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Statistics of scattered photons from a driven three-level emitter in 1D open space
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We derive the statistics of scattered photons from a Λ- or ladder-type three-level emitter (3LE)
embedded in a 1D open waveguide. The weak probe photons in the waveguide are coupled to one
of the two allowed transitions of the 3LE, and the other transition is driven by a control beam.
This system shows electromagnetically induced transparency (EIT) which is accompanied with the
Autler-Townes splitting (ATS) at a strong driving by the control beam, and some of these effects
have been observed recently. We show that the nature of second-order coherence of the transmitted
probe photons near two-photon resonance changes from bunching to antibunching to constant as
strength of the control beam is ramped up from zero to a higher value where the ATS appears.

Strong light-matter interaction in open space at the
level of single atom and a few photons can be created by
coupling a real or artificial atom to photon modes con-
fined in an open one-dimensional (1D) waveguide [1–22].
Efficient strong coupling between matter and photon field
has been achieved by using highly confined propagating
microwave photon modes in a 1D open superconducting
transmission line and a large dipole moment of an artifi-
cial atom such as a superconducting qubit [12–14, 19–21].
A destructive interference between the emitted photons
from a two-level atom and the incident photons in the
waveguide yields extinction of the transmitted photons
for the atom being side-coupled to a weak incident pho-
ton field. Extinction efficiencies greater than 99% have
been observed in recent experiments with superconduct-
ing transmission lines and superconducting ‘transmon’
qubits [19–21]. Other systems which are currently under
extensive studies include surface plasmons of a metallic
nanowire coupled to quantum dots or nanocrystals [23]
and line-defects in photonic crystals coupled to quantum
dots [24, 25].

One of us (D.R.) has recently studied single- and two-
photon scattering by a driven Λ-type three-level atom or
emitter (3LE) which is coupled to a quasi 1D continuum
of photon modes of the waveguide [17]. The excited state
|2〉 of the emitter (see Fig.1(a)) is connected to the state
|3〉 by a classical laser beam with Rabi frequency Ωc. We
set energy of the ground state |1〉 to be zero. Thus we
can write the Hamiltonian of the 3LE within the rotating-
wave approximation asH3LE = (E2−iγ2/2)|2〉〈2|+(E2−
∆− iγ3/2)|3〉〈3|+ (Ωc/2)(|3〉〈2|+ |2〉〈3|), where sponta-
neous emission loss from the 1D waveguide is modeled by
including an imaginary part −iγ2/2 and −iγ3/2 to the
energy of the respective states |2〉 and |3〉. The states |1〉
and |3〉 can be two hyperfine split states, and the tran-
sitions |1〉 − |2〉 and |2〉 − |3〉 would couple to different
polarizations of light by selection rule. A probe beam in
the photon modes of the waveguide is sent near resonant
to the transition |1〉 − |2〉. We also consider that there
is no direct transition between the states |1〉 and |3〉 by
selection rule. An exact single-photon scattering state of
the probe beam and the corresponding transmission line-
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FIG. 1. Schematic of (a) Λ- and (b) ladder-type three-level
emitters whose one of the two allowed transitions is coupled
to probe photons by strength V and the other transition is
driven by a control beam with Rabi frequency Ωc.

shape showing electromagnetically induced transparency
(EIT) [26] were calculated for this system in Ref.[16].
One of us has derived two-photon scattering state of the
probe beam in this system for a weak control field and
studied scaling of EIT line-shape for single and two probe
photons [17]. Incident photons are in Fock-state in both
the previous studies.

In a set of recent experiments [14, 19] it has been
claimed to observe EIT line-shape for a driven ladder-
type three-level superconducting qubit embedded in an
open transmission line. It is also shown in the experi-
ments that the Autler-Townes splitting (ATS) [27] ap-
pears when the one of the two allowed transitions of the
qubit is driven by a strong control beam [14, 19]. One
interesting feature of a system of an emitter coupled to
an open waveguide is strong photon-photon interactions
generated by the two- or multi-level emitter by prevent-
ing multiple occupancy of photons locally at the emitter.
It is known that scattered states from a two-level emit-
ter embedded in a 1D waveguide can be non-classical
[1, 10, 15]. The antibunching of the reflected photons
and superbunching of the transmitted photons have been
recently demonstrated by measuring second-order coher-
ence of the scattered fields from a two-level emitter [20].
However we are not aware of any theoretical or experi-
mental study on photon-photon correlations of the scat-
tered probe beam from a 3LE in the presence of an ar-
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bitrary strong control beam. Therefore, we here study
scattering of multiple probe photons from a Λ-type 3LE
for a general value of Ωc. In particular, we derive ex-
act two- and multi-photon scattering states of the probe
beam for an arbitrary Ωc and calculate second-order co-
herence of the reflected and transmitted probe photons.

