indeed we show that the HP problem is NP-hard.

This implies that also 2-SCC is NP-hard.

Theorem 2.2. HP is NP-hard (for any p > 1).

Proof. We prove the result by a reduction from the Minimum Bi-

section Problem, which is known to be NP-hard [6]. This problem

consists of determining, for an undirected graph G = 〈V,E〉 with

|V | = 2n, a subset A ⊂ V of cardinality |A| = n such that the value

cut(A) = |{ℓ ∈ E | ℓ = {x, y}, x ∈ A, y 6∈ A}|

is minimum.

In order to construct the reduction, let G = 〈V,E〉 be an undi-

rected graph with V = {1, 2, . . . , 2n} and define, for every v ∈ V ,

the array Xv ∈ RE with indices in E, such that

Xv[ℓ] =

{
1 if v ∈ ℓ

0 otherwise
(2.1)

Thus, the family of arrays {X1, X2, . . . , X2n} forms an instance of

the

Half-Partition problem for an arbitrary p > 1.

Given A ⊂ V with |A| = n, let us compute its centroid CA. For

every ℓ ∈ E, we have the following cases:

1. If both vertices of ℓ are in A then

CA[ℓ] = argmin
x

{2(1− x)p + (n− 2)xp} =
1

1 +
(
n−2
2

) 1
p−1

= αn

2. If only one vertex of ℓ is in A then

CA[ℓ] = argmin
x

{(1− x)p + (n− 1)xp} =
1

1 + (n− 1)
1

p−1

= βn

28 2 Hardness

3. If no vertices of ℓ is in A then CA[ℓ] = 0.

Now, given a 2-clustering {A,B} with |A| = |B| = n, the value of

objective function W (A,B) can be written in the form

W (A,B) =
∑

ℓ∈E




∑

i∈A

|Xi[ℓ]− CA[ℓ]|p +
∑

j∈B

|Xj[ℓ]− CB[ℓ]|p




If ℓ = {i, j} with i ∈ A and j ∈ B then we have

∑

i∈A

|Xi[ℓ]−CA[ℓ]|p +
∑

j∈B

|Xj [ℓ]−CB[ℓ]|p = 2[(1− βn)
p +(n− 1)βp

n]

On the contrary, if ℓ = {i, j} with either {i, j} ⊂ A or {i, j} ⊂ B,

then

∑

i∈A

|Xi[ℓ]−CA[ℓ]|p +
∑

j∈B

|Xj [ℓ]−CB[ℓ]|p = 2(1− αn)
p + (n− 2)αp

n

As a consequence, recalling that cut(A) is the number of edges with

a vertex in A and a vertex in B, we obtain

W (A,B) =cut(A)2[(1− βn)
p + (n− 1)βp

n]+

+ (|E| − cut(A))[2(1 − αn)
p + (n− 2)αp

n]

=|E| · g(n, p) + cut(A) · s(n, p) (2.2)

where g(n, p) does not depend on {A,B} and

s(n, p) = 2[(1− βn)
p + (n− 1)βp

n]− 2(1− αn)
p − (n− 2)αp

n

Now, for any fixed p > 1, as n tends to +∞ we have

αn ∼
(
2

n

) 1
p−1

, βn ∼ n− 1
p−1

2.3 Localisation of the p-centroid 29

and hence

s(n, p) ∼ (p− 1)
(

2
p

p−1 − 2
)

· n− 1
p−1 > 0

Therefore, from equation (2.2), if n is sufficiently large we obtain

argmin
|A|=n

W (A,B) = argmin
|A|=n

cut(A)

⊓⊔
Corollary 2.3. The size constrained k-clustering problem with fixed

k and arbitrary dimension d > 1 is NP-hard, for every p > 1.

When p is an integer, the decision version of HP is in NP. Indeed, to

verify that a certain solution π = {A,B} has a cost W (π) below a

given threshold λ > 0 we have to: i) formulate a system of equations

with polynomials as those obtained in Proposition 1.7, and ii) use

a numerical technique to compare the approximation of W (π) with

the threshold λ. In conclusion, if p > 1 is an integer, HP and hence

2-SCC are NP-complete.

On the other hand, when p is a non-integer rational number,

this numerical approximation techniques cannot be applied and the

problem seems to be not easily solvable. The next section is devoted

to highlight this aspect.

2.3 Localisation of the p-centroid

When p is a non-integer rational number the p-centroid equation is

not algebraic, and hence the solution seems far from trivial. To put

in evidence the subtleties of this case, we briefly discuss the minor

problem of localizing the p-centroid.

30 2 Hardness

Definition 2.2. The problem of localizing the p-centroid (p-LC)

consists of deciding, for a set X of integers {x1, ..., xn} and an integer

h, whether C > h, where C is the p-centroid of X .

It is easy to observe that the well-known SQRT-Sum problem is

polinomially reducible to 3
2 -LC. The SQRT-Sum (or sum-of-square-

roots) problem requires to decide, given positive integers a1, ..., aq,

b1, ..., br, whether
√
a1 + ...+

√
aq >

√
b1 + ...+

√
br.

Theorem 2.4. SQRT-Sum is polinomially reducible to 3
2 -LC.

Proof. With the instance a1, ..., aq, b1, ..., br of SQRT-Sum we asso-

ciate the instance X = {x1, ..., xq+r} and h of 3
2 -LC where:

1)h = max aj 2)xi = h− ai for i ≤ q

3)xq+j = h+ bj for 1 ≤ j ≤ r

Setting F (µ) =
∑q+r

i=1 |xi − µ| 32 , since F (µ) is strictly convex, we

have:

1) F ′(µ) is an increasing function;

2) if C is the 3
2 -centroid of X , then F ′(C) = 0.

Observe now that

2

3
F ′(h) =

∑

xi≥h

(xi − h)
1
2 −

∑

xi<h

(h− xi)
1
2

=
√

b1 + ...+
√

br −
√
a1 − ...−√

aq

We hence conclude that:

h < C ⇐⇒ F ′(h) < F ′(C) ⇐⇒ √
a1+ ...+

√
aq−

√

b1− ...−
√

br > 0

This proves the reduction. ⊓⊔

The characterisation of the computational complexity of SQRT-Sum

was proposed as open problem in [5]; despite the efforts, the best-

2.3 Localisation of the p-centroid 31

known result, due to Allender et al. [1], puts SQRT-Sum in CH, i.e.

the Counting Hierarchy introduced in [15], which can be defined as

follows.

A language L ⊆ Σ∗ is in the class PP (abbreviation for probabilistic

polynomial-time) iff there is a probabilistic Turing Machine (i.e. a

Turing Machine equipped with the random choice operation) run-

ning in polynomial time such that, denoting with p(w) the proba-

bility of accepting w ∈ Σ∗, it holds:

L = {w ∈ Σ∗ : p(w) >
1

2
}

Given a family L of languages, a language A ⊆ Σ∗ is in the class

PPL (PP relativised to L) iff there is a probabilistic Turing Machine

with oracle for L running in polynomial time such that A = {w ∈
Σ∗ : p(w) > 1

2}. Now, we can introduce CH in the following form

[2].

Definition 2.3 (Counting Hierarchy).

• C0 = P

• Ci+1 = PPCi

• CH=
⋃

iCi

Substantially, the counting hierarchy contains: C0 = P (polynomial-

time), C1 = PP (probabilistic polynomial-time), C2 = PPPP (PP

relativised to PP), C3 = PPPPPP

(PP relativised to PPPP) and so

on. It is well-known [1] that NP ⊆ CH ⊆ PSPACE.

Theorem 2.4 implies that, if 3
2 -LC were solvable in polynomial

time, then SQRT-Sum ∈ P would hold, despite still today a major

open problem is to decide whether SQRT-Sum is solvable in NP.

32 2 Hardness

2.4 Constrained clustering in fixed dimension

Now we want to tackle the Size Constrained Clustering problem

(SCC) and the Relaxed Constraints Clustering problem (RCC), as

formulated in Section 2.1, in the case of fixed dimension d. The

former problem is the subject of study in this section, while the

latter one will be investigated in the following section.

We prove that the 1-dimensional size constrained clustering (SCC-

1) is NP-hard, for every p ≥ 1. First of all, we reformulate SCC-1 as

a decision problem.

Definition 2.4 (SCC-1: decision version). Given a set X of n

integers x1 < x2 < ... < xn, positive integers m1, ...,mk such

that
∑

mi = n, and a positive integer λ (called threshold), de-

cide whether there exists a k-clustering {A1, ..., Ak} of X , with con-

straints |Ai| = mi (i = 1, ..., k), such that W (A1, ..., Ak) < λ.

We first notice that the clustering problem without constraints is

known to be solvable in polynomial time when p = 2. We show that

adding the constraints makes the problem hard. The proof is based

on a reduction from the 3-Partition problem.

Definition 2.5 (3-Partition Problem). Given a set P = {p1, ...,
p3m} of positive integers whose sum ismB, such that each pi satisfies

B/4 < pi < B/2, decide whether there exists a partition {P1, ..., Pm}
of P such that, for each i = 1, ...,m,

∑

x∈Pi
x = B.

An equivalent version of this problem has been proved to be NP-

complete in [8]; it remains NP-complete even if the numbers in P

are all bounded by a polynomial in m. The problem was originally

proved to be strongly NP-complete in [7, Theor. 4.4] when P is a

multiset.

Theorem 2.5. SCC-1 is NP-hard (for any p ≥ 1).

2.4 Constrained clustering in fixed dimension 33

Proof. We want to reduce 3-Partition to the decision version of SCC-

1.

With the instance P = {p1, ..., p3m} of 3-Partition we associate

the instance of SCC-1 (decision version) given by X = ∪m
1 Xj

with constraints {p1, ..., p3m} and threshold λ = 3mB2p, where

Xj = {Hj + ℓ : ℓ = 0, ..., B − 1}, with H = 6mB2 + B and

B =
∑3m

i=1 pi/m. Now let’s show the correctness of this reduction.

A partition {A1, ..., A3m} of X is said to be fine if for every Ai

there is Xj with Ai ⊆ Xj .

The main observation is that 3-Partition with instance P admits

a solution if and only if there is a fine partition {A1, ..., A3m} of

X s.t. |Ai| = pi for all i = 1, ..., 3m. In fact, let {P1, ..., Pm} be a

partition of P satisfying
∑

x∈Pi
x = B; each Pi has 3 elements; with

every Pi = {pi1, pi2, pi3} we associate a partition Ai = {Ai1, ..., Ai3}
of Xi s.t. |Aij | = pij (j = 1, 2, 3), which is possible since

∑

x∈Pi

x = B = |Xi|

Thus ∪m
1 Ai is a fine partition of X satisfying the constraints

{p1, ..., p3m}, since ∪Pi = P .

Suppose now that the partition {A1, ..., A3m} of X is fine and sat-

isfies the constraints |Ai| = pi, i = 1, ..., 3m. With every Xj we

associate

Pj = {|Ai| : Ai ⊆ Xj}
Since it holds

∑

x∈Pj
x = |Xj | = B, we have that {P1, ..., Pm} verifies

the instance {p1, ..., p3m} of 3-Partition.

To prove the correctness of the reduction, it is sufficient to observe

that {A1, ..., A3m} is a clustering of X with constraints {p1, ..., p3m}
and costW (A1, ..., A3m) < λ iff {A1, ..., A3m} is fine with constraints

{p1, ..., p3m}. Suppose {A1, ..., A3m} is fine, then W (A1, ..., A3m) =
∑3m

i=1 W (Ai). For all Ai there is Xj s.t. Ai ⊆ Xj ; therefore

34 2 Hardness

W (Ai) ≤ W (Xj) < Bp+1.

In conclusion: W (A1, ..., A3m) =
∑

W (Ai) < 3mBp+1 ≤ 3mB2p =

λ.

Now suppose {A1, ..., A3m} is not fine: there is Ai containing x, y

with x ∈ Xs, y ∈ Xt and s 6= t. Observe that |x − y| is at least

H − B; if µ is the p-centroid of Ai, then either |x − µ| ≥ H−B
2 or

|y − µ| ≥ H−B
2 . It follows that

W (A1, ..., A3m) ≥ W (Ai) ≥ |x− µ|p + |y − µ|p

≥ (
H −B

2
)p = (3mB2)p ≥ 3mB2p = λ

⊓⊔
Corollary 2.6. The size constrained clustering problem in fixed di-

mension d (SCC-d) is NP-hard, for any p ≥ 1.

2.5 Relaxed Constraints Clustering

In this section we investigate the clustering problem where the car-

dinality of the clusters must belong to a fixed set of integers M, as

formulated in Section 2.1. Here we assume p = 2, i.e. we endow Rd

with the Euclidean norm.

For d = 1 the problem is solvable in polynomial time for any in-

teger p ≥ 1 because of a dynamic programming technique found in

[13].

In this section, we analyse the case d = 2, and we show that the

relaxed constraints clustering problem in the plane is NP-hard.

More precisely, fixing a finite set M = {m1, ...,ms} of positive

integers, let us study the following problem:

2.5 Relaxed Constraints Clustering 35

Definition 2.6 (Planar M-RCC). Given the point set X =

{x1, ..., xn} ⊂ Q2, an integer k > 1, a rational λ > 0 (called thresh-

old), decide whether there exists a clustering π = {A1, ..., Ak} of X

with

|Ai| ∈ M for all i = 1, ..., k

such that

W (π) = W (A1, ..., Ak) ≤ λ.

It is easy to verify, from the definitions of Section 2.1, that the Planar

M-RCC problem is a particular case of the decision version of RCC.

We will show the NP-hardness of the Planar M-RCC problem

even in the simple case M = {2, 3}. As consequence, also RCC is

NP-hard.

The proof is based on a technique similar to that of [11] using a

reduction from the Planar 3-SAT problem, defined as follows.

Recall that a 3-CNF formula Φ is a boolean formula, written as

a conjunction of clauses having exactly 3 literals. Let Φ be a 3-CNF

formula with variables V = {v1, ..., vn} and clauses C = {c1, ..., cm};
the graph GΦ of Φ is the undirected graph GΦ = 〈N,E〉 with:

N = V ∪C E = {{vi, cj} : vi or v̄i appears in cj}

The formula Φ is said to be planar if its graph GΦ is planar, i..e.

admits a planar drawing (or embedding). In such a case we identify

the variable vi ∈ V (resp. clause cj ∈ C) with the corresponding

point of the embedding in R2.

Definition 2.7 (Planar 3-SAT). The Planar 3-SAT problem con-

sists in deciding, for a given planar 3-CNF formula Φ, whether there

exists a satisfying assignment for Φ.

Lichtenstein [10] showed that Planar 3-SAT is strongly NP-complete.

Later, Knuth and Raghunathan [9] observed that it suffices to con-

36 2 Hardness

sider formulae whose associated graph can be embedded in R2, with

variables arranged on a straight line, and with clauses arranged

above and below the straight line; moreover the edges between the

variables and the clauses are drawn in a rectilinear fashion [12].

Moreover, we recall some important results on planar graph draw-

ing. An orthogonal drawing of a planar graph G is a planar embed-

ding of G on a integer grid where each vertex is an intersection point

of the grid and each edge is a chain of horizontal or vertical segments

of the grid. Any planar graph with maximum degree ≤ 4 admits an

orthogonal drawing. A box-orthogonal drawing of a planar graph G

is a planar embedding of G on an integer grid where each vertex is

drawn as a (possibly degenerate) rectangle of the grid and each edge

is a chain of horizontal or vertical segments of the grid. Any planar

graph (of arbitrary degree) admits a box-orthogonal drawing. Sev-

eral algorithms have been proposed to compute the box-orthogonal

drawing of a planar graph [4, 3].

Theorem 2.7. ([3, Theor. 3]) For every planar graph G = (V,E)

with |V | = n, there is a box-orthogonal drawing for G, computable

in O(n) time, that uses a a× b grid, where a+ b ≤ 2n.

Before presenting the reduction from Planar 3-SAT, we furtherly

need the following observation. Consider a set Y of points with ra-

tional components as shown in Figure 2.1. By inflating, Y can be

drawn on an (integer) grid.

Lemma 2.8. It holds:

1. W ({z, b1, c1}) = W ({z, b2, c2}) = W ({z, b3, c3}) < 34.67

2. Furthermore, any other triple of points has cost > 34.78

Proof. Since 32 + 42 = 52, the coordinates of the points ai, bi, ci, di,

1 ≤ i ≤ 3, are integers; all edges have length 5. Coordinates of z are

rational.

2.5 Relaxed Constraints Clustering 37

b

b

b b

b

b

b b

b

b

bb bb

b

b

b b

a1

b1 c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

b

z

5 + 23
30

5 + 1
2

5 + 1
2

Fig. 2.1 Point set Y embeddable in an integer grid.

The triangle with vertices A = {z, b1, c1} is isosceles, it has base

5 and height 5+ 23
30 ; by proper rotation and translation we can easily

calculate the centroid CA = (0, 173/90) and the cost

W (A) =
23402

675

The triangle with vertices B = {z, b2, c2} has base 5 and height 5.5;

by proper rotation and translation we can easily calculate the cen-

troid CB = (173/90, 11/6) and the cost W (B) = 23402
675 = W (A) <

34.67. The triangle with vertices C = {z, b3, c3} is symmetric to A,

hence has the same cost.

Consider the triangle with vertices A′ = {z, b1, b2}; after placing
the origin at b2 we can easily check that the centroid is CA′ =

(17/6, 127/90) and the cost is W (A′) = 23477
675 > 34.78. Consider

38 2 Hardness

the triangle with vertices B′ = {a2, b2, b1}; by placing the origin at

b2 we can easily calculate the centroid CB′ = (−1/3, 8/3) and the

cost W (B′) = 112/3 = 37.3̄.

It is evident that other sets of 3 vertices have cost > 34.78. ⊓⊔

Remark 2.1. We remark that by properly rescaling the grid by a

factor 1
30 , also the point z can be embedded to a intersection point

of the grid.

We are ready now to illustrate the reduction.

Theorem 2.9. Planar 3-SAT is polynomially reducible to Planar

{2, 3}-RCC.

Proof. Let Φ be the instance of Planar 3-SAT with n variables V =

{v1, ..., vn} and m clauses C = {c1, ..., cm}.
The basic idea is to construct a proper planar graph G from the

instance Φ such that, the cost of the optimal clustering on the points

of G with m clusters of size 2 or 3 is less than or equal to a suitable

threshold λ > 0 if and only if the formula Φ is satisfiable.

With the instance Φ we associate a point set X in a box-

orthogonal grid satisfying the following conditions.

1. For every clause cj ∈ C we associate a point zj in the plane.

2. For every variable vi ∈ V we associate a simple circuit Γi in the

plane containing 2Li consecutive points xi1, ..., xi(2Li). xit and

xi(t+1) are at distance 5, for every t (1 ≤ t ≤ 2Li − 1), and so are

xi(2Li) and xi1, while ‖xit − xis‖ > 5 for 1 < |t− s| < 2Li − 1.

3. For every clause cj and every variable vi appearing in cj , there

are two consecutive points xit and xi(t+1) which are the nearest

points to zj among the points of the circuit Γi: xi1, ..., xi(2Li). In

such a case we say that zj (or the clause cj) touches the cluster

{xit, xi(t+1)}. If the clause cj contains the literal vi then t is even;

if cj contains the literal vi then t is odd.

2.5 Relaxed Constraints Clustering 39

4. The segment between the points {xit, xi(t+1)} touched by a clause

cj must be either horizontal or vertical. If it is horizontal, its

distance from zj is 5 + 23
30 , otherwise 5 + 0.5. More precisely, the

arrangement of points in the neighborhood of each zj is given by

the Figure 2.2.

b

b

b b

b

b

b b

b

b

bb bb

b

b

b b

xi(t−1)

xit xi(t+1)

xi(t+2)

xi(t−2) xi(t+3)Γi

ΓhΓg

5

b

zj

Fig. 2.2 The neighborhood of a point zj associated to clause cj contains

points from the 3 circuits associated to the variables appearing in cj .

By Theorem 2.7 such a grid can can be obtained in time O(2
∑n

1 Li+

m) and the rescaling factor can be chosen properly to draw the zj ’s

as intersection points.

We observe that, for every variable vi, the points xi1, ..., xi(2Li)

of Γi admit only two optimal clustering with clusters of size 2:

π1 = {{xi(2Li), xi1}, {xi2, xi3}, ...} π2 = {{xi1, xi2}, {xi3, xi4}, ...}

40 2 Hardness

We declare that the clustering π1 corresponds to the True assignment

to the variable vi, while π2 corresponds to the False assignment to

vi, so that: if vi is a literal in cj then zj touches a cluster in π1, if vi
is a literal in cj then zj touches a cluster in π2.

Moreover, we notice that every cluster {xis, xi(s+1)} has cost 52/2,
while if zj touches {xit, xi(t+1)} the cluster {zj, xit, xi(t+1)}, has cost
23402/675 as stated by Lemma 2.8.

We observe that each assignment to (v1, ..., vn) selects, for every

variable vi, one of the two optimal clusterings of the points in Γi.

Hence, an assignment satisfies Φ if and only if every clause cj touches

at least one cluster of a selected clustering.

Now, we construct the instance (X, k, λ) of the Planar {2, 3}-RCC
problem associated to Φ:

1. X = {z1, ..., zm} ∪ {xis : i = 1, ..., n; s = 1, ..., 2Li}
2. k =

∑n
1 Li

3. λ = mT + (k −m)5
2

2 , where T = 23402
675

Every clustering of X with size constraints {2, 3}, whose clusters

we call segments and triangles, must contain exactly m triangles.

Indeed, if nT is the number of triangles and nS is the number of

segments in a clustering, the following equations hold:

2nS + 3nT = 2

n∑

1

Li +m (total number of points)

nS + nT = k (total number of clusters)

which yields nT = m.

Since the triangles have minimum cost T by Lemma 2.8, and the

segments have minimum cost 52/2, the cost of every clustering π is:

W (π) ≥ mT + (k −m)
52

2
= λ

2.5 Relaxed Constraints Clustering 41

Now, to complete the reduction we verify that the cost of the

clustering π of the instance (X, k, λ) is λ iff Φ is satisfiable. Suppose

Φ is satisfiable, that is there exists an assignment which satisfies it.

For such an assignment, every clause cj touches at least one pair

{xit, xi(t+1)} of the selected clustering and hence {xit, xi(t+1), zj} is

an optimal triangle; the other points can be clustered into optimal

segments. The cost of the obtained clustering is exactly

W (π) = mT + (k −m)
52

2
= λ

Vice versa, if there exists a clustering π with cost λ, by construc-

tion such a clustering must contain m minimal cost triangles. The

only triangles with minimum cost are those containing one of the

points {z1, ..., zm}; two such points cannot lie in the same cluster,

hence every point zj touches some pair {xit, xi(t+1)} of a selected

clustering and therefore the formula Φ is satisfiable. ⊓⊔

Since Planar 3-SAT is NP-complete, the {2, 3}-RCC problem in

the plane is NP-hard. Since Planar {2, 3}-RCC is trivially in NP, we

can conclude with the following result.

Theorem 2.10. The Planar {2, 3}-RCC problem is NP-complete.

42 2 Hardness

References

1. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen.

On the complexity of numerical analysis. In Proc. 21st Ann. IEEE

Conf. on Computational Complexity (CCC’06), pages 331–339, 2006.

2. E. Allender and K. W. Wagner. Counting Hierarchies: Polynomial Time

and Constant. Bulletin of the EATCS, 40:182–194, 1990.

3. U. Fößmeier, G. Kant, and M. Kaufmann. 2-Visibility drawings of

planar graphs. In S. North, editor, Proc. Symposium on Graph Draw-

ing, GD’96, volume 1190 of Lecture Notes in Computer Science, pages

155–168. Springer Berlin, 1997.
4. U. Fößmeier and M. Kaufmann. Drawing High Degree Graphs with

Low Bend Numbers. In F. Brandenburg, editor, Proc. Symposium on

Graph Drawing, GD’95, volume 1027 of Lecture Notes in Computer

Science, pages 254–266. Springer Berlin, 1996.

5. M. Garey, R. Graham, and D. Johnson. Some NP-complete geometric

problems. In Proceedings of the eighth annual ACM symposium on

Theory of Computing, pages 10–22, NY, USA, 1976. ACM New York.

6. M. R. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-

complete graph problems. Theor. Comput. Sci., 1(3):237–267, 1976.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York,

1979.

8. H. Hulett, T. G. Will, and G. J. Woeginger. Multigraph realizations of

degree sequences: Maximization is easy, minimization is hard. Opera-

tions Research Letters, 36(5):594 – 596, 2008.
9. D. E. Knuth and A. Raghunathan. The problem of compatible repre-

sentatives. SIAM J. Discrete Math., 5(3):422–427, 1992.
10. D. Lichtenstein. Planar Formulae and Their Uses. SIAM J. Comput.,

11(2):329–343, 1982.
11. M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The Planar k-Means

Problem is NP-Hard. In S. Das and R. Uehara, editors, WALCOM: Al-

gorithms and Computation, volume 5431 of Lecture Notes in Computer

Science, pages 274–285. Springer Berlin/Heidelberg, 2009.

12. W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. J.

ACM, 55(2), 2008.

13. F. Saccà. Problemi di Clustering con Vincoli: Algorithmi e Comp-

lessità. PhD thesis, University of Milan, Milan, 2010.

References 43

14. A. Tung, J. Han, L. Lakshmanan, and R. Ng. Constraint-Based Clus-

tering in Large Databases. In J. Van den Bussche and V. Vianu, editors,

Database Theory ICDT 2001, volume 1973 of Lecture Notes in Com-

puter Science, pages 405–419. Springer Berlin/Heidelberg, 2001.

15. K. W.Wagner. The complexity of combinatorial problems with succinct

input representation. Acta Informatica, 23(3):325–356, 1986.

16. S. Zhu, D. Wang, and T. Li. Data clustering with size constraints.

Knowledge-Based Systems, 23(8):883–889, 2010.

CHAPTER 3

Clustering in the Plane with Euclidean Norm

3.1 Introduction

We proved in the previous chapter that the problem {2, 3}-RCC in

the plane is NP-complete, so we can’t expect to obtain efficient exact

algorithms for the general problem RCC in the plane.

In this chapter we fix the norm ‖ ‖2 and we investigate RCC in

the plane, with a fixed clustering size s (i.e. the number of clusters

is not part of the instance). In particular we study the case s = 2.

We consider the following problem:

Definition 3.1 (2-RCC in the Plane (briefly 2-RCC)). Given

a point set X = {x1, ..., xn} ⊂ Q2 and M = {k, n − k}, find a

45

46 3 Clustering in the Plane with Euclidean Norm

2-clustering {A, Ā} of X with |A| = k, |Ā| = n− k, that minimises

W (A, Ā) = W (A) +W (Ā)

We also consider the following:

Definition 3.2 (Full 2-RCC in the plane (briefly Full 2-

RCC)). Given a point set X = {x1, ..., xn} ⊂ Q2, find all the

optimal 2-clusterings πk = {Ak, Āk}, with |Ak| = k for all k,

1 ≤ k ≤ ⌊ |X|
2 ⌋.

The main results we obtain are:

1) There is an algorithm for solving Full 2-RCC problem in time

O(n2 · logn) (Theorem 3.2).

2) There is an algorithm for solving 2-RCC problem in time O(n 3
√
k ·

log2 n) (Theorem 3.17).

The algorithm for solving Full 2-RCC is designed and analysed in

Section 3.2. The algorithm for solving 2-RCC is more difficult, and it

requires methods related to the challange-problem of Combinatorial

Geometry of enumerating the k-sets of points X in the plane.

In Section 3.3 such methods are reviewed, while in Section 3.4 the

algorithm is described at a high abstraction level (Algorithm 3).

The implementation of Algorithm 3 requires an efficient dynamical

data structure for constructing and maintaining the convex hull of

a planar point set, under the operations of insertion, deletion and

query. This implementation is described in Section 3.5.

3.2 Size Constrained 2-Clusterings in the Plane

In this section we present an algorithm that, taking in input a finite

subset X of points of the plane, outputs all the optimal 2-clusterings

3.2 Size Constrained 2-Clusterings in the Plane 47

{Ak, Āk} of X with constraint |Ak| = k, for all k, 1 ≤ k ≤ ⌊|X |/2⌋.
This algorithm works in time O(n2 logn). In this chapter we simplify

the notation by writing ‖ ‖ for the norm ‖ ‖2.

We suppose that X = {x1, ..., xn} ⊂ Q2 is in general position, i.e.

no triple (x, y, z) of distinct points of X is collinear. Moreover, for

sake of simplicity we impose two hypotheses on the point set X :

(a)
∑

x∈X x = 0

(b) the points of X have all distinct ordinates

The hypothesis (a) can be assumed w.l.o.g., since a translation of X

does not change the clustering costs, while the hypothesis (b) can

be overcome with minor modifications (e.g. by slight rotation of X).

We recall that, for the norm ‖ ‖2, the centroid µA of a point set

A is the component-wise mean:

µA =

(
∑

x∈A

x

)

/|A| (3.1)

Given a clustering π = {A, Ā} of X , because of hypothesis (a)

and eq. (3.1) we have that |A|µA + |Ā|µĀ = 0. Moreover, the cost

W (A, Ā) of the clustering π can be obtained as follows:

W (A, Ā) =
∑

x∈A

‖x− µA‖2 +
∑

x∈Ā

‖x− µĀ‖2

=
∑

x∈X

‖x‖2 − |A|‖µA‖2 − (n− |A|)‖µĀ‖2
(3.2)

If we set

SA =
∑

x∈A

x

it follows that

48 3 Clustering in the Plane with Euclidean Norm

SĀ = −SA (3.3)

W (A, Ā) =
∑

x∈X

‖x‖2 − ‖SA‖2n
|A|(n− |A|) =

∑

x∈X

‖x‖2 − ‖SĀ‖2n
|Ā|(n− |Ā|)

(3.4)

Because of (3.4), the optimal size constrained 2-clustering π =

{A,B} with |A| = k can be obtained as follows:

argmin
A⊂X:|A|=k

W (A, Ā) = argmax
A⊂X:|A|=k

‖SA‖2
k(n− k)

(3.5)

Definition 3.3. We say that A ⊂ X is a k-set of X if |A| = k and

A = X ∩H for a suitable half-space H ⊂ Rd.

In other words, a subset A is a k-set if it is separated from Ā by a

straight line ℓ and has k points. Now we recall from Section 1.3 that

an optimal clustering π = {A, Ā} with |A| = k is such that there is

a straight line ℓ separating A form Ā. We can conclude the following

Fact 3.1. The problem of finding the optimal 2-clustering π =

{A, Ā} with |A| = k is reduced to the problem:

argmin
A⊂X:|A|=k

W (A, Ā) = argmax
A is k-set of X

‖SA‖2
k(n− k)

In order to solve the problem

argmax
A is k-set of X

‖SA‖2
k(n− k)

we observe that, if A is separated from Ā by an oriented straight

line ℓ that keeps A on its right-hand side, then there is a pair (x, y)

of distinct points in X such that

i) y ∈ A, x ∈ Ā

3.2 Size Constrained 2-Clusterings in the Plane 49

ii) the straight line through x and y separates Ar {y} from Ār {x}
Vice versa, with a pair (x, y) of distinct elements in X , we can asso-

ciate the ordered bipartition (A, Ā) of X s.t. A is the set of points

on the right of the oriented straight line (x, y), including y and ex-

cluding x. We conclude that the ordered bipartitions (A, Ā), where

A is separable from Ā by a straight line ℓ, are in bijection with the

set of oriented edges

E = {(x, y) : x, y ∈ X, x 6= y}

Remark 3.1. We observe that the optimal clustering of n points with

constraint k is exactly the optimal clustering with constraint n−k. It

is then sufficient to find all the optimal clustering for 1 ≤ k ≤ ⌊n/2⌋.

These facts suggest the following Algorithm 1, written at a very

high level of abstraction, for finding all the optimal 2-clusterings

πk = {Ak, Āk} with |Ak| = k, for all k, 1 ≤ k ≤ ⌊|X |/2⌋.

50 3 Clustering in the Plane with Euclidean Norm

Algorithm 1 Full 2-RCC

Input: a point set X = {x1, ..., xn} ⊂ R2 in general position, having dis-

tinct ordinates, s.t.
∑

x∈X x = 0

Output: optimal clusterings πk = {Ak, Ak} with |Ak| = k, 1 ≤ k ≤ ⌊n/2⌋

1 for 1 ≤ k ≤ ⌊n/2⌋ do

2 qk = 0

3 for all pairs (xi, xj), (i 6= j), do

4 A := set of points in X on the right of the oriented straight line

(xi, xj)

5 SA =
∑

x∈A x

6 g = |A|

7 m = min{g, n− g}

8 if m 6= 0 and
‖S‖2

g(n−g)
> q[m] then

9 πm = {A, Ā};

10 q[m] = ‖S‖2

g(n−g)

11 return (π1, ..., π⌊n/2⌋)

We notice that the number of iterations of the for-loop at line 3

is O(n2). To obtain a near O(n2) time algorithm it is then desirable

to design an efficient method for executing each iteration. To this

end, the basic idea inspired by the work of Hansen et al. [13] is to

enumerate the pairs (x, y) in a suitable manner to allow an immedi-

ate calculation of the new value of the program variable SA at line

5 from its old value at the previous step. In fact, for a fixed x the

enumeration will be done, in the order of the angular coefficient of

the straight line through x and y.

In details, let X = {x1, ..., xn} be the set of n points in R2 in

general position and satisfying the hypotheses (a) and (b). Consider

a point x ∈ X , and let y be another point of X . We denote by

e = (x, y) the oriented edge from x to y, and with little abuse of

language we also denote by (x, y) the straight line through x and

3.2 Size Constrained 2-Clusterings in the Plane 51

y. We define the angle ∡x of a vector x ∈ R2 as the oriented angle

between (1, 0) and x in counterclock-wise sense. The slope of a vector

x ∈ R2 is 〈∡x〉π ∈ [0, π), i.e. the remainder of the division of ∡x by

the constant π; while the slope of an edge e = (x, y) is the slope of

(y− x). By this definition, the slope of x is equal to the slope of −x

and the slope of (x, y) is equal to the slope of (y, x).

We will introduce a total order < on the edge set E = {(xi, xj) :

i 6= j}. First of all, sort x1, ..., xn by ordinate, so that w.l.o.g. we

can suppose x1 < x2 < ... < xn. This can be easily achieved in time

O(n log n). Fixed i (1 ≤ i ≤ n), define the set of oriented edges from

xi to the other points (usually called forward star):

FS(xi) = {(xi, xj) : xj ∈ X, i 6= j}.

and sort the set FS(xi) by slope, thus obtaining:

(xi, yi1) < (xi, yi2) < ... < (xi, yi(n−1))

Then the total order < on E can be given by:

(xi, yij) < (xk, yks) ⇐⇒ i < k or i = k and j < s.

This ordering can be achieved in O(n logn) time since it takes con-

stant time to calculate the slope of an edge (xi, xj).