The scattering of photons from a driven 3LE embed-
ded in a 1D photonic waveguide can be described by the
following Hamiltonian [17]

H = Hwg +H3LE +Hc, (1)

where Hwg represents free probe photons in the waveg-
uide and H3LE for a driven 3LE is already introduced.
The local coupling of the probe photons with the 3LE
is given by Hc. We consider a linear energy-momentum
dispersion (Ek = vgk) for the free probe photons, and
divide the positive and negative momentum photons as
right- and left-moving modes. Thus we write

Hwg = −ivg
∫
dx[a†R(x)∂xaR(x)− a†L(x)∂xaL(x)],(2)

where vg is the group velocity of the photons and
aR(x) [aL(x)] is the annihilation operator of a right-(left-
) moving photon at position x. In our model the 3LE
is side-coupled to the propagating light fields locally at
x = 0; thus we write

Hc = V |2〉〈1|(aR(0) + aL(0)) + h.c., (3)

where V is coupling strength between the emitter and
the probe photons. We set here vg = ~ = 1.

The single-photon transmission and reflection line-
shapes for a driven Λ-type 3LE coupled to a 1D waveg-
uide have been reported earlier in Refs.[16, 17]. The
single-photon transmission and reflection amplitudes are
given respectively by t̃k = (tk + 1)/2 = χ/(χ+ iΓ/2) and
r̃k = (tk− 1)/2 = −0.5iΓ/(χ+ iΓ/2) where Γ = 2V 2 and

χ = Ek − E2 + iγ2/2−
Ω2
c

4(Ek − E2 + ∆ + iγ3/2)
. (4)

In Fig.2 we plot the transmission coefficient Tk = |t̃k|2
with detuning (Ek−E2) of the incident probe photon for
different values of the control beam Rabi frequency Ωc.
Here we set the loss γ3 very small compared to Γ, i.e.,
the state |3〉 is metastable. In the absence of the control
beam a probe photon is strongly reflected by the emitter
due to |1〉 − |2〉 transition, and a Lorentzian dip around
Ek = E2 in the transmission line-shape in Fig.2(a) re-
veals it. Thus the 3LE in the absence of a control beam
acts as a perfect reflector, and it has been observed in the
recent experiments as shown in Fig.2(a) of Refs.[14, 19].
A narrow transmission window which is much narrower
than the Lorentzian dip in the transmission appears at
two-photon resonance Ek − E2 = −∆ as we switch on
a weak control beam, Ωc < Γ in Fig.2(b). This induced
transparency by the control beam is known as EIT. The
EIT is developed due to destructive Fano interference
between two allowed atomic transitions which leads to
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FIG. 2. Appearance of electromagnetically induced trans-
parency (EIT) at two-photon resonance, Ek − E2 = −∆
when a weak control beam (Ωc < Γ) is switched on, and the
Autler-Townes splitting (ATS) appears at a relatively strong
control beam (Ωc > Γ). The splitting between the Autler-
Townes doublet is Ωc. The parameters are ∆/Γ = γ2/Γ =
1/4, γ3/Γ = 1/40 for a Λ-type emitter.

cancellation of the population of the state |2〉, i.e., for-
mation of the ‘dark state’. As the transition |1〉 − |2〉
gets suppressed at two-photon resonance due to forma-
tion of the dark state, the probe photons pass the emitter
without being scattered. The width of the transparency
window near two-photon resonance increases with an in-
creasing strength of the control beam which is shown in
Fig.2(c). Finally the ATS appears at a relatively stronger
control field, Ωc ≥ Γ (depending on the loss terms) and
the splitting between the Autler-Townes doublet is given
by the control beam Rabi frequency Ωc (see Fig.2(d)).
The Autler-Townes doublet forms due to Rabi splitting
of the states |2〉 and |3〉.