Now, for every xi ∈ X consider the horizontal line through xi: it

determines the partition πi0 = {Ai0, Ai0} with

Ai0 = {y ∈ X : y is below the straight line through xi}

which is obviously a |Ai0|-set. That can be done in O(n) time. At

the end, for every (xi, yij), let

Aij = {z ∈ X : z lies on the right of the straight line (xi, yij)}

52 3 Clustering in the Plane with Euclidean Norm

It is easy to observe that Ai(j+1) can be easily obtained from Aij by

means of:

Ai(j+1) =

{
Aij ∪ {yij} if yij − xi has positive ordinate

Aij r {yij} otherwise

which is clearly a |Ai(j+1)|-set and hence determines the clustering

πi(j+1) = {Ai(j+1), Ai(j+1)}, which differs from πij by a so-called

switch of the point yij from one cluster to the other.

The enumeration of the edges (xi, yij) and the associated parti-

tions πij can be interpreted as a rotating straight line with center xi

in counterclock-wise sense. When the rotating line crosses the point

yij , if yij was on the right (resp. left) of the rotating line it passes

to the left (resp. right), thus yielding two new clusters Ai(j+1) and

Ai(j+1).

Denoting Sij = SAi(j+1)
and gij = |Aij |, we observe that the value

of Si(j+1) and gi(j+1) can be easily obtained by the recurrences:

Si(j+1) =

{
Sij + yij if yij − xi has positive ordinate

Sij − yij otherwise
(3.6)

gi(j+1) =

{
gij + 1 if yij − xi has positive ordinate

gij − 1 otherwise
(3.7)

It is also interesting to note that the centroid of Aij and its comple-

ment is obtainable, respectively, as:

µAij =
Sij

gij
µAij

=
−Sij

(n− gij)

To enumerate all the possible 2-clusterings of X , it suffices to

repeat the considerations above with all the other points xi ∈ X .

We formalise these steps in the Algorithm 2. The complexity analysis

was almost presented. It suffices to note that the for-loop at line

3.2 Size Constrained 2-Clusterings in the Plane 53

Algorithm 2 Full 2-RCC

Input: a point set X = {x1, ..., xn} ⊂ R2 in general position, having dis-

tinct ordinates, s.t.
∑

x∈X x = 0

Output: sequence (e[1], ..., e[⌊n/2⌋]) of edges where e[k] is associated with

the solution of 2-RCC with constraints M = {k, n− k}

1 for 1 ≤ k ≤ ⌊n/2⌋ do

2 q[k] = 0

3 for i = 1, ..., n do

4 A = points of X below the horizontal line through xi

5 S =
∑

x∈A x

6 g = |A| // it can be g = 0

7 Sort ((xi, x1), (xi, xi−1), (xi, xi+1), ..., (xi, xn−1)) by slope ob-

taining ((xi, yi1), ..., (xi, yi(n−1)))

8 for j = 1, ..., n− 1 do

9 if yij ’s ordinate > xi’s ordinate then

10 S = S + yij ; g = g + 1

11 else

12 S = S − yij ; g = g − 1

13 m = min{g, n− g}

14 if m 6= 0 and q[m] < ‖S‖2

g(n−g)
then

15 q[m] = ‖S2‖
g(n−g)

16 e[m] = (xi, yij)

17 return (e[1], ..., e[⌊n/2⌋]))

3 iterates n times. Lines 4–6 cost O(n) steps, while the heaviest

calculation is the sorting at line 7 which requires O(n log n). The

operations in lines 9–16 require constant time and are repeated n−1

times. In conclusion the computational time is T (n) = n[O(n) +

O(n log n) + (n− 1)O(1)] = O(n2 logn).

Theorem 3.2. Let X be a set of n points in the plane in general

position having distinct ordinates and satistying
∑

x∈X = 0. There

is an algorithm that finds all the optimal 2-clusterings of X with

every constraint k, 1 ≤ k ≤ ⌊n/2⌋ running in time O(n2 logn).

54 3 Clustering in the Plane with Euclidean Norm

We underline that all the 2-SCC-2 problems with constraints k, 1 ≤
k ≤ ⌊n/2⌋, are solved with one execution of the Algorithm 2. In the

next sections we will see instead that, if we want to compute only

one optimal k-clustering for a given k, the time complexity can be

furtherly reduced by geometrical technique.

Since such a technique is based on an efficient method for iterating

through all possible k-sets, with fixed k, in the next section we recall

some methods of combinatorial geometry that allows one to estimate

the number of k-sets in the plane.

3.3 k-Sets

This section is devoted to introduce some notions and results of com-

binatorial geometry, which is the study of combinatorial or discrete

properties of geometrical objects in finite-dimensional spaces, such

as points and lines. Moreover, when the interest switches toward al-

gorithmic techniques to solve combinatorial geometry problems the

study enters into the field of computational geometry. The branch

of combinatorial geometry was initially established through various

works by classical mathematicians such as Euler and Kepler, and

more recently by modern authors such as H. Minkowski, L. F. Tóth

and the prolific mathematician P. Erdös.

Two central topics in combinatorial geometry are the study of sep-

aration of a point set and the arrangement of hyperplanes. Among

the former topic an old problem, first studied by Lovász [16] and

Erdös [12], consists in determining the number of possible separa-

tions of a given point set P in the plane obtainable by lines. The

problem can be extended to dimension d > 2 using the hyperplanes.

It is well-known that this extended problem is equivalent to asking

how many cells the space is cut into by a suitable set of hyperplanes,

3.3 k-Sets 55

obtained by a duality construction from the point set P [9, Chap. 3].

Now, we will formalise the above-mentioned notions and illustrate

the main tool that consists in the bound on the number of planar

k-sets. Let X = {x1, ..., xn} be a set of n points in Rd. We will

say that they are in general position (or dually equivalent simple

configuration [9, p. 5]) if any d + 1 points taken from X are not

coplanar points. In the Euclidean space R3 this condition can be

easily checked by the equality

(y3 − y1) · [(y2 − y1)× (y4 − y3)] = 0

for any 4 distinct points yi ∈ X , i = 1, ..., 4 (· and × denote inner

and cross product respectively). Unless otherwise stated, we will

always work with this assumption, since it doesn’t lead to a loss

of generality. Recall the following definition already introduced in

Section 3.2.

Definition 3.4. Given a finite setX of n points in Rd and an integer

0 ≤ k ≤ n, a k-set is a subset A ⊆ X with cardinality |A| = k such

that A = X ∩H for a suitable half-space H ⊂ Rd.

When d = 2, the k-sets are those planar point sets A separated from

X r A by a straight line and are thus called planar k-sets. Denote

by f
(d)
k (X) the number of k-sets of X ⊂ Rd and by f

(d)
k (n) the

maximum number of k-sets for n arbitrary points in Rd:

f
(d)
k (n) = max

X⊂Rd,|X|=n
f
(d)
k (X)

Moreover, we will write fk(n) when d = 2, i.e. fk(n) = f
(2)
k (n).

Remark 3.2. We notice that fk(n) = fn−k(n).

56 3 Clustering in the Plane with Euclidean Norm

Definition 3.5 (k-Sets Problem). Fixing the dimension d, and

given n and k, determine the number f
(d)
k (n). In the case d = 2, the

problem of determining fk(n) is called Planar k-Sets Problem.

We want to recall both some lower bound and upper bound on fk(n).

A special instance of the problem where n = 2k is called Halv-

ing Planes Problem. Furthermore, the particular case of the Halv-

ing Planes Problem where d = 2 is called Halving Lines Problem,

and was studied initially in 1971 by Lovász [16], where an effective

method was given for constructing point setsX with the lower bound

fn/2(n) = Ω(n log n). A few years later, Erdös et al. [12] discovered

an extension of this result for the Planar k-Sets Problem, giving a

lower bound fk(n) = Ω(n log k); the same result was found inde-

pendently by Edelsbrunner and Welzl [10]. After long time with no

actual developments other than small improvements on the constant

of the lower bound, a little step was done by Tóth [26] demonstrating

that fn/2(n) = neΩ(
√
logn) and fk(n) = neΩ(

√
log k), and improving

a similar bound for the complexity of the median level in pseudo-

line arrangements [9, Sec. 2.4], which is the dual equivalent of the

Halving Lines Problem, although the manuscript by Klawe et al.

containing this bound remained unpublished [14].

On the other hand, the existing upper bounds for the Planar

k-Sets Problem seem to be far larger than the best-known lower

bound. By improving the O(n3/2) upper bound of Lovász [16] for

the Halving Lines Problem, Erdös et al. [12] in 1973 generalised the

result to an upper bound of fk(n) = O(n
√
k) for the Planar k-Sets

Problem. After the result by Erdös et al. tiny improvements were

done in literature, such as that one by Pach et al. [18, 19] consisting

in fk(n) = O(n
√
k/ log∗ k) (log∗ being the iterated logarithm), until

the significant step 26 years later due to Dey [8] which gives a new

upper bound fk(n) = O(n 3
√
k).

3.3 k-Sets 57

It is interesting to recall that there are extension of these results

for higher-dimensional spaces. In particular, in the Euclidean space

R3 the k-Sets Problem has an upper bound f
(3)
k (n) = O(nk3/2) due

to Sharir et al. [25] and a lower bound f
(3)
k (n) = nkeΩ(

√
log k) [26],

which easily generalises to f
(d)
k = nkd−1eΩ(

√
log k) for d-dimensional

spaces.

Although the difficulties to find a strict upper bound for the Pla-

nar k-Sets Problem, there’s an exact evaluation of the maximum

number of ≤k-Sets in the plane, i.e. the number gk(n) =
∑

i≤k fi(n),

for arbitrary n points; indeed Alon and Györi [3] showed a combi-

natorial proof based on n-sequences that leads to gk(n) = nk.

In this section we want to illustrate the result by Dey [8] in 1998.

Remark 3.3. Before this presentation, it is noteworthy to give a brief

survey on a equivalent result in the dual space [9, Chap. 3] that was

proved by the same author in the previous year [7]. Intuitively, the

geometric duality is a one-to-one transformation D that maps points

of Rd to non-vertical hyperplanes of Rd and vice versa. Formally, the

dual of the point p = (a1, ..., ad) is the hyperplane p∗ = D(p):

p∗ : xd = a1x1 + ...+ ad−1xd−1 − ad

The dual of the hyperplane h : xd = a1x1+ ...+ad−1xd−1+ad is the

point h∗ = D(h) = (a1, ..., ad−1,−ad). In particular, in the Euclidean

plane a point p = (a, b) is mapped to the line p∗ : y = ax − b, and

the line ℓ : y = ax + b is mapped to the point ℓ∗ = (a,−b). There

exists also an alternative definition of geometric duality, called polar

duality [5]. Independently of which definition is taken, the duality is

an involution, i.e. (p∗)∗ = p, (ℓ∗)∗ = ℓ, and preserves the order and

incidence relations between point and lines, so that many theorems

in geometry has an equivalent dual formulation. A k-level in the

58 3 Clustering in the Plane with Euclidean Norm

arrangement of n lines is the closure of the set of points p, with p

lying on one line and having exactly k lines strictly below it. The

complexity of the k-level is the number of its vertices. It is well-known

that determining the complexity of the k-level in the arrangement of

the dual lines of a given set X of n points is equivalent to the Planar

k-Sets Problem. By exploiting an old result [2, 15] on the crossing

number of a graph, i.e. the minimum number of edge intersections

of a planar drawing of the graph, Dey [7] succeded in demonstrating

the O(n 3
√
k) upper bound for the complexity of the k-level in the

arrangement of n lines and hence for the maximum number of k-

sets of n points.

Now, we give a short survey illustrating the upper bound [8] for

fk(n) in the primal space, i.e. in the space R2 containing the point set

X . The proof is based on some preliminary results on the so-called

convex chains and exploits again the crossing number inequality in

[2, 15].

Let’s consider the set X of n points in general position in the Eu-

clidean plane R2. Given a pair of points p, q ∈ X we denote by ℓpq
the straight line through p and q, and by pq the line segment having

p and q as endpoints; moreover we say that ℓpq is the supporting line

of pq.

Definition 3.6. The line segment pq is called k-set edge of X if

there are exactly k points of X in one of the two open half-plane

determined by the supporting line ℓpq.

In other words, pq is a k-set edge if:

|X ∩H | = k with H open half-plane having boundary ∂H = ℓpq

We can decide to give an orientation to a k-set edge pq by denoting it

with (p, q) or (q, p). Let e = (p, q) be an oriented k-set edge; we define

3.3 k-Sets 59

N+
e as the number of points on the left open half-plane w.r.t. e. We

can then define the edge set Ek = {e = (p, q) ∈ V × V : N+
e = k}.

Construct a geometric graph Gk = 〈V,−→E k〉 in the following man-

ner. Let V = X . Let
−→
E k be the set of k-set edges of X oriented from

left to right (we assume there are no vertical k-set edge, otherwise

it suffices a small rotation of X) having exactly k points of X on its

left open half-plane. i.e. we write

−→
E k = {e = (p, q) ∈ V × V : py < qy, N

+
e = k}.

Clearly
−→
E k ⊆ Ek. We can assume without loss of generality that the

remaining oriented k-set edges not in
−→
E k are less than those in

−→
E k,

i.e. the number of k-set edges is |Ek| < 2|−→E k|. We call such a graph

Gk the (directed) k-graph of X . Given an edge e ∈ −→
E k we denote

by Le and Re the left and right endpoint respectively, and by Se the

slope of the supporting line ℓe of e (or simply the slope of e).

Proposition 3.3 ([12]). Let p ∈ V and let a, b ∈ −→
E k be two incom-

ing (resp. outgoing) edges having slopes Sa < Sb; then there exists an

outgoing (resp. incoming) edge e ∈ −→
E k having slope Sa < Se < Sb.

Define the relation R over
−→
E k as follows: given a, b ∈ −→

E k, aRb iff

i) a is incoming edge of some p ∈ V and b is outgoing edge of p,

i.e. Ra = Lb, ii) Sa > Sb and iii) there’s no other c ∈ −→
E k s.t.

Sa > Sc > Sb. It is simple to verify by the previous proposition that

aRc and bRc implies a = b. Define the equivalence relation R∗ as the

reflexive, symmetric, transitive closure of R. R∗ partitions
−→
E k into

classes, each one consisting of one chain of non-overlapping directed

edges going from left to right. Such chains are called convex chains

of Gk.

Lemma 3.4 ([8]). Let
−→
E k/R

∗ = {C1, ..., Cm} be the set of convex

chains obtained partitioning
−→
E k by R∗. Each chain Ci has a unique

60 3 Clustering in the Plane with Euclidean Norm

leftmost endpoint (i.e. endpoint with no incoming edge), and there

are at most k + 1 leftmost endpoints in Gk.

Corollary 3.5. There are at most k + 1 convex chains partitioning−→
E k.

Given two edges a, b ∈ −→
E k we say that the intersection point a ∩ b

is a crossing if it is not an endpoint. We need to recall the following

notion.

Definition 3.7 ([2]). The crossing number cr(G) of a graph G is

the minimum number of crossings in a planar drawing of G.

Planar graphs are those without crossings, hence they are exactly

those graphs G with cr(G)= 0. Remind now a lower bound on the

crossing number for which we have explicit and significant constants

[20].

Theorem 3.6 ([20]). The crossing number of a simple graph G

having n vertices and m edges is at least 1
33.75

m3

n2 − 0.9n.

Let Ci and Cj be two distinct convex chains of Gk, and let z be

a crossing between a k-set edge a of Ci and a k-set edge b of Cj ,

that is z = a∩ b. Clearly, we can define a line segment t lying above

the crossing z and connecting an endpoint of a and one of b, as

illustrated in Figure 3.1. We call such a line segment t a common

tangent between Ci and Cj determined by the crossing z. By exploit-

ing Proposition 3.3 and Lemma 3.4 it is possible to demonstrate the

following:

Lemma 3.7. For each common tangent t of Gk there is a unique

crossing z in Gk determining t.

Lemma 3.8. There are at most nk common tangents for Gk.

3.3 k-Sets 61

z

Ci

Cj

t

Fig. 3.1 Two k-set edges a, b, of two convex chains Ci, Cj , intersecting at

a point z, that has a common tangent t to Ci, Cj , with t lying above z

Proof. Consider a vertex p ∈ V belonging to a convex chain Ci. How

many common tangents having p as left endpoint exist? Clearly,

since by Corollary 3.5 there are at most k convex chains not passing

through p, the answer is k at most. As the number of vertices is n,

there are at most nk commont tangents. ⊓⊔

Corollary 3.9. There are at most nk crossings in Gk.

Proof. Simply apply Lemma 3.7. ⊓⊔

Before formulating the main theorem of this section we recall a useful

remark by Alon and Györi [3].

Proposition 3.10. The number of (k+1)-sets of X is equal to the

number of oriented k-set edges in Ek.

The intuitive explanation of the Proposition 3.10 is that for an ori-

ented k-set edge e ∈ Ek, there are k points on the left of e and

62 3 Clustering in the Plane with Euclidean Norm

n − k − 2 points on the say right of e. We can conventionally con-

sider one endpoint, say the head, belonging to the left half-plane, and

the other endpoint, say the tail, belonging to the right half-plane, so

that the right half-plane conventionally has n− k− 1 points and the

left half-plane conventionally has k + 1 points, i.e. is a (k + 1)-set.

Finally, we have the desired bound:

Theorem 3.11 ([8]). Given a set X of n points in R2 the number

of (k + 1)-sets of X is fk+1(X) < 6.48n 3
√

(k + 1).

Proof. Construct the k-graph Gk = 〈V,−→E k〉 as explained above and

denote n = |V | = |X |,m = |−→E k|. By Theorem 3.6 there are at least

(1/33.75)m3/n2 − 0.9n crossings in Gk, and by Corollary 3.9 there

are at most nk crossings in Gk; hence (1/33.75)m3/n2 − 0.9n ≤ nk.

It holds immediately that m < 3.24n 3
√

(k + 1). By recalling that

the number of oriented k-set edges is |Ek| < 2|−→E k| = 2m, the claim

follows by Proposition 3.10. ⊓⊔

Written at the end of the last proof there is the effective inequality

that we will use later on.

Corollary 3.12. The number of oriented k-set edges is |Ek| <

6.48n 3
√

(k + 1).

3.4 Size Constrained 2-Clustering in the Plane

In the remaining part of this chapter we present an efficient technique

that, taking in input a finite set X of points and an integer k > 1,

finds an optimal 2-clustering {A, Ā} of X with constraint |A| = k,

for the Euclidean norm. We will see that this algorithm works in

time O(n
3
√
k log2 n).

3.4 Size Constrained 2-Clustering in the Plane 63

We will make use of the abstract operations on certain convex

closures, which will be specified in the next section. Before describ-

ing the technique we need some preliminaries.

Given two disjoint polygons it is easy to see that there exist 4

straight lines which are tangent to both polygons: those tangents are

called bitangents. Two bitangents keep one polygon on one side and

the other polygon on the other side, while the other two bitangents

keep both polygons on the same side. Bitangents as well as straight

lines can be oriented.

Given X ⊂ R2 and two points a, b ∈ X we denote by (a, b) the

oriented edge from a to b and also the oriented straight line throught

a, b with little abuse of language. We define

X+(a, b) = {x ∈ X : x is in the open half-plane on the right of (a, b)}

that is the set of points on the right-hand side of (a, b); analogously

we define X−(a, b) as the set of points on the left-hand side of (a, b).

Given X ⊂ R2 in general position, we say that the edge (a, b) with

a, b ∈ X , a 6= b, is a (k − 1)-set edge if the points A′ = X+(a, b) on

the right-hand side of (a, b) are exactly k − 1 (and hence the points

B′ = X−(a, b) are exactly n− k − 1).

Setting A = A′ ∪ {a} and Ā = B′ ∪ {b}, we can observe that:

1. A is a k-set of X ;

2. the straight line (a, b) is the unique bitangent between Conv(A)

and Conv(Ā) that keeps Ar {a} on its right.

Indeed as illustrated in Figure 3.2, two of the other three bitangents

between Conv(A) and Conv(Ā) does not separate A from Ā, and

the remaining one does not keep Ar {a} on its right-hand side.

Fact 3.13. We have established a bijection between the (k − 1)-set

edges of X and the k-sets of X :

64 3 Clustering in the Plane with Euclidean Norm

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b
b

b

b

b

b

b

b

b
b

Conv(Ā)

Conv(A)

(a, b)

a

b

Fig. 3.2 Four bitangents, but only (a, b) separates A and Ā keeping Ar{a}

on its right-hand side.

(a, b) 7−→{a} ∪X+(a, b)

A 7−→ unique edge (a, b) of X which is bitangent to Conv(A)

and Conv(Ā) and keeps Ar {a} on the right

Denote by A(a, b) the k-set corresponding to the (k − 1)-set edge

(a, b), and by (a(A), b(A)) the (k− 1)-set edge corresponding to the

k-set A.

Now, let Ek−1 = {(a1, b1), ..., (aH , bH)} be the set of (k − 1)-

set edges of X ; it can be assigned the cyclic order < obtained by

enumerating the vectors

3.4 Size Constrained 2-Clustering in the Plane 65

(b1 − a1), ..., (bH − aH)

in couterclock-wise sense. W.l.o.g. suppose (a1, b1) < (a2, b2) < ... <

(aH , bH) and define the next bitangent operation:

(a〈i+1〉H , b〈i+1〉H) =: NextBitangent(ai, bi)

where we denoted by 〈i〉H the remainder of the integer division

of i by H . If (ai, bi) is the bitangent associated to A(ai, bi), then

(ai+1, bi+1) turns out to be the bitangent associated to A(ai, bi) ∪
{bi}r {ai}, that means

A(ai+1, bi+1) = A(ai, bi) ∪ {bi}r {ai}.

Hence, setting

Si =
∑

x∈A(ai,bi)

x

the following equality holds:

S〈i+1〉H = Si − a〈i+1〉H + b〈i+1〉H

We hence observe that Si+1 can be easily computed, given Si, with

a constant number of operations. The optimal 2-clustering of X can

then be obtained by the Algorithm 3.

Algorithm 3 needs some explanation. It starts by generating an

initial (k − 1)-set edge by exploiting the following

Proposition 3.14. Given the point setX with distinct y-coordinates,

an oriented (k − 1)-set edge can be obtained in O(n) time.

Proof. By applying a O(n) time selection algorithm [6, Sec. 9.3] onX

we can obtain the point p0 with the k-th smallest y-coordinate. Then

we choose the edge e0 = (p0, q0) with slope nearest to horizontal, i.e.

66 3 Clustering in the Plane with Euclidean Norm

Algorithm 3 2-RCC

Input: a set X ⊂ R2 of n points in general position; an integer 1 ≤ k ≤

⌊n/2⌋

Output: the solution π = {A,B} of the 2-RCC on X with constraint

M = {k, n− k} and Euclidean norm

1 a0 = Selection(X ,k);

2 b0 = argminb∈X:b6=a0
(slope coefficient of straight line through a0, b)

3 (x, y) = (a0, b0)

4 S =
∑

x∈A(a0,b0)
x

5 q = ‖S‖2

6 (a, b) = NextBitangent(a0, b0)

7 while (a, b) 6= (a0, b0) do

8 S = S − a+ b

9 if q < ‖S‖2 then

10 q = ‖S‖2

11 (x, y) = (a, b)

12 (a, b) = NextBitangent(a, b)

13 π = {X+(x, y) ∪ {x}, X−(x, y) ∪ {y}}

14 return π

q0 = argmin
q∈X:q 6=p0

(slope coefficient of the straight line through p0, q)

It is easy to see that e0 determines a k-set, hence can be arbitrarily

oriented. The point q0 can be obtained in O(n) time. ⊓⊔

The NextBitangent operation called at lines 6 and 12 is the abstract

operation, introduced above, for obtaining the successive (k− 1)-set

edge in the cyclic order of Ek−1. An effective procedure for doing

this operation will be explained in the next section.

The update operations inside the while-loop are simplified by the

formulation (3.5).

It is important to observe that, supposing to implement the

NextBitangent operation in 1 step, the computational time of the

Algorithm 3 is

3.5 Dynamic Convex Hull 67

O(H) = O(n
3
√
k)

since the number H of (k− 1)-set edges is bounded by 6.48n
3
√
k due

to Corollary 3.12.

To complete the time complexity analysis it remains to describe

in the next section the effective procedure for the NextBitangent

operation, that will exploit an efficient dynamic data structure for

maintaining the convex hull of a point set in the plane.

3.5 Dynamic Convex Hull

In this section we illustrate the problem of designing an efficient

data structure for constructing and maintaining the convex hull of

a planar point set under the operations of insertion, deletion and

query.

Moreover, we will see how this efficient data structure can be ap-

plied to give a bound on the complexity of the algorithm described

in Section 3.4. In particular we can give a bound on the number of

operations performed by NextBitangent among all calls to it.

We recall some basic notions. A set A ⊆ Rd is convex iff for any

x, y ∈ A it holds λx+(1−λ)y ∈ A for all 0 ≤ λ ≤ 1. The intersection

of a collection of convex subsets of the Euclidean space Rd is itself

convex [24, Theor. 2.1].

Definition 3.8. Given a set A in Rd the convex closure or convex

hull of A, denoted by Conv(A), is the smallest convex subset of Rd

containing A:

68 3 Clustering in the Plane with Euclidean Norm

Conv(A) =
⋂

{X ⊆ Rd : A ⊆ X,X is convex}

Clearly, in R1 the convex closure of A is the closed interval [inf A,

supA]. It is well-known that the convex closure of a finite set A of

points in Rd is a polytope [22, Theor. 3.1] described by an intersec-

tion of finitely many half-spaces; in particular in R2, Conv(A) is a

convex polygon.

In R2 it is possible to identify a polygon by simply giving its vertices,

hence the determination of the convex closure Conv(A) of a given

set A ⊂ R2 reduces to finding the vertices of the associated polygon.

Manipulating the convex closure of a set is a very common task

when dealing with geometric techniques. Although the definition is

not very constructive, there are very efficient algorithms for obtain-

ing the convex closure of a given finite set of points both for d = 2

and d = 3. In this section we will recall some techniques in the pla-

nar case.

The convex hull problem we study in this section is formalised as

follows.

Definition 3.9 (Convex Hull Problem (CH)). Given a finite

set X = {x1, ..., xn} of n points in R2, find the sequence of vertices

v1, ..., vh of the convex closure Conv(X) in clock-wise order.

Classical algorithms to solve the CH problem are the Graham’s Scan

and the Jarvis’ March [6]; the first one works in O(n log n) time and

O(n) space, while the second one works in time O(hn), where h is the

number of vertices of the convex closure, and space O(n). Moreover,

there exists an algorithm for constructing the convex closure of a set

by successive insertions of its elements, each taking O(log n) time

[21], and hence working in time O(n log n); this algorithm has evident

applications in real-time problems.

3.5 Dynamic Convex Hull 69

The algorithms for CH strictly depend on the sorting of some ob-

jects; this implies that the CH is as difficult as the sorting problem,

indeed it is well-known that the sorting problem is linear-time re-

ducible to CH, and this entails that CH is solvable in time Ω(n logn).

A more challanging question is the design of an efficient data

structure for maintaining the convex closure of a set A of points

accomodating the operations:

• insert(A,x): given x determine the convex closure of A ∪ {x},
• delete(A,x): given x determine the convex closure of Ar {x},
• query(A,x): given x decide whether x ∈ Conv(A).

A first efficient solution for this task was given by Overmars and Van

Leeuwen [17]. Later, an algorithm working in O(log n) amortized

time per each deletion and insertion were proposed [4]. It remains

an open problem whether it is possible to design a data structure

allowing insertion and deletion operations in (non-amortized) time

O(log n). In this section we make use of the first solution.

Let X = {x1, ..., xn} ⊂ R2. The algorithm of Overmars and Van

Leeuwen keeps in memory two partial hulls: the convex closure ofX∪
{(+∞, 0} (i.e. adding to X the improper point x = +∞) called left

hull, and the convex closure of X ∪ {(−∞, 0} (X with the improper

point x = −∞) called right hull. The main feature of the algorithm

is the ability to merge the left (resp. right) hull of two sets A and B

to obtain the left (resp. right) hull of A ∪B in time O(log n).

To maintain the left and right hull of X the authors suggested the

use of balanced search trees, such as Red-Black, AVL or Weight

Balanced Trees [23, §6.4.3.].
Furthermore, each node of such tree stores into an additional data

structure the inner points of a left (resp. right) hull, i.e. points that

do not belong to the boundary. Such a data structure must adhere

70 3 Clustering in the Plane with Euclidean Norm

to the interface of operations called “concatenable queue” [1, Sec.

4.12].

A concatenable queue is a data structure that stores an ordered

dictionary Q that allows, besides the usual operations of insertion,

deletion, minimum and element search, also the operations:

• concatenate(Q1, Q2): takes in input two concatenable queues Q1

and Q2 such that q1 ≤ q2 for q1 ∈ Q1, q2 ∈ Q2 and gives the

concatenation of Q1 and Q2 respecting the order,

• split(Q, x): factorise the concatenable queue Q into two concaten-

able queuesQ1 andQ2 such that q1 ≤ x < q2 for q1 ∈ Q1, q2 ∈ Q2.

A possible implementation of such an interface is by means of the

2-3 Trees, which leads to a O(log n) time complexity for a single

operation of the concatenable queue.

Since for each operation of insertion and deletion into a left (resp.

right) hull an operation of the concatenable queue must be per-

formed, it follows:

Theorem 3.15 ([17]). There exists an algorithm to maintain the

convex hull of a set of n points in the plane at a time cost ofO(log2 n)

per insertion and deletion.

Therefore, n operations on the convex hull of a set of n points cost

O(n log2 n). Moreover, we remind that for such maintained convex

hull we can obtain in O(1) time the outgoing edge of a point on the

boundary, or equivalently the successor Succ(v) of a vertex v.

An efficient implementation of the algorithm of Overmars and Van

Leeuwen, using modified Red-Black Trees for the balanced search

trees and 2-3 Trees for the concatenable queue, was written in C

programming language in [27].

3.5 Dynamic Convex Hull 71

Our technique for finding the bitangent of two polygons is based

on the maintenance of the convex hull corresponding to the respec-

tive polygons. Recall from Section 3.4 that the problem consists in

Definition 3.10 (Next Bitangent Problem). Given two convex

hulls

Conv(Ai) and Conv(Āi) and their associated bitangent (ai, bi), find

the bitangent (ai+1, bi+1) associated to Ai r {ai} ∪ {bi} and Āi r

{bi} ∪ {ai}.

As in Section 3.4 we take the set Ai as a k-set, hence also Air{ai}∪
{bi} is, and both (ai, bi) and (ai+1, bi+1) are (k−1)-set edges. Hence

the problem turns out to be equivalent to finding the successive

(k − 1)-set edge in the cyclic order already introduced on Ek−1.

Such kind of problem was already studied by Edelsbrunner and

Welzl [11] in the dual plane by means of a “sweep line” method

on the k-belt, which basically consists in a region of the dual plane

bounded by a k-level and a (n−k)-level (see Section 3.3). They gave

an efficient solution to the Next Bitangent Problem formulated in

the dual plane and, as a consequence, Proposition 3.16 holds.

Here, we propose an alternative technique to solve this problem

directly in the primal plane by means of proper paths formed by

k-set edges; this technique attains the same time complexity of the

sweep line method in [11]. We now explain the details.

Recall the notation of Section 3.4, and denote by Ai = A(ai, bi)

the k-set associated to (ai, bi), and by Āi = A(ai, bi) its complement;

denote by Succ(a) the direct successor of a vertex a on a convex hull,

i.e. the vertex following a in counterclock-wise order on the boundary

of the convex hull.

Suppose that we maintain the convex closures Ai = Conv(Ai), Āi =

Conv(Āi); the convex closures Ai+1 and Āi+1 of Ai+1 = Air {ai}∪
{bi} and Āi+1 = Āir{bi}∪{ai} can be computed in time O(log2 n)

72 3 Clustering in the Plane with Euclidean Norm

by Theorem 3.15. Notice that (ai, bi) is also a bitangent to Ai+1

and Āi+1. To obtain the bitangent (ai+1, bi+1) associated to Ai+1

we proceed as follows.

First, notice that there exist 2 consecutive edges (a, a′), (a′, a′′)

on the convex closure Ai+1, such that:

• the straight lines (a, a′) and (a′, a′′) cannot cross the tangency

point bi+1 on the convex closure Āi+1, by the general position

hypothesis;

• the intersection of the right-hand side of (a, a′) with the left-hand

side of (a′, a′′) contains the bitangency point bi+1; it may be that

a = bi.

Hence, we can surely state that a′ is the other tangency point ai+1

on the convex closure Ai+1.

Second, let a′ = ai+1 be the tangency point on Ai+1; there exist

2 consecutive edges (b, b′), (b′, b′′) on Āi+1 such that their associ-

ated straight lines do not cross a′, and it holds that the sequence

(b′, b′′), (b′, a′), (b, b′) is in order w.r.t. slope (defined in Section 3.2)

if and only if b′ is the tangency point bi+1.

Therefore, these two considerations suggest an idea for an algo-

rithm, that intuitively works as follows:

1. start with the edges (a = bi, a
′) on the boundary of Conv(Ai+1)

and (b = ai, b
′) on the boundary of Conv(Āi+1);

2. jump to the direct successor (a′, a′′) on Conv(Ai+1) and from

(b, b′) go through its consecutive successors (β, β′), (β′, β′′) check-

ing whether (β′, β′′), (b′, a′), (β, β′) are in order w.r.t. slope;

3. if this is the case then (a′, b′) is the bitangent of Conv(Ai+1) and

Conv(Āi+1), otherwise continue going through the successors of

(b, b′) if the slope of the successor is greater than the slope of

(a′, a′′).

3.5 Dynamic Convex Hull 73

Then iterate again on these steps on the successor of (a′, a′′) and so

on.

We formalise this idea in the Algorithm 4. Preliminarly, we notice

that the algorithm must store, as permanent structures, the convex

hulls Ai and Āi so that they are available each time NextBitangent

is called. Moreover, it is easy to see that the edges (a′, a) considered

Algorithm 4 NextBitangent

Input: a (k − 1)-set edge (ai, bi)

Output: the successive (k − 1)-set edge (ai+1, bi+1) in the cyclic order of

Ek−1

1 Ai+1 = Conv(Ai r {ai} ∪ {bi}) // one insertion and one

deletion

2 Āi+1 = Conv(Āi r {bi} ∪ {ai})

3 ai+1 = a = bi;

4 a′ = Succ(a); b′ = Succ(b)

5 found a = false

6 repeat

7 while ((a− a′)× (b′ − b) > 0 and found a = false do

8 a = a′

9 a′ = Succ(a′)
10 if (a′ − a)× (a− b) < 0 then

11 found a = true

12 b = b′

13 b′ = Succ(b′)
14 until (b0 − b)× (b− a) < 0

15 ai+1 = a

16 bi+1 = b

17 return (ai+1, bi+1)

in the iterations of the algorithm are (k − 2)-set edges; moreover,

these edges are considered in order w.r.t. the slope. Analogously,

the edges (b′, b) considered in the iterations are (n−k− 2)-set edges

and are considered in order w.r.t. the slope. Recalling the bound

74 3 Clustering in the Plane with Euclidean Norm

on the k-set edges (Corollary 3.12) and Remark 3.2, we can then

conclude the following

Proposition 3.16. ⌊6.48n 3
√
k⌋ calls to the NextBitangent algorithm

for two convex hulls of size k and n−k require fk−1(n)+fk−n−1(n)+

fk(n) ·O(log2 n) = O(n 3
√
k · log2 n) time.