A ladder-type 3LE (see Fig.1(b)) made of a supercon-
ducting qubit was used in two recent experiments [14, 19]
with transmission lines. In these experiments, the lower
transition |1〉 − |2〉 of the two allowed transitions of the
ladder-type 3LE is coupled to a weak probe beam and the
upper transition |2〉 − |3〉 is driven by a control beam. A
formula for the transmission amplitude of the probe beam
was derived in Ref.[14] using the Markovian master equa-
tion for the density matrix. We find that their transmis-
sion amplitude formula for the driven ladder-type 3LE is
exactly similar to our single photon transmission ampli-
tude t̃k in the driven Λ-type 3LE when we replace their
probe and control beam detunings δωp and δωc by our
(Ek − E2) and ∆ respectively, and their loss terms γ21

and γ31 by our (γ2 +Γ)/2 and γ3/2 respectively. We also
identify the probe beam coupling Γ21 in Ref.[14] with our
Γ. This similarity is not surprising as the two 3LEs are
identical except the loss rates are practically very differ-
ent in the two 3LEs. The authors of Refs.[14, 19] have
demonstrated an induced transparency by a strong con-
trol beam. However, an EIT transmission line-shape for
an arbitrarily weak value of the control beam, Ωc << Γ
has not been observed in both the experiments. Thus
it is not quite clear whether these experiments demon-
strate EIT or they only see the ATS at a strong driving
field. A recent theoretical study [28] concludes after an
objective test of the experimental data that the ATS is
preferred to be observed than EIT in these experiments.
The state |3〉 is not metastable for a ladder-type 3LE
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FIG. 3. Second-order coherence g2(x2 − x1) of the transmit-
ted probe photons from a driven Λ-type emitter at various
control beam driving Ωc (first row) and two-photon detuning
δ (second row). The probe beam is on two-photon resonance
δ = (Ek−(E2−∆)) = 0 and γ3/Γ = 1/40 in the first row, and
the control beam strength Ωc/Γ = 3/10 and γ3/Γ = 1/8 in the
second row. The other parameters are ∆ = 0, γ2/Γ = 0.31.

and it has fast pure dephasing or loss, γ3 > Γ. There-
fore it has not been possible to observe a transmission
window near two-photon resonance at a weak Ωc in the
experiments[14].

To calculate the statistics of the scattered probe field
from a driven 3LE we need to derive multi-photon scat-
tering state of the probe field. A two-photon scatter-
ing state of the probe field for a weak control beam was
derived in Ref.[17]. However the two-photon state in
Ref.[17] is not sufficient to understand how the statistics
of scattered field changes with an increasing value of the

control beam Rabi frequency, specially at a Ωc where the
ATS appears. We here derive an exact two-photon scat-
tering state of the probe field for an arbitrary strength
of Ωc using a method developed recently for an atomic
ensemble [29]. We are also able to derive a multi-photon
scattering state in the present system. This is done in a
similar spirit of Ref.[15]. In the multi-photon scattering
state we consider scattering processes with inelastic ex-
change of momentum between one pair of photons and
elastic exchange of momentum between other all possi-
ble pairs. One general way to quantify the statistics is by
measuring second-order coherence of the scattered pho-
tons. We define second-order coherence by

g2(x2 − x1) =
〈ψ|a†m(x1)a†m(x2)am(x2)am(x1)|ψ〉

〈ψ|a†m(x1)am(x1)|ψ〉〈ψ|a†m(x2)am(x2)|ψ〉
,

(5)

where m = R for the transmitted photons and m = L for
the reflected photons for an incident probe beam from
the left. Here |ψ〉 is a N -photon scattering Fock state
with incident momenta k1, k2..kN . A single emitter be-
comes saturated by a single photon as one emitter can
absorb only one photon at a time. Therefore, a strong
photon-photon nonlinearity is created by an emitter for
two incident photons. However the relative strength of
photon-photon nonlinearity created by an emitter falls
with an increasing number of photons of more than two,
and most of the incident photons pass by the emitter
without interacting with it. Thus we would be able to
capture main features of the statistics of scattered pho-
tons due to photon-photon nonlinearity and control beam
driving by considering a scattering state of the probe
beam with minimum two incident photons. We here find
after keeping higher order contributions in the numerator
and denominator of Eq.5

g2(x2 − x1) =
|
∑
P (tkP1

± 1)(tkP2
± 1)hkP1

(x1)hkP2
(x2) + 2i

∑
PQ V β (tkP1

− 1)ΞkP2
(xQ12

)hkP1
(xQ1

)hkP2
(xQ1

)θ(xQ12
)|2

|(tk1 ± 1)(tk2 ± 1)|2
,

(6)

where + sign for the transmitted probe beam and
− sign for the reflected probe beam. Here Ξk(x1 −
x2) =