As a consequence, since the remainder of the while-loop in the Algo-

rithm 3 requiresO(1) time per each iteration, the total time complex-

ity is dominated by the executions of the NextBitangent procedure.

Theorem 3.17. The Algorithm 3 for the 2-clustering with size con-

straint k in the plane with Euclidean norm requires O(n 3
√
k log2 n)

time.

References 75

References

1. A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of com-

puter algorithms. Addison-Wesley Pub. Co., 1974.

2. M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi. Crossing-free

subgraphs. Annals of Discrete Mathematics, 12:9–12, 1982.

3. N. Alon and E. Györi. The number of small semispaces of a finite set

of points in the plane. J. Comb. Theory Ser. A, 41:154–157, January

1986.

4. G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. 43rd

IEEE Sympos. Found. Comput. Sci, pages 617–626, 2002.

5. B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric

duality. BIT Numerical Mathematics, 25:76–90, June 1985.

6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms. MIT Press, 2nd edition, 2001.

7. T. Dey. Improved bounds on planar k-sets and k-levels. In Foundations

of Computer Science, 1997. Proceedings., 38th Annual Symposium on,

pages 156–161, October 1997.

8. T. Dey. Improved Bounds for Planar k-Sets and Related Problems.

Discrete & Computational Geometry, 19(3):373–382, 1998.

9. H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS

monographs on theoretical computer science. Springer, 1987.

10. H. Edelsbrunner and E. Welzl. On the Number of Line Separations of

a Finite Set in the Plane. Journal of Combinatorial Theory, Series A,

38(1):15–29, 1985.

11. H. Edelsbrunner and E. Welzl. Constructing Belts in Two-Dimensional

Arrangements with Applications. SIAM J. Comput., 15(1):271–284,

February 1986.

12. P. Erdős, L. Lovász, A. Simmons, and E. G. Straus. Dissection graphs of

planar point sets. In A survey of combinatorial theory (Proc. Internat.

Sympos., Colorado State Univ., Fort Collins, Colo., 1971), pages 139–

149. North-Holland, Amsterdam, 1973.

13. P. Hansen, B. Jaumard, and N. Mladenovic. Minimum Sum of Squares

Clustering in a Low Dimensional Space. Journal of Classification,

15:37–55, 1998.

14. M. Klawe, M. Paterson, and N. Pippenger. Inversions with

n21+Ω(1+
√

log n) transpositions at the median. Unpublished

manuscript, 1982.

76 3 Clustering in the Plane with Euclidean Norm

15. F. T. Leighton. Complexity Issues in VLSI. Foundations of Computing

Series. MIT Press, Cambridge, MA, 1983.

16. L. Lovász. On the number of halving lines. Ann. Univ. Sci. Budapest,

Eötvös, Sec. Math, 14:107–108, 1971.

17. M. H. Overmars and J. van Leeuwen. Maintenance of configurations in

the plane. J. Comput. Syst. Sci., 23(2):166 – 204, 1981.

18. J. Pach, W. Steiger, and E. Szemerédi. An upper bound on the num-

ber of planar k-sets. In 30th Annual Symposium on Foundations of

Computer Science (FOCS 1989), pages 72–79. IEEE Computer Soci-

ety, 1989.

19. J. Pach, W. Steiger, and E. Szemerédi. An Upper Bound on the Number

of Planar K-Sets. Discrete & Computational Geometry, 7:109–123,

1992.

20. J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Com-

binatorica, 17:427–439, 1997. 10.1007/BF01215922.

21. F. Preparata. An Optimal Real-Time Algorithm for Planar Convex

Huls. Communications of the ACM, 22(7):402–405, July 1979.

22. F. Preparata and M. Shamos. Computational geometry: an introduc-

tion. Texts and monographs in computer science. Springer-Verlag, 1985.

23. E. Reingold, J. Nievergelt, and N. Deo. Combinatorial algorithms:

theory and practice. Prentice-Hall, 1977.

24. R. T. Rockafellar. Convex Analysis. Princeton University Press, 2nd

printing edition, 1972.

25. M. Sharir, S. Smorodinsky, and G. Tardos. An Improved Bound for

k-Sets in Three Dimension. Discrete & Computational Geometry,

26(2):195–204, 2001.

26. G. Tóth. Point Sets with Many k-Sets. Discrete & Computational

Geometry, 26(2):187–194, 2001.

27. L. Zanetti. Struttura Dati Dinamica per Convex Hull nel Piano. Thesis,

University of Milan, Milan, 2011.

CHAPTER 4

Clustering with norm L
p

In this chapter we want to study the 2-SCC-d problem with norm

Lp, p positive integer. We firstly shall restrict our attention to even

p’s since the analysis is far simpler, then we extend the developed

method for the case of odd p. We will prove that, by appropriately

decomposing the space of the parameter of the hypersurfaces sep-

arating the 2 clusters, we obtain a set of 2-clusterings containing

the optimal clustering of size m, for every constraint size m, thus

allowing us to compute the optimal costs and the cardinality of the

clusters, for every cluster size constraint m. This method will be

proved to have polynomial time complexity with respect to the data

set size n and the integer p, for a fixed dimension d.

This chapter is organised as follows: Section 4.1 recalls the sepa-

ration property and illustrate the problem in the parameter space;

Section 4.2 gives a richer description of the parameter space in the

77

78 4 Clustering with norm Lp

language of the real algebraic geometry; Section 4.3 outlines the cen-

tral tool of our clustering method which allow the decomposition of

the parameter space; such a tool is constructed using basic algebraic

notions such as resultants, Sturm sequences and some bounds on

the real roots that will be explained throughout the Sections 4.4,

4.5, 4.6; in Section 4.7 we tackle the problem of comparing the cost

of two clusterings; a numerical method we develop for solving this

problem will be used in Section 4.8, which is devoted to the design

of the clustering algorithm for 2-SCC-d and its complexity analysis.

4.1 Separating hypersurfaces

From Chapter 3 we know that the 2-SCC problem is solvable in

polynomial time for fixed dimension d = 2 and norm ‖ ‖p with

p = 2. In this chapter we will assume that p is an integer p > 2.

Given X = {x1, ..., xn} ⊂ Qd and constraints {m,n − m}, let
{A,B} be the optimal 2-clustering with |A| = m, |B| = n − m.

Consider the function

f(x;µ, λ, γ) = ||x− µ||pp − ||x− λ||pp − γ = 0 (4.1)

From the Separation Property (Theorem 1.4) we know that there

exist CA, CB ∈ Rd, c ∈ R such that the hypersurface of equation

f(x;CA, CB , c) = 0

is well defined and separates the two clusters, i.e. the following prop-

erty is satisfied.

Property (∗):

4.1 Separating hypersurfaces 79

f(xi;CA, CB, c) < 0 for all xi ∈ A,

f(xj ;CA, CB, c) > 0 for all xj ∈ B

or

f(xi;CA, CB, c) > 0 for all xi ∈ A,

f(xj ;CA, CB, c) < 0 for all xj ∈ B

When the previous condition holds we also say that the parameter

C = (CA, CB, c) separates A and B.

This result leads to a different paradigm for solving the 2-SCC.

The problem is decomposed into two subproblems:

(1) Determine the clusterings which are separable by hypersurfaces

of the parametric family:

f(x;µ, λ, γ) = ||x− µ||pp − ||x− λ||pp − γ = 0

with parameter vector α = (µ, λ, γ);

(2) Choose from such clusterings the optimal one satisfying the con-

straints {m,n−m}.
We emphasize that the above-mentioned hypersurfaces lie in the

parameter space R2d+1 while the points of the data set are in a

different space, namely Rd.

Under the following conditions:

(i) the number of clusterings which are separable by such hypersur-

faces is far less than all the 2n admissible clusterings,

(ii) such clusterings are obtainable in an efficient manner, and

(iii) there exists an efficient algorithm that, having in input 2 cluster-

ings, can decide which is better,

80 4 Clustering with norm Lp

we can hope that there’s a method to solve the 2-SCC problem in

feasible time.

In order to determine some tools for solving the point (1), we

start by considering the case of even integer p > 2. In this case

the functions f(x, µ, λ, γ) are representable by multivariate poly-

nomials of degree p. Let’s denote the vector α = (µ, λ, γ). Given

X = {x1, ..., xn} ⊂ Qd, the algebraic varieties

Zi = {α ∈ R2d+1 : f(xi;α) = 0} , i = 1, ..., n

are generally sets with the cardinality of continuum. However, they

decompose the parameter space R2d+1 into a finite number of

connected subsets {R1, ..., Rs} having the following so-called sign-

invariance property:

α, α′ ∈ Rj =⇒ sgn(f(xi, α)) = sgn(f(xi, α
′)) for all i = 1, ..., n.

In fact the varieties Z1, ..., Zn form the boundaries of the sets

R1, ..., Rs. We are interested in sets Rj such that α ∈ Rj implies

sgn(f(xi, α)) ∈ {−1,+1} for all i

Indeed, in this case the property (∗) is satisfied. Moreover, by the

continuity of the functions f(xi, α), for every α ∈ Rj there is an

open sphere I(α) s.t. α ∈ I(α) ⊂ Rj : Rj contains a vector α̂ with

rational dyadic components, i.e. components represented as rational

numbers with denominator that is a power of 2.

Since such Rj ’s are semi-algebraic sets, in the next section we intro-

duce some preliminary notions of real algebraic geometry.

4.2 Semi-algebraic sets 81

4.2 Semi-algebraic sets

In this section we recall basic notions of real algebraic geometry and

give some useful properties of semi-algebraic sets [3, Chap. 2].

Let R be the field of real numbers and R[x] the ring of polynomials

over R in d variables x = (x1, ...xd). Given a polynomial f ∈ R[x]

the set Z(f) = {x ∈ Rd : f(x) = 0} is called the zero set of f . A

subset E of the affine space Rd is called algebraic if it is the zero set

of some f ∈ R[x]. The algebraic sets are closed under finite union

and finite intersection. Indeed, it holds Z(f) ∪ Z(g) = Z(fg), and

s⋂

i=1

Z(fi) = Z(

s∑

i=1

f2
i)

since we work on the real field, which is not algebraically closed.

However, the algebraic sets are not closed under complementa-

tion and projection. On the contrary, a more stable class is that

one of semi-algebraic sets. The semi-algebraic sets can be defined

recursively as follows.

Given a polynomial f ∈ R[x] we denote by Z−(f) = {x ∈ Rd :

f(x) < 0} the sublevel set of f . The maps Z and Z− can be extended

to collection of polynomials: Z(F) = {x ∈ Rd : f(x) = 0 for all f ∈
F} and Z−(F) = {x ∈ Rd : f(x) < 0 for all f ∈ F}.

Definition 4.1. For any f ∈ R[x], Z(f) and Z−(f) are semi-

algebraic sets. If S and S′ are semi-algebraic sets, then also S ∪ S′

and S ∩ S′ are semi-algebraic sets.

Substantially, a semi-algebraic set is the set of solutions of a boolean

combination of equalities and inequalities, i.e. a system of the form

r∨

i=1

si∧

j=1

(fi,j ⊲⊳i,j 0)

82 4 Clustering with norm Lp

where for each i, j the polynomial fi,j ∈ R[x] and the relation

⊲⊳i,j∈ {<,=}. Obviously, algebraic sets are also semi-algebraic, but

not conversely. The algebraic sets form the closed sets of a special

topology, called the Zariski topology [16, p. 2].

The class of semi-algebraic sets is closed under complementation

as it can be easily seen by

Z(f) = Z−(f) ∪ Z−(−f)

and is closed under projection as stated by the following result [11,

Ther. 1.1].

Proposition 4.1. Let π : Rn+1 → Rn : (x1, ..., xn+1) 7→ (x1, ..., xn)

be the projection on the first n coordinates. If A ⊆ Rn+1 is semi-

algebraic then also the image of A under π, i.e. π(A) = {(x1, ..., xn) :

∃xn+1(x1, ..., xn+1) ∈ A}, is semi-algebraic.

Remark 4.1. It can be easily proven that a semi-algebraic set is the

projection of some algebraic set. Indeed, the solutions of the in-

equality f(x) < 0 are the projection of the solutions of the equation

y2f(x) = 1.

Remark 4.2. Whilst the Proposition 4.1 is an essential property of

semi-algebraic sets, this doesn’t hold true for the class of algebraic

sets. For example, the algebraic curve A defined by the zero set of

the polynomial f(x, y) = y2 − x:

A = Z(f) = {(x, y) ∈ R2 : y2 − x = 0}

has the image π(A) under the projection π : (x, y) 7→ x described

by:

π(A) = {x ∈ R : x ≥ 0}
which is semi-algebraic but not algebraic, since it cannot be ex-

pressed as zero set of any polynomial in x.

4.2 Semi-algebraic sets 83

The theory of real algebraic geometry dealing with the semi-

algebraic sets was initially introduced by algebraist, and then de-

veloped by logicians to tackle several important problems in the

theory of real closed fields, such as the general decision problem and

the quantifier elimination problem [2, Chap. 11]. We briefly recall

such an approach.

A first-order formula Φ(x) of the language of ordered fields with

coefficients in R is a first-order formula with free variables x =

(x1, ..., xd), quantified variables y = (y1, ..., ye) and atoms of the

kind P (x, y) = 0 or P (x, y) < 0, where P is a polynomial over R.

Unless otherwise stated, we will always mean this kind of first-order

formula. The R-realisation (or simply realisation) of a first-order

formula Φ(x) with free variables x is the set

RR(Φ) = {x ∈ Rd : Φ(x) is true}

It is well known that RR(Φ) is a semi-algebraic set [2, p. 59]. The

quantifier elimination problem for a given quantified formula

Φ(x) = (Q1y1)...(Qeye)F (x1, ..., xd, y1, ..., ye)

consists in finding a quantifier-free formula Ψ(x), such that Φ and Ψ

have the same R-realisation. The general decision problem consists

in deciding the truth value of a given Tarski sentence Φ, i.e. a first-

order formula without free variables,

Φ = (Q1y1)...(Qeye)F (y1, ..., ye)

where each Qi is either ∃ or ∀. It is clear that the general decision

problem is a particular case of the quantifier elimination problem,

in fact when d = 0. A special case of the general decision problem,

in turn, is the decision problem for the existential theory of the reals,

which consists in deciding the truth value of a given Tarski sentence

84 4 Clustering with norm Lp

with only existential quantifiers, namely Qi = ∃ for all i = 1, ..., e.

Thus, it is easy to see that the latter problem is equivalent to decid-

ing whether a given semi-algebraic set is empty or not.

The main tool developed in the early 50’s to face this kind

of problem is the Tarski-Seidenberg principle that we formulate

in a simplied form. Here we denote by σ a vector of signs, i.e.

σ = (σ1, ..., σs) ∈ {−1, 0,+1}s, and by x a vector of d+ 1 variables

(x0, x1, ..., xd).

Theorem 4.2 (Tarski-Seidenberg Principle). Let f1, ..., fs ∈
R[x] be a sequence of polynomials in d + 1 variables. Given a vec-

tor σ = (σ1, ..., σs) of s signs, there exists a quantifier-free for-

mula Φσ(x1, ..., xd) such that, for every a1, ..., ad ∈ R it holds:

Φσ(a1, ..., ad) is true if and only if there exists a0 ∈ R such that

(
∧

i=1,...,s sgn fi(a0, a1, ..., ad) = σi), that is the system







sgn(f1(x0, a1, ..., ad)) = σ1

...

sgn(fs(x0, a1, ..., ad)) = σs

admits a solution a0 in R.

It can be shown that the Proposition 4.1 relies directly on the Tarski-

Seidenberg Principle.

Once semi-algebraic sets are introduced it is natural to define

certain analytic or topological properties on such sets or functions

defined over them, which constitute typical object of study in the

context of real algebraic geometry [3].

Definition 4.2. Given two semi-algebraic sets A and B, a function

f : A → B is said to be semi-algebraic iff its graph Graph(f) =

{(x, f(x)) : x ∈ A} is semi-algebraic.

4.2 Semi-algebraic sets 85

It is well known that the class of semi-algebraic functions is closed

under composition. Moreover, image and inverse image of semi-

algebraic sets under semi-algebraic functions are semi-algebraic.

Definition 4.3. A semi-algebraic set A is called semi-algebraically

connected iff it cannot be written as disjoint union A = A1 ⊔ A2 of

two closed sets A1, A2 in A.

If A can be written in the above manner and A1, A2 are semi-

algebraic and semi-algebraically connected, then they are called

semi-algebraically connected components of A. More generally, the

following result holds:

Theorem 4.3. ([3, Theor. 2.4.4]) Every semi-algebraic set A can be

written as disjoint union

A =

m⊔

1

Ai

of a finite number m of semi-algebraic semi-algebraically connected

sets Ai, which are clopen (i.e. closed and open) in A and are termed

semi-algebraically connected components of A.

Remark 4.3. We introduced the notion of real algebraic sets based

on polynomials in R[x]; analogous notion can be introduced by con-

sidering polynomials in C[x], where C is the set of complex numbers,

thus giving the complex algebraic sets.

Many concepts of complex algebraic geometry can be analysed by

means of computer algebra tools. Unfortunately, these methods can-

not be easily extended to cover the real case. The remainder of this

section is aimed at illustrating a critical example of this assertion.

Definition 4.4. A complex algebraic set A is said to be irreducible

iff it cannot be written as union of two proper (complex) algebraic

86 4 Clustering with norm Lp

subsets, that is when A = A1∪A2 with A1, A2 algebraic then A1 = A

or A2 = A. If A is not irreducible, it is said reducible.

Some authors [16] use the term algebraic variety to name irreducible

algebraic sets, others use the term algebraic variety to refer to alge-

braic sets and add the word irreducible when needed. We prefer the

former convention.

Theorem 4.4. ([22, Chap. VII, Subsec. 2.2]) A complex algebraic

variety is connected.

For a complex algebraic set the notion of irreducibility corresponds

to the fact that the associated ideal I is prime, i.e. I is a proper

ideal satisfying: ab ∈ I ⇒ a ∈ I or b ∈ I.

Theorem 4.5. ([12, Sec. 4.5, Prop. 3]) Let V be a complex algebraic

set. V is irreducible if and only if the ideal I(V) = {f ∈ C[x1, ..., xd] :

f(V) = {0}} of polynomials vanishing on V is prime.

Hence, in the case of underlying complex field, by Theorems (4.4)

and (4.5) it is sufficient to find the prime components of the asso-

ciated ideal I(A) in order to find the connected components of A

[12, Sec. 4.6]. We will now see that the real case doesn’t show this

property.

Example 4.1. The real cubic x + y2 − x3 = 0 shown in Figure 4.1,

called Weierstrass equation [23, Sec. III.1], is an elliptic curve with

two connected components and is irreducible.

This example confirms that the algebraic closure of the ambient

field is a necessary condition for applying the last considerations,

that would have greatly simplified the treatment of the problem in

the space of parameters α we introduced in Section 4.1.

4.3 Cylindrical Decomposition 87

Fig. 4.1 The Weierstrass elliptic curve: y2 = x3 − x, is irreducible but has

two connected components

4.3 Cylindrical Decomposition

In this section we illustrate an effective method for the decompo-

sition introduced in Section 4.1, which allows us to investigate the

space of parameters α of the separating hypersurface family. This

method is also suitable for solving the general decision problem and

the quantifier elimination problem we presented in Section 4.2.

In 1948 Tarski [24] presented a quantifier elimination method for

the theory of elimination in real closed fields. Seidenberg [21], Co-

hen [6] and Coste [10] have successively published other methods

that were doubly exponential in the number d of variables (dimen-

sion), but polynomial both in the number m of polynomials and in

the maximum degree g of the polynomials, for a fixed d. Since 1973

Collins [8] has discovered and presented a new method which is poly-

88 4 Clustering with norm Lp

nomial time in m, g and τ , where τ is the bitsize of the coefficients,

for a fixed d, but remains double exponential in d. Later, several

algorithms running in single exponential time in d were introduced

[5, 15], as well as other improvements for computing the solution

by exploiting favourable conditions of smoothness [17]. Algorithms

for solving the quantifier elimination problem have several applica-

tions such as robot motion planning [5, 4], testing termination in

term-rewriting systems [1], surface construction in solid modelling

[14], identification of polynomial parametric models in statistics [13].

Here we will present a novel application to the constrained cluster-

ing problem.

In this work we outline a simplified version of the method of

Collins [8] mainly known as Cylindrical Algebraic Decomposition

(CAD), that intuitively decomposes the affine space into a finite

number of disjoint connected semi-algebraic regions of various di-

mension, each one having the property that the polynomials evalu-

ated in all points of the region have constant sign.

Basically, the CAD consists of two phases, called projection and

lifting. In the projection phase the common roots and the critical

points of the given set of polynomials are repeatedly projected onto

a subspace by eliminating a variable, ending with the last projec-

tion onto the real line; the projections are done orthogonally, hence

the term cylindrical. The lifting phase takes repeatedly a decompo-

sition of a subspace and gives a decomposition of the space above by

searching for all points of the variety above and below each compo-

nent of the subspace. It turns out that these points subdivides the

cylinder into “slices”. The slices of the last lifting constitutes the

CAD of the space.

4.3 Cylindrical Decomposition 89

For our aims, it is sufficient to give a simplified version of Collins’

CAD, which we abbreviate with SCAD, and differs in particular by

the following characteristics which will be illustrated later on in this

section:

1) We do not impose that the polynomial collections Fi is not closed

under the derivation operation, and thus the elimination of the

variables is done by means of the resultant instead of the subre-

sultant [8].

2) We consider only “slices” admitting representative points with

rational components, that hence can be lifted easily.

Let’s first introduce some basic notions of the cylindrical algebraic

decomposition, that can be found mainly in [1]. Let Rd be the d-

dimensional real affine space; we call a non-empty connected subset

R ⊂ Rd a region and we say that the subset

Cyl(R) = R× R

of Rd+1 is the cylinder over R.

Given a continuous real function f : Rd → R, an f -section (or

simply section) of Cyl(R) is the region GraphR(f) = {(x, y) : x ∈
R, y = f(x)}. Given functions f, g with GraphR(f)∩ GrahR(g) = ∅,
the region of a cylinder bounded by two non-intersecting sections

or bounded at one side is called sector ; more precisely a sector is a

region S ⊂Cyl(R) having one of the following forms

S = {(x, y) : x ∈ R, y < f(x)}
S = {(x, y) : x ∈ R, f(x) < y < g(x)}
S = {(x, y) : x ∈ R, g(x) < y}

for some real continuous functions f < g on R.

90 4 Clustering with norm Lp

Definition 4.5. A decomposition of a set X is a finite collection

D = {X1, ..., Xr} of disjoint non-empty subsets (called components)

whose union is X :

X =

r⋃

1

Xi, Xi ∩Xj = ∅ for i 6= j

A finite collection of real continuous functions f1 < f2 < ... < fn on

R yields a natural decomposition {R0, R1, ..., R2n} of Cyl(R) where:

R0 = {(x, y) : x ∈ R, y < f1(x)}
R1 = {(x, y) : x ∈ R, y = f1(x)}
R2 = {(x, y) : x ∈ R, f1(x) < y < f2(x)}
...

R2n−1 = {(x, y) : x ∈ R, y = fn(x)}
R2n = {(x, y) : x ∈ R, fn(x) < y}.

Such a decomposition is called a stack over R determined by

f1, ..., fn. We can now introduce recursively the notion of cylindrical

decomposition.

Definition 4.6. A decomposition Dd of Rd is said to be cylindrical

if:

(i) when d = 1, Dd is a stack over R0, i.e. a decomposition of R

into points and open intervals,

(ii) when d > 1, there is a cylindrical decomposition Dd−1 of

Rd−1 and each region R ∈ Dd−1 has a stack over R that is formed

by regions of Dd.

In this definition the decompositionDd−1 is unique for Dd, hence it is

clear thatDd induces uniquely the decompositionsDd−1,Dd−2, ...,D1

of the subspaces Rd−1,Rd−2, ...,R.

4.3 Cylindrical Decomposition 91

Definition 4.7. We say that a decomposition is algebraic if its re-

gions are semi-algebraic. The components (regions) of a cylindrical

algebraic decomposition (CAD) are called cells.

Theorem 4.6. ([2, Prop. 5.3]) Every cell of a cylindrical algebraic

decomposition of Rd is semi-algebraically homeomorphic (i.e. the

mapping is homeomorphic and semi-algebraic) to an open i-cube

(0, 1)i, for some i, and is semi-algebraically connected.

Hence, we can naturally speak of the dimension of a cell; hence

whenever we want to specify the dimension i, we say i-cell.

Let’s consider a polynomial f ∈ R[x] in variables x = (x1, ..., xd)

and a semi-algebraic region R ⊂ Rd−1. We call folding point (w.r.t

coordinate xd), a point x̂ satisfying the system:

{

f(x̂) = 0
∂f
∂xd

(x̂) = 0

Suppose that the cylinder Cyl(R) does not contain folding points.

Then the equation

f(x) = 0

defines implicitly [20, Theor. 9.28] the algebraic functions g1, ..., gm :

R → R, such that GraphR(gi) ∩ GraphR(gj) = ∅ if i 6= j. We can

suppose:

g1 < g2 < ... < gm

As a consequence, f induces a stack over R determined by functions

that are implicitly definable by f(x) = 0. See Figure 4.2 for an il-

lustration. We notice that in any region Ri of the stack over R the

polynomial function f(x) has constant sign, i.e. sgn f(x) = sgn f(y)

for all x, y ∈ Ri. In this case we also say that Ri is f -sign-invariant

92 4 Clustering with norm Lp

R

(a)

b

R

(b)

Fig. 4.2 (a) Stack over R; (b) No stack over R

or f is sign-invariant on Ri.

4.3 Cylindrical Decomposition 93

Given the semi-algebraic region R ⊂ Rd, consider now a collection

F = {f1, ..., fn} of polynomials in variables x = (x1, ..., xd). We call

intersection point of fi and fj (1 ≤ i < j ≤ n) a point x̄ satisfying

the system:
{
fi(x̄) = 0

fj(x̄) = 0

Suppose that the cylinder Cyl(R) does not contain folding points of

fi or intersection points of fi, fj, for all i, j s.t. 1 ≤ i < j ≤ n. Then

the graphs of the functions implicitly definable by fi = 0 do not

intersect the graphs of the functions implicitly definable by fj = 0:

F = {f1, ..., fn} induces a stack over R; see for instance Figure 4.3.

Thus, we can conclude the following:

Fact 4.7. In any region Rk of the stack over R every polynomial

fi ∈ F has constant sign, i.e. sgn f(x) = sgn f(y) for all x, y ∈
Rk, fi ∈ F .

We say that the region Rk is F -sign-invariant or the collection F is

sign-invariant on Rk.

Definition 4.8. A cylindrical decomposition adapted to F ⊂ R[x1,

..., xd] is a cylindrical decomposition whose cells are F -sign-invariant.

We will see now that for every finite collection F of polynomi-

als the SCAD method effectively construct a cylindrical algebraic

decomposition. To this aim we provide the insights into the SCAD

algorithm. The algorithm SCAD takes a finite collection F ⊂ Z[x] of

polynomials in the variables x = (x1, ..., xd), and gives in output the

points with dyadic components (i.e. components written as rational

numbers with a denominator that is a power of 2) representing the

sectors of a cylindrical algebraic decomposition of Rd adapted to F .

The algorithm can be divided in three stages:

94 4 Clustering with norm Lp

R

(a)

b

R

(b)

Fig. 4.3 (a) Stack over R; (b) No stack over R

1. In the first stage (called projection or elimination stage) the

last variable of the polynomials Fd = F is eliminated, thus yielding

4.3 Cylindrical Decomposition 95

a new collection Fd−1 ⊂ Z[x1, ..., xd−1] of polynomials, in such a way

that the following properties are guaranteed:

(a)For each distinct pair fi, fj ∈ Fd there exists g ∈ Fd−1 such that,

if fi(r1, ..., rd) = fj(r1, ..., rd) = 0, then g(r1, ..., rd−1) = 0.

(b)For each fi ∈ Fd there exists h ∈ Fd−1 such that, if fi(r1, ..., rd) =
∂

∂xd
fi(r1, ..., rd) = 0, then h(r1, ..., rd−1) = 0.

An elimination procedure ELIM based on the concept of resultant

will be discussed in Section 4.4.

By iterating the procedure ELIM on Fd, we obtain Fd−1, Fd−2, ..., F1.

2. At this stage we consider the set F1 of univariate polynomials,

and let q1 < q2 < ... < qz be the (ordered) distinct real roots of the

polynomials in F1.

In this way we obtain a decomposition D of R adapted to F1, whose

sectors are the intervals:

I0 = {x : x < q1}, ..., Ij = {x : qj < x < qj+1}, ..., Iz+1 = {x : x > qz}

these sectors can be represented by dyadic numbers [9]:

d0 < d1 < ... < dz < dz+1

such that dk ∈ Ik for 0 ≤ k ≤ z + 1. We call such numbers sample

points.

The sample points S1 = {d0, ..., dz+1} of F1 can be obtained by

a procedure REP based on a bisection technique exploiting Sturm

sequences, as explained in Section 4.6.

3. The lifting phase basically consists in finding the decomposi-

tion Dℓ of Rℓ adapted to Fℓ given the polynomials in Fℓ−1 and the

sample points of the decomposition Dℓ−1 of Rℓ−1 adapted to Fℓ−1.

For this purpose we determine the stack over every (ℓ − 1)-cell of

96 4 Clustering with norm Lp

the decomposition Dℓ−1 and we represent the sectors of the stack by

means of points with dyadic components. We recall that existence

of such a stack is guaranteed as already observed in the projection

phase.

Consider a sector C ∈ Dℓ−1 represented by the sample point

s = (s1, ..., sℓ−1) ∈ Sℓ−1 ∩ C. If we take the polynomials f ∈ Fℓ ⊂
Z[x1, ..., xℓ] and substitute the first ℓ−1 coordinates with s we obtain

the set Fℓ(s) of univariate polynomials fs(xℓ) = f(s, xℓ) ∈ Z[xℓ] in

the variable xℓ. Now, in order to obtain the stack over s it is sufficient

to apply the same technique of stage 2. on the polynomials Fℓ(s). In

conclusion, we can compute

Sℓ = {s′ = (s, sℓ) ∈ Qℓ : s ∈ Sℓ−1 ∩C,C ∈ Dℓ−1,

sℓ is a sample point between consecutive roots of Fℓ(s)}

The sign of each polynomial f ∈ Fℓ in any cell C ∈ Dℓ having sample

point s′ = (s, sℓ) is easily determined by evaluating each polynomial

fs ∈ Fℓ(s) at sℓ.

The construction of Sℓ is iterated for ℓ = 2, ..., d, yielding finally

Sd, that are the points with dyadic components representing the sec-

tors of the cylindrical algebraic decomposition of Rd adapted to F .

Remark 4.4. With an effective tool for performing a cylindrical al-

gebraic decomposition one can also sketch the idea of a method [19,

pp. 235–236] for solving the quantifier elimination problem stated

in Section 4.2. We recall that it consists in finding a quantifier-free

first-order formula Ψ that is equivalent to a given first-order formula

Φ, possibly with quantifiers. The key point is that the realisation

RR(Φ) ⊂ Rd of a first-order formula Φ constructed with the set

of polynomials F ⊂ Q[x] is a union of some cells of a cylindrical

decomposition D adapted to F [2]. Hence, it is sufficient to give a

4.3 Cylindrical Decomposition 97

formula Ψ which is the disjunction of the polynomial equations and

inequalities defining the cells of the decomposition D.

Now we can formalise the Simplified Cylindrical Algebraic Decom-

position in the Algorithm 5. The algorithm takes in input a finite

collection of polynomials in t variables αt, ..., α1 and starts with elim-

inating repeatedly each variable by means of the ELIMℓ procedure

outlined in Algorithm 6, which implements the resultant technique

explained in Section 4.4, thus yielding the polynomial collections

Ft, ..., F1. In the second part (lines 4–11) the algorithm outputs all

the sample points in the sectors of the decomposition D of Rt. In this

part the SCAD algorithm makes use of the REP procedure (Algo-

rithm 8) implementing the techniques explained in Section 4.6 that

generates sample points between the roots of the given univariate

polynomial.

Algorithm 5 SCAD

Input: F = {fi ∈ Z[α1, ..., αt]}

Output: a polynomial collection St such that each sector of the cylindrical

algebraic decomposition D of Rt has a sample point α ∈ Qt in St

1 Ft = F

2 for ℓ = t, ..., 2 do

3 Fℓ−1 = ELIMℓ(Fℓ)

4 g =
∏

f∈Fℓ
f

5 S1 = REP(g)

6 for ℓ = 2, ..., t do

7 g =
∏

f∈Fl
f // g ∈ Z[α1, ..., αℓ]

8 for all s ∈ Sℓ−1 do

9 gs(αℓ) = g(s;αℓ) // g(s;αℓ) ∈ Z[αℓ]

10 R = REP(gs)

11 Sℓ = Sℓ ∪ {(s, sℓ) ∈ Qℓ : sℓ ∈ R}

98 4 Clustering with norm Lp

Observe that during the execution the algorithm generates into

S1, ..., St also the sample points in the sectors of the decomposi-

tions of R, ...,Rt as a result of the partial computations.

Since SCAD is a simplified version of Collin’s CAD, its time com-

plexity is surely bounded by CAD’s time complexity. For our purpose

it is then sufficient to illustrate CAD’s complexity.

First of all, we give some bounds [2] on the complexity of the

objects being computed throughout the algorithm. Let F ⊂ Z[x]

be the collection of polynomials given in input. Denote by n the

cardinality |F |, by p the maximum degree of the polynomials in F ,

by t the number of variables in the polynomials in F and by τ the

maximum bitsize of the coefficients of the polynomials in F .

Proposition 4.8. ([2, p. 407]) During the execution of the CAD

algorithm the maximum degree of the computed polynomials is

O(p)2
t−1

, the number of polynomials (i.e. cardinality of Fℓ) is

O(np)3
t−1

, and the bitsize of the computations is τpO(1)t−1

.

Theorem 4.9. ([2, pp. 406–407]) Given a set F ⊂ Z[x] of n poly-

nomials in t variables having maximum degree p and bitsize of co-

efficients bounded by τ , the Cylindrical Algebraic Decomposition

algorithm gives a decomposition D adapted to F in time complexity

(np)O(1)t . Moreover, the bitsizes of the computations and the output

are bounded by τpO(1)t−1

.

We first observe that although CAD’s time complexity is doubly

exponential in the number of variables, it remains polynomial in

the input size and the integer p associated to the norm ‖ ‖p. In our

application the number of variables will be fixed to t = 2d+1, where

d is the dimension of the data space.

Remark 4.5. Substantially, the construction of the O(n2) resultants

associated to the pair of distinct polynomials in Fℓ in each level

4.4 Resultant and elimination 99

ℓ = 1, ..., t is the reason for a doubly exponential (w.r.t. t) time

complexity of the algorithm; indeed, at the second iteration of the

projection phase the number of polynomials turns out to be O(n4),

at the third iteration it turns to O(n8) and so on.

Proposition 4.10. Given the same polynomial set F of Theorem

4.9, the number of cells given by a Cylindrical Algebraic Decompo-

sition D of Rt adapted to F is (np)O(1)t .

4.4 Resultant and elimination

We know from linear algebra that the solutions of a system of linear

equations depend upon particular functions - namely rank and deter-

minant - of the coefficients matrix. Similar techniques are then highly

desirable also for systems of polynomial equations. As the Gaussian

method can deal with eliminating variables in linear systems, some

analogous approaches were developed to tackle the elimination in

polynomial systems [7]. These approaches are based mainly on the

Gröbner bases and the resultant. We will exploit the latter tool.

Let’s first consider polynomials in one variable over the real field

R. We want to find the common roots of two polynomials a, b in R[x]

of degree m and n respectively:

a(x) = amxm + am−1x
m−1 + ...+ a0 (4.2)

b(x) = bnx
n + bn−1x

n−1 + ...+ b0 (4.3)

In particular, a simple way exists for deciding whether two polyno-

mials have a common root, i.e. whether the system of two equations

a(x) = 0 and b(x) = 0 admits a solution.

Definition 4.9 (Sylvester matrix). The Sylvester matrix S(a, b)

associated to the polynomials

100 4 Clustering with norm Lp

a(x) = amxm + ...+ a0 ∈ R[x]

b(x) = bnx
n + ...+ b0 ∈ R[x]

of degree m and n respectively, is the (m+n) by (m+n) real matrix

defined as follows:

S(a, b) =


















am am−1 · · · a0
am am−1 · · · a0

. . .
. . .

. . .

am am−1 · · · a0
bn bn−1 · · · b0

bn bn−1 · · · b0
. . .

. . .
. . .

bn bn−1 · · · b0


















the upper block having n rows, and the lower block having m rows,

the blank entries filled by zeros .

In fact the Sylvester matrix is obtained by writing the coefficients

vector of a on the upper left corner and then writing right-shifted

copies on the n−1 rows below, and analogous operation for obtaining

the lower block applies for the m successive rows.

Definition 4.10 (Resultant (Sylvester form)). The determi-

nant detS(a, b) of the Sylvester matrix associated to a and b is called

the resultant of a and b and is denoted by Res(a, b).

Remark 4.6. It is well known that the resultant is an integer poly-

nomial in the ai’s and bi’s, and is homogeneous of degree n in the

ai’s and homogeneous of degree m in the bi’s.

Furthermore, the following property holds:

4.4 Resultant and elimination 101

Proposition 4.11. Denote by λ1, λ2, ..., λm and by µ1, µ2, ..., µn the

complex roots (counted with their multiplicity) of a and b respec-

tively. Then

Res(a, b) = anmbmn
∏

i,j

(λi − µj)

The previous equality is often taken in literature as alternative def-

inition of the resultant

Corollary 4.12. Res(a, b) = 0 if and only if a and b have a common

factor of degree > 0.

Hence, if we want to discover the solvability of the system of two

polynomials in one unknown

{
a(x) = 0

b(x) = 0

by the last Corollary it is then sufficient to recover the resultant of

a and b.

Consider now two polynomials a(x1, ..., xℓ), b(x1, ..., xℓ) in vari-

ables x1, ..., xℓ. We can interpret a and b as univariate polyno-

mials in variable xℓ with coefficients in R[x1, ..., xℓ−1], i.e. a, b ∈
R[x1, ..., xℓ−1][xℓ].

Their resultant is a polynomial Res(a, b)(x1, ..., xℓ−1) in variables

x1, ..., xℓ−1. Moreover, if a(r1, ..., rℓ) = b(r1, ..., rℓ) = 0, then

Res(a, b)(r1, ..., rℓ−1) = 0.

This fact suggests the Algorithm 6 for the procedure of elimination.

In fact, for each distinct pair fi, fj ∈ Fℓ, there exists

g = Res(fi, fj) ∈ Fℓ−1

102 4 Clustering with norm Lp

Algorithm 6 ELIM

Input: a positive integer ℓ; Fℓ ⊂ Z[α1, ..., αℓ]

Output: F ⊂ Z[α1, ..., αℓ−1] : β ∈ Z(Fℓ) is a folding, an intersection or a

singular point only if π(β) ∈ Z(F)

1 F = ∅

2 for all f ∈ Fℓ do

3 F = F∪Res(f, ∂f
∂αℓ

) // singular or folding point w.r.t. αℓ

4 for all g ∈ Fℓ, g 6= f do

5 F = F∪Res(f, g) // intersection point w.r.t αℓ

such that, if fi(r1, ..., rd) = fj(r1, ..., rd) = 0, then g(r1, ..., rℓ−1) = 0;

moreover for each fi, if fi(r1, ..., rℓ) = ∂
∂xℓ

fi(r1, ..., rℓ) = 0 there

exists

h = Res(fi,
∂

∂xℓ
fi) ∈ Fℓ−1

such that, if fi(r1, ..., rd) =
∂

∂xℓ
fi(r1, ..., rd) = 0 then h(r1, ..., rd−1) =

0.

4.5 Sturm sequences

In this section we recall a classical tool that, given a polynomial, let

us “localise” its roots.

Definition 4.11. Given f, g ∈ R[x] the signed remainder sequence

of f and g is the finite sequence ρ = (ρ0, ρ1, ..., ρt) ⊂ R[x] defined as

follows:

4.5 Sturm sequences 103

ρ0 = f

ρ1 = g

ρ2 = −r2 with the division ρ0 = ρ1q2 + r2

...

ρt = −rt with the division ρt−2 = ρt−1qt + rt

with ρt = −rt = GCD(f, g).

Essentially, this is a sign variated flavour of the Euclidean algorithm

for computing the greatest common divisor.

Definition 4.12 (Sturm sequence). The Sturm sequence or Sturm

chain of f ∈ R[x] is the signed remainder sequence of f and f ′, where

f ′ is the derivative of f .

We denote by V (ρ) the number of sign changes (ignoring zeros) in

a given real sequence ρ, and given a Sturm sequence ρ ⊂ R[x] we

denote by V (ρ; a) = V (ρ(a)) the number of sign changes (ignoring

zeros) in the sequence ρ1(a), ρ2(a), ..., ρt(a).

Theorem 4.13. (Sturm’s Theorem [3, Cor. 1.2.10]) Let f ∈ R[x]

be a polynomial, ρ = (ρ0, ..., ρt) its Sturm sequence and a < b two

reals, which are not roots of f . Then the number of distinct roots of

f in the open interval (a, b) is exactly

V (ρ; a)− V (ρ; b).

This result can be immediately turned into the procedure COUN-

TROOTS outlined in Algorithm 7. The algorithm takes in input a

univariate polynomial g and the bounds a and b for the real roots of

g. It depends on the function Rem which is a standard function for

calculating the remainder of integer polynomial division. The lines

11-12 containing a nullity test guarantees that the output C is the

number of real roots on the left-closed interval [a, b).

104 4 Clustering with norm Lp

Algorithm 7 COUNTROOTS(g, a, b)

Input: g ∈ Z[αl]; a, b ∈ Q, a < b

Output: the number C of roots of g in the interval [a, b)

1 ρ0 = g; ρ1 = g′

2 i = 1

3 while ρi 6= 0 do

4 i = i + 1

5 ρi = −Rem(ρi−2, ρi−1) // -remainder of polynomial di-

vision

6 ρ(a) = (ρ0(a), ρ1(a), ..., ρi−1(a))

7 ρ(b) = (ρ0(b), ρ1(b), ..., ρi−1(b))

8 U = # sign changes in ρ(a) ignoring zeros

9 V = # sign changes in ρ(b) ignoring zeros

10 C = U − V

11 if g(a) = 0 then

12 C = C + 1

The previous theorem turns out to be an important tool for local-

ising the real roots of a polynomial up to a desired approximation.

Indeed, consider a polynomial f ∈ R[x] and an initial guess (a, b)

for an interval containing all the roots. Suppose we want to localise

one root of f . It is then sufficient to use a bisection approach; this

means that we iteratively check the discending tower of intervals

(a, b) = (a1, b1) ⊃ (a2, b2) ⊃ (a3, b3) ⊃ ...

such that

V (ρ; ai)− V (ρ; bi) > 0

and (ai+1, bi+1) is the left or right half-interval of (ai, bi), until we

find the interval (ak, bk) containing exactly one root of f , namely

V (ρ; ak) − V (ρ; bi) = 1. Obviously, it can happen that f(ai) = 0 or

f(bi) = 0, which is not envisaged by the Sturm’s Theorem; but it is

sufficient to evaluate these points to test nullity.

4.6 Cauchy’s Bound and Canny’s Gap 105

Remark 4.7. When we want to sample a rational point between two

consecutive roots z1 ∈ (a1, b1) and z2 ∈ (a2, b2), b1 ≤ a2, we can give

any rational number between b1 and a2, provided b1 < a2. Otherwise

we have to refine the bisection on z1 or z2 until the latter condition

is verified.

4.6 Cauchy’s Bound and Canny’s Gap

We now introduce a classical bound on the (real or complex) roots of

a polynomial. This result turns to be very useful for giving the initial

guess for the interval (a, b) containing all the real roots, and thus

allowing one to apply a root finding method such as the bisection

method we described above.

Lemma 4.14 (Cauchy’s Bound on Roots [18]). Let f(x) =

anx
n + ...+ a0 ∈ C[x] be a polynomial of degree n. Any root z of f

lies in the disc:

|z| ≤ 1 + max
i

∣
∣
∣
∣

ai
an

∣
∣
∣
∣

Corollary 4.15. If f ∈ Z[x] with coefficients of maximum bitsize τ ,

any root z of f lies in the disc

|z| ≤ 2τ

Proof. Simply note that
∣
∣
∣
ai

an

∣
∣
∣ ≤ |ai| ≤ 2τ − 1. ⊓⊔

With an initial guess due to the Cauchy’s Bound we are ready to for-

malise the bisection method explained in the previous subsection into

the Algorithm 8. At line 3 the algorithm guess the interval (2τ , 2τ+1)

with right extreme 2τ+1 since the procedure COUNTROOTS does

not detect roots at the point 2τ . The following lines consists in a

106 4 Clustering with norm Lp

in-order visit of a suitable tree T whose root is associated to the

guess (2τ , 2τ+1). Actually, the recursive calls for the traversal of the

tree are avoided by properly managing a stack of subintervals. In-

deed, each node of T is associated to a subinterval T ′ of (2τ , 2τ+1).

Whenever T ′ satisfies the two conditions:

(i) the left-half subinterval L of T ′ contains exactly one root

(ii)the right-half R contains no root

we can sample a rational point within the right-half R of T ′, since we

are sure that the polynomial g does not change sign on R. Otherwise,

we search in order L and R for some left and right-half subintervals

satisfying the conditions (i) and (ii), provided they contain at least

one root. We also notice that the sample points generated into S are

Algorithm 8 REP(g)

Input: g ∈ Z[αl]

Output: a list S of sample points between consecutive roots of g

1 S = ∅

2 τ = maximum bitsize of g’s coefficients

3 T = {(−2τ , 2τ+1)} // τ + 1: COUNTROOTS works on right

open

4 while T 6= ∅ do

5 (a, b) = Top(T); T = Pop(T)

6 L = (a, a+b
2

)

7 R = (a+b
2

, b)

8 if COUNTROOTS(g, L) = 1 and COUNTROOTS(g, R) = 0

then

9 S = S ∪ {1
2
(a+b

2
+ b)}

10 else

11 if COUNTROOTS(g, R) ≥ 1 then

12 T = Push(T,R)

13 if COUNTROOTS(g, L) ≥ 1 then

14 T = Push(T,L)

4.7 Comparison between two clusterings 107

actually dyadic rational numbers, i.e. rationals with a power of 2 as

denominator, as will be required in Section 4.8.

We’ve seen an upper bound on the absolute value of any root; on

the contrary what follows can be directly applied to obtain a lower

bound on the absolute value of any non-null root.

Theorem 4.16. (Canny’s Gap [5, Theor. 3.3.4]) Let (x1, x2, ..., xN)

be a solution of an algebraic system of N equations in N unknowns

having a finite number of solutions, with maximum degree d and

with coefficients in Z smaller or equal to M in absolute value. Then,

for each i = 1, ..., N , either xi = 0 or |xi| > (3Md)−NdN

.

Canny’s Gap Theorem is a powerful tool for numerically solving

symbolic decision problems. Indeed, this result can be exploited for

deciding whether the solutions of a square system of algebraic equa-

tions are exactly zero or not, and hence in particular it can be used to

test whether an algebraic number is zero by computing a sufficiently

tight interval containing the number.

4.7 Comparison between two clusterings

In this section we develop a method that, having in input 2 clus-

terings of X = {x1, ..., xn} ⊂ Zd with constraints {m,n − m}, de-
cides which is better. The comparison is performed by formulating a

proper algebraic system and using the Theorem 4.16 (Canny’s Gap).

First of all, we extend the notion of ε–approximation, introduced

in Chapter 1 for R. Given a set Y ⊂ Rd, consider each dimension

i, 1 ≤ i ≤ d. Let y1 < y2 < ... < ymi be the distinct values of i-th

component of the points in Y , and let j (that can depend on i) be

108 4 Clustering with norm Lp

the index such that the i-th component Ci of the p-centroid C of Y

verifies

yj ≤ Ci < yj+1

Fixed ε (0 < ε < 1
2), we call ε-approximation of C the point C̄ ∈ Qd

having i-th component C̄i satisfying:

{
Ci ≤ C̄i ≤ Ci + ε if yj+1 − Ci > Ci − yj
Ci − ε ≤ C̄i ≤ Ci otherwise.

In any case, it holds |C̄i − Ci| ≤ ε for every i = 1, ..., d.

The intuitive idea of these technicalities means that C̄i must be ei-

ther a left or a right approximation of Ci in such a way to ensure

that yj ≤ C̄i < yj+1. We notice that for each dimension i the corre-

sponding j can be easily computed.

The following lemma is an easy extension of Proposition 1.7 in-

troduced in Chapter 1 for R, to the multi-dimensional case. It can be

obtained by observing that the cost function W has no multivariate

terms, so that the same analysis can be applied on each dimension

separately.

Lemma 4.17. Given an integer p > 2 and the set Y = {y1, ..., ym},
let ξ = max ‖yi‖∞ and C ∈ Rd be the p-centroid of Y and W (Y)

be the cost of the cluster Y . Then there exist polynomials Ai(xi) =
∑p−1

j=0 aijx
j
i (i = 1, ..., d) and B(x1, ..., xd) =

∑d
i=1

∑p
j=0 bijx

j
i , such

that:

1. Ci is a root of Ai(xi) for every i = 1, ..., d;

2. W (Y) = B(C)

3. |aij |, |bij | ≤ m · (ξ + 1)p for every i, j

4. |B(C) −B(C̄)| ≤ d · ε · ξp−1 · p ·m.

We are now ready to establish the main result of this section.

4.7 Comparison between two clusterings 109

Theorem 4.18. Given two 2-clusterings π1 and π2 of X = {x1, ...,

xn} ⊂ Zd, the problem of deciding whether W (π1) < W (π2) can be

solved in polynomial time w.r.t. p and the bitsize of X .

Proof. We denote π1 = {A,B} and π2 = {D,E}. Deciding whether

W (π1) < W (π2) corresponds to determining the sign of

W = W (π1)−W (π2) = W (A) +W (B)−W (D)−W (E)

To this end, we can consider the system of equations:

{

A
(k)
i (z

(k)
i) = 0 (for all i = 1, ..., d; k = 1, ..., 4)

w = B(1)(z(1)) +B(2)(z(2))−B(3)(z(3))−B(4)(z(4))
(4.4)

with polynomials A
(k)
i ∈ R[z

(k)
i], B(k) ∈ R[z(k)] (i = 1, ..., d; k =

1, ..., 4; z(k) = (z
(k)
1 , ..., z

(k)
d)), obtained according to Lemma 4.17

separately for each cluster A,B,D,E and each term associated to

a dimension in the cost function. This is a system of 4d + 1 alge-

braic equations of degree at most p in 4d + 1 unknowns z(k) ∈ Rd

(k = 1, ..., 4) and w, which is solved by the assignments







z(1) = C(1)

z(2) = C(2)

z(3) = C(3)

z(4) = C(4)

w = W

where the d-dimensional vectors C(k)’s (k = 1, ..., 4) are the (unique)

centroids of A,B,D,E respectively. By Lemma 4.17, the coefficients

of the polynomials in the system are bounded by M = n(ξ + 1)p,

where ξ = maxi ‖xi‖∞. Hence, by applying the Canny’s Gap Theo-

rem, either W = 0 or |W | > δ with

110 4 Clustering with norm Lp

δ = [3n(ξ + 1)pp]
−(4d+1)p4d+1

Thus, if we find an approximation W̄ of W up to δ
3 , we can conclude

that:

• if W̄ < − δ
2 then W < 0 and π1 is the optimal solution;

• if W̄ > δ
2 then W > 0 and π2 is the optimal solution;

• if |W̄ | ≤ δ
2 then W = 0 and both π1 and π2 are optimal solutions.

W̄ can be obtained by computing

W̄ = B(1)(C(1)) +B(2)(C(2))−B(3)(C(3))−B(4)(C(4))

where C(k) is an ε-approximation of C(k), with ε that guarantees

|W − W̄ | ≤ δ
3 . By the last point of Lemma 4.17, we know that:

|W − W̄ | ≤ 4dεpnξp−1.

To distinguish the three cases it is sufficient to choose ε such that

4dεpnξp−1 <
δ

3
=

1

3
[3n(ξ + 1)pp]−(4d+1)p4d+1

.

Then we can approximate every component of C(k) up to the s-

th binary digit after the point such that ε = 2−s. By the previous

inequality we have

4d2−spnξp−1 <
1

3
[3n(ξ + 1)pp]−(4d+1)p4d+1

−s < log [3n(ξ + 1)pp]−(4d+1)p4d+1 − log(12dpnξp−1)

s > (4d+ 1)p4d+1 log[3n(ξ + 1)pp] + log(12dpnξp−1)

Hence, noting that ξ > n, the minimum number of necessary binary

digit is

s = O(p4d+2 log ξ).

4.7 Comparison between two clusterings 111

The approximate centroids C(k) (k = 1, ..., 4) can be obtained in

polynomial time w.r.t. the input size and p by standard numeri-

cal methods for finding roots of polynomials, such as Bisection or

Newton-Raphson Method, and the computation of W̄ requires a

polynomial number of arithmetic operations on numbers of poly-

nomials size w.r.t. the input size and p.

In conclusion, we can decide in polynomial time w.r.t. p and the

bitsize of X whether W < 0, that is whether W (π1) < W (π2). ⊓⊔

The previous result suggests the Algorithm 9, which needs no further

explanation.

Algorithm 9 IS BETTER(π1, π2)

Input: two partitions π1 = {A,B}, π2 = {D,E} of the data set X ⊂ Rd;

an even integer p ≥ 4

Output: True if W (π1) < W (π2), False otherwise

1 ξ = maxi ‖xi‖∞ // See Theorem 4.18

2 δ = [3n(ξ + 1)pp]−(4d+1)p4d+1

3 s = ⌈(4d+ 1)p4d+1 log[3n(ξ + 1)pp] + log(12dpnξp−1)⌉

4 ε = 2−s

5 Find ε-approximations C(1), C(2), C(3), C(4) of the centroids

C(1), C(2), C(3), C(4) of A,B,D,E respectively, up to the s-th

digit by means of a standard numerical method.

6 W̄ = B(1)(C(1)) +B(2)(C(2))−B(3)(C(3))−B(4)(C(4))

7 if W̄ < − δ
2
then

8 return True

9 else

10 return False

112 4 Clustering with norm Lp

4.8 Size constrained 2-clusterings

4.8.1 Even p

We now return to the challange of finding the solution of the 2-SCC-

d problem started in Section 4.1. Throughout this subsection we will

suppose that p is even.

Take a point xi ∈ X ; we have already seen at the beginning of

the chapter that it can be associated the polynomial introduced in

Equation (4.1): fi(α) = f(xi;α) ∈ R[α], namely

fi(α) =

d∑

k=1

(xi,k − µk)
p −

d∑

k=1

(xi,k − λk)
p − γ

having collected the variables in the vector

α = (α1, ..., α2d+1) = (µ, λ, γ) = (µ1, ... µd, λ1, ..., λd, γ) ∈ R2d+1

Then let F = {fi ∈ R[α] : xi ∈ X} be the collection of polynomials

associated with the points of X , and D be the decomposition of

R2d+1 adapted to F . Recall the Separation Property.

Fact 4.19. Let α ∈ R2d+1 separate the clusters A and B. Then

there exists a neighborhood Nε(α) ∈ R2d+1 of α such that

α′ ∈ Nε(α) =⇒ sgn(fi(α
′)) = sgn(fi(α)) ∀i = 1, ..., n

This fact allows us to simplify the algorithm by considering only the

sectors. Moreover, let’s consider the dyadic rational numbers, that is

those rationals of the form a
2b

with integer a, and integer b ≥ 0. As

the dyadic numbers are dense in the reals, we can conclude

4.8 Size constrained 2-clusterings 113

Fact 4.20. If α ∈ R2d+1 separates the clusters A and B, then there

exists a vector ᾱ ∈ Q2d+1 with dyadic rational components that

separates A and B.

In order to find the clusterings separable by hypersurfaces of the

parametric family

f(x;µ, λ, γ) = ‖x− µ‖pp − ‖x− λ‖pp − γ = 0

it is sufficient to apply the SCAD procedure of Section 4.3 to the set

of polynomials:

F = {f(xi;µ, λ, γ : i = 1, ..., n}.

SCAD outputs a set of vectors

{(µk, λk, γk) : 1 ≤ k ≤ N}

with dyadic components. By the Separation Property, we know that,

for every 1 ≤ m ≤ n − 1, there is j, 1 ≤ j ≤ N , such that the

optimal clustering with constraints {m,n − m} is obtained by the

hypersurface f(x;µj , λj , γj) = 0. In conclusion, fixed a norm ‖ ‖p
with even p, given a set {x1, ..., xm} ⊂ Rd of vectors, the optimal

clusterings with constraints {m,n−m} (for all 1 ≤ m ≤ n− 1) can

be obtained by the Algorithm 10.

Complexity analysis

We now want to determine the time complexity of the 2-SCC-d al-

gorithm. We recall from Section 4.3 that the SCAD algorithm is

polynomial-time w.r.t. to input size and p. Because of Proposition

4.10 the number of iterations in the for loop at line 3 is (np)O(1)2d+1

.

Each evaluation of the polynomial function f(xi; ·) at line 6 re-

114 4 Clustering with norm Lp

Algorithm 10 2-SCC-d

Input: an even integer p ≥ 4; X = {xi}n1 ⊂ Zd

Output: a vector Π = (π[1], ..., π[⌊n/2⌋]), where π[m] is the solution to

the 2-SCC-d problem with constraint m, for every m = 1, ..., ⌊n/2⌋.

1 F2d+1 = {f ∈ Z[α] : f(x;µ, λ, γ) = ‖x − µ‖pp − ‖x − λ‖pp − γ, x ∈ X}

2 S2d+1 = SCAD(F2d+1)

3 for all α ∈ S2d+1 do

4 m = 0;A = ∅

5 for all xi ∈ X do

6 if f(xi;α) > 0 then

7 A = A ∪ {xi}

8 m = m+ 1

9 m = min{m,n−m}

10 π = {A,X r A}

11 if IS BETTER(π[m], π) then

12 π[m] = π

quires 5d − 1 additions or subtractions and 2d exponentations in

the ring R. As stated by the Theorem 4.18 the time complexity of

the IS BETTER function is polynomial w.r.t. to p and the bitsize

of X . It results that the cost of the whole for loop of lines 3–12 is

polynomial in p and the bitsize of X . From these considerations the

following result holds.

Theorem 4.21. The 2-clustering problem with size constraints k,

1 ≤ k ≤ ⌊n/2⌋, in fixed dimension d with norm ‖ ‖p, even integer p,

can be solved in polynomial time w.r.t. the input size and p.

4.8.2 Odd p

We recall that, as in Section 4.1, with each point xi ∈ X we can

associate the function

4.8 Size constrained 2-clusterings 115

fi(α) =

d∑

ℓ=1

|xiℓ − µℓ|p − |xiℓ − λℓ|p − γ

denoting with α = (µ, λ, γ) ∈ R2d+1. When p is a positive odd num-

ber, the considerations of §4.8.1 can no longer be applied directly.

In this subsection we want to illustrate how the case of odd p can

be deal with in an analogous manner with little complication.

Let F = {fi ∈ R[α] : xi ∈ X}; by reasoning as in §4.8.1 we know

that for each α the sign vector

sgn(F (α)) = (sgn(f1(α)), ..., sgn(fn(α)) ∈ {−1,+1}n

of the polynomials in F evaluated at α determines the unique 2-

clustering πα.

We now introduce some modified version of the functions in F . Let

σ, τ ∈ {−1,+1}n×d denote sign matrices and let σi, τi, i = 1, ..., n,

denote their respective rows. To every sign vectors σi, τi ∈ {−1,+1}d
we associate the polynomial

f̄iσiτi(α) =

d∑

ℓ=1

σiℓ(xiℓ − µℓ)
p − τiℓ(xiℓ − λℓ)

p − γ

where σiℓ, τiℓ are entries of σi, τi, and to each point xi ∈ X we

associate the polynomial set

Ψi = {f̄iσiτi ∈ R[α] : σi, τi ∈ {−1,+1}d}

containing |Ψi| = 4d polynomials. We can then construct the poly-

nomial set

F̄ =
n⋃

1

Ψi (4.5)

containing |F̄ | = n4d polynomials. Define also the polynomial set

116 4 Clustering with norm Lp

G = {(xiℓ − µℓ) ∈ R[α] : i = 1, ..., n; ℓ = 1, ..., d}
∪ {(xiℓ − λℓ) ∈ R[α] : i = 1, ..., n; ℓ = 1, ..., d} (4.6)

containing |G| = 2nd polynomials.

Proposition 4.22. Let D be the cylindrical decomposition of R2d+1

adapted to H = F̄ ∪ G. Then D is also a cylindrical decomposition

of R2d+1 adapted to F .

Proof. Take an arbitrary cell C ∈ D and two points α′ = (µ′, λ′, γ′),

α′′ = (µ′′, λ′′, γ′′) in C. Let’s denote the (2d+1)–dimensional variable

α = (µ, λ, γ).

The polynomials (xiℓ − µℓ), (xiℓ − λℓ) belong to H for all i =

1, ..., n; ℓ = 1, ..., d. Hence, since D is adapted to H , for every xi ∈ X

there are suitable ξ, ζ ∈ {−1,+1}n such that

sgn(xiℓ − µ′
ℓ) = sgn(xiℓ − µ′′

ℓ) = ξℓ ℓ = 1, ..., d

sgn(xiℓ − λ′
ℓ) = sgn(xiℓ − λ′′

ℓ) = ζℓ ℓ = 1, ..., d

It follows immediately that

d∑

ℓ=1

|xiℓ−µ′
ℓ|p−|xiℓ−λ′

ℓ|p−γ′ =
d∑

ℓ=1

ξℓ(xiℓ−µ′
ℓ)

p−ζℓ(xiℓ−λ′
ℓ)

p−γ′

(4.7)

and

d∑

ℓ=1

|xiℓ−µ′′
ℓ |p−|xiℓ−λ′′

ℓ |p−γ′′ =
d∑

ℓ=1

ξℓ(xiℓ−µ′′
ℓ)

p−ζℓ(xiℓ−λ′′
ℓ)

p−γ′′.

(4.8)

By construction we know that for any fi ∈ F there is f̄iξζ ∈ F̄ ,

and hence it follows fi(α
′) = f̄iξζ(α

′) because of (4.7) and fi(α
′′) =

f̄iξζ(α
′′) because of (4.8). However sgn(f̄iξζ(α

′)) = sgn(f̄iξζ(α
′′))

since, by the hypothesis, C is f̄iξζ-sign-invariant.

4.8 Size constrained 2-clusterings 117

We can conclude that sgn(fi(α
′)) = sgn(fi(α

′′)) for all i = 1, ..., n,

hence C is F -sign-invariant and the claim follows. ⊓⊔

With this result we can apply the same technique used in the case

p even. Starting from collection F we construct H = F̄ ∪ G. We

execute the SCAD algorithm onH , thus obtaining the dyadic sample

points α in the F -sign-invariant cells, and then exploit the standard

numerical method for finding zeros in order to compare all the 2-

clusterings πα associated to the sample points α.

Theorem 4.23. The size constrained 2-clustering problem in fixed

dimension d with norm ‖ ‖p, odd integer p, can be solved in poly-

nomial time w.r.t. the input size and p.

Proof. Let X = {x1, ..., xn} ⊂ Rd be the set of points in input.

Apply a modified version of Algorithm 10 which taking in input an

odd integer p ≥ 3 instead of an even p, starts by constructing in

polynomial time the collections F̄ and G as specified in Equations

(4.5) and (4.6), and then executes the modified version of line 1:

1′ F2d+1 = F̄ ∪G

The algorithm then continues with line 2 without other modifica-

tions.

By construction of F̄ and G it follows that the set F2d+1 at line 1′

contains |F2d+1| = n4d + 2nd polynomials with coefficients having

the same bitsize of the polynomials in F . Hence the CAD decompo-

sition of R2d+1 adapted to F2d+1 still yields a polynomial number of

cells in polynomial time (w.r.t. p and the input size), thus giving in

S2d+1 a polynomial number of sample points. The complexity anal-

ysis of the remainder of the algorithm is the same of §4.8.1. ⊓⊔

118 4 Clustering with norm Lp

References

1. D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical Algebraic

Decomposition I: The Basic Algorithm. Technical Report 351, Depart-

ment of Computer Science, Purdue University, 1982.

2. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Ge-

ometry. Springer, Berlin, 2003.

3. J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry.

Springer, Berlin, 1998.

4. J. Canny. The complexity of robot motion planning. MIT Press, Cam-

bridge, MA, USA, 1988.

5. J. Canny. Some algebraic and geometric computations in PSPACE. In

ACM Symposium on the Theory of Computation, pages 460–367, 1988.

6. P. J. Cohen. Decision Procedures for Real and p-adic Fields. Comm.

Pure and Applied Math., 22(2):131–151, March 1969.

7. P. M. Cohn. Classic Algebra. Wiley, 3rd edition, 2000.

8. G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylin-

drical Algebraic Decomposition. In E. Barkhage, editor, Proc. 2nd GI

Conf. on Automata Theory and Formal Lang., volume 33 of LNCS,

pages 134–183, Berlin, 1975. Springer.

9. G. E. Collins, J. R. Johnson, and W. Krandick. Interval arithmetic in

cylindrical algebraic decomposition. Journal of Symbolic Computation,

34(2):145 –157, 2002.

10. M. Coste. Effective semi-algebraic geometry. Lect. Notes in Comp.

Sci., 391:1–27, 1989.

11. M. Coste. Real algebraic sets. Lecture notes for Winter School “Real

Algebraic and Analytic Geometry”, Aussois, France, March 2005.

12. D. A. Cox, J. B. Little, and D. O’Shea. Ideals, Varieties, and Algo-

rithms. Springer, New York, 3rd edition, 2007.

13. D. Geiger and C. Meek. Quantifier Elimination for Statistical Problems.

In K. Laskey and H. Prade, editors, Proceedings of 15th Conference on

Uncertainty in Artificial Intelligence, pages 226–235. AUAI, Morgan

Kaufmann, July 1999.

14. J. Goodman and J. O’Rourke. Handbook of Discrete and Computa-

tional Geometry. Discrete mathematics and its applications. Chapman

& Hall/CRC, 2004.

References 119

15. D. Grigor’ev and N. Vorobjov. Solving systems of polynomial inequali-

ties in subexponential time. Journal of Symbolic Computation, 5:37–64,

1988.

16. R. Hartshorne. Algebraic Geometry. Springer, New York, 1977.

17. J. Heintz, M.-F. Roy, and P. Solernò. On the theoretical and practical

complexity of the existential theory of reals. The Computer Journal,

36(5):427–431, 1993.

18. V. Jain. On Cauchy’s bound for zeros of a polynomial. Approximation

Theory and its Applications, 6:18–24, 1990.

19. S. LaValle. Planning algorithms. Cambridge University Pres, 2006.

20. W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd

edition, 1976.

21. A. Seidenberg. A New Decision Method for Elementary Algebra. Annals

of Math., 60(2):365–374, Sept. 1954.

22. I. R. Shafarevich. Basic Algebraic Geometry 2. Springer, Berlin, 1977.

23. J. H. Silverman. The Arithmetic of Elliptic Curves. Springer, New

York, 2009.

24. A. Tarski. A Decision Method for Elementary Algebra and Geometry.

University of California Press, Berkeley, USA, 2nd rev. edition, 1951.

Conclusions

In this work we have studied some algorithmic problems on dis-

tance clustering with size constraints in the space Rd endowed with

Lp-norm. In particular, we have obtained separation results for the

optimal solutions that, in the 1-dimensional case, imply the so-called

String Property. In this way a well-known result in clustering is ex-

tended to constrained clustering. Moreover, we have also introduced

a relaxed version of the constrained clustering problem, where the

size of the clusters can vary within a given set. It turns out that this

relaxed version is a generalisation of the classical clustering problem.

We showed that the constrained clustering problem is difficult in

general. In fact, we proved that even fixing the number k of clusters,

the problem is NP-hard. Moreover, by taking an integer parameter p

of the norm the decision version of the Half Partition problem is NP-

complete, while we have given evidence that, on the contrary, the

methods cannot be extended to the case of rational non-integer p.

121

122 Conclusions

Furthermore, we have shown that constrained clustering is NP-hard

even in dimension 1, while the corresponding problem in classical

clustering is solvable in polynomial time, at least with the Euclidean

norm.

By a non-classical reduction from the Planar 3-SAT problem we

have also shown that the decision version of the relaxed constraints

clustering is NP-complete.

The problem seems to be easier by fixing both dimension d and

number k of clusters. In particular, in the planar case with Eu-

clidean norm, we built an efficient algorithm for finding all the so-

lutions of the constrained 2-clustering problems with every cluster

size m = 1, ..., ⌊n/2⌋. The case of 2-clustering is particularly inter-

esting since it is the base step in the family of divisive hierarchical

clustering techniques. Moreover, by relying on some results of the

combinatorial geometry about the k-sets counting question and on

some well-designed data structures for handling the convex hulls, we

have also found an efficient algorithm for constructing one solution

of the constrained 2-clustering problem with a given cluster size in

the planar case with Euclidean norm.

It remains to extend some techniques used in the Euclidean case

to the case of Manhattan norm. In this regard, we conjecture that

some efficient tree structures can be used to solve the problem ef-

ficiently. Moreover, it is natural to extend the results of the planar

case to the multi-dimensional case; this extension seems to be direct

for the 2-clustering with Euclidean norm since the clusters are sep-

arated by hyperplanes.

When both the dimension d and the number k of clusters are fixed,

and the integer parameter p of the norm is given in unary represen-

tation, we have shown that the constrained 2-clustering problem is

Conclusions 123

solvable in polynomial time. This result is mainly based on a real al-

gebraic geometry method, namely the so-called cylindrical algebraic

decomposition of the parameter space of the separating hypersur-

faces and it also relies on some numerical techniques for localising

real algebraic roots.

The methods applied in this case depend on the fact that ‖ · ‖pp is

a semi-algebraic function. An open problem is the simplification of

these methods by exploiting the very particular semi-algebraic form

of ‖ · ‖pp.