∑
j=± djεj(k)ei(s+jΩc/4β)|x1−x2|, hk(x) =

eikxθ(x)/
√

2, ε±(k) = V/(Ek + s±Ωc/4β), s = −(E2 −
∆/2) + i(γ2 + γ3 + Γ)/4, β = Ωc/

√
ε2 + 4Ω2

c , d± =
(1/(2β) ± ε/(2Ωc)) and ε = −2∆ + i(γ2 + Γ − γ3). We
use P = (P1, P2) and Q = (Q1, Q2) for permutation of
(1, 2) and xQ12

= xQ1
− xQ2

.
Next we discuss nature of second-order coherence at

two-photon resonance, i.e., Ek1 = Ek2 = E2 − ∆. We
find from Eq.4 that the transmission amplitude t̃k =
(tk + 1)/2 ≈ 0 when Ωc ∼ 0 and t̃k ≈ 1 when Ωc ∼ Γ.

Here we assume that γ2 < Γ for both Λ- and ladder-
type 3LE. In the absence of the control beam the 3LE-
waveguide system reduces to a two-level emitter coupled
to a probe beam, and we find bunching of the transmitted
photons due to the inelastic two-photon bound state (the
second term of the numerator in Eq.6) when Ek = E2. It
has been demonstrated in a recent experiment [20] with
a two-level emitter. When Tk = 1 in the presence of a
strong control beam driving, the photon-photon correla-
tion due to the inelastic two-photon bound state becomes
negligible, and the second-order coherence of the trans-
mitted probe beam is mostly determined by the first term
of the numerator in Eq.6. Then the numerator and de-
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FIG. 4. Second-order coherence g2(x2−x1) of the transmitted
probe beam from a driven ladder-type emitter at various con-
trol beam driving Ωc. The incident probe beam is a coherent
state wave-packet with k0 = E2 − ∆ >> ∆k = Γ/40, n̄ = 1.
The other parameters are ∆ = 0, Γ/2π=11 MHz, γ2/2π=3.4
MHz and γ3/2π=13.8 MHz.

nominator of g2(x2 − x1) become the same, and we have
g2(x2 − x1) = 1. At an intermediate control beam driv-
ing, Ω2

c0 = γ3(Γ − γ2), tk vanishes, and the single probe
photon transmission amplitude t̃k = 1/2. At Ωc0 the
numerator in Eq.6 vanishes at x1 = x2 and the numer-
ator is non-zero when x1 6= x2. Therefore g2(x2 − x1)
exhibits antibunching of the transmitted probe beam at
two-photon resonance when Ωc = Ωc0. Physically the
antibunching occurs due to interference between the par-
tially transmitted probe photons and the ineleastic two-
photon bound state.

We show the above discussed behavior of g2(x2−x1) of
the transmitted probe photons for a driven Λ-type 3LE in
Fig.3 where we set the loss term γ3 to be very small com-
pared to Γ, such that the state |3〉 is metastable. We show
bunching of transmitted probe photons in Fig.3(a) for a
very weak control beam when Tk ≈ 0. We kept the inci-
dent probe beam on two-photon resonance, Ek1 = Ek2 =
E2−∆. Next we slowly increase the strength of Rabi fre-
quency of the control beam. We find from Fig.3(b) that
g2(x2−x1) shows antibunching of the transmitted probe

photons when Ωc is near
√
γ3(Γ− γ2). The antibunching

implies that two probe photons can not transmit through
the emitter simultaneously. This happens for a Rabi fre-
quency when a complete dark state is not yet formed.
As we further increase Ωc a dark state is formed and
Tk becomes unity at the two-photon resonance. There
g2(x2 − x1) = 1 as shown in Fig.3(c), and the inci-
dent probe photons are not scattered by the driven emit-
ter. When frequency of the incident probe beam is de-

tuned from the two-photon resonance condition of EIT,
g2(x2 − x1) shows bunching (check Figs.3(d,f)) as one
photon then gets strongly scattered by the emitter.

Finally we discuss second-order coherence of the trans-
mitted probe beam when the incident probe beam is
a coherent state wave-packet. The incident coherent

state wave-packet is given by |α〉 = ea
†
α−n̄/2|ϕ〉 where

a†α =
∫
dkα(k)a†(k), |ϕ〉 is vacuum state and the mean

photon number is n̄ =
∫
dk|α(k)|2. Here a†(k) =∫

dx eikxa†R(x)/
√

2π for an incident wave-packet from
the left. We consider the mean photon number of the
coherent state wave-packet n̄ ≤ 1 and choose a Gaussian
wave-packet [15]

α(k) =

√
n̄

(2π∆2
k)1/4

exp
(
− (k − k0)2

4∆2
k

)
, (7)

where ∆k is the width of the wave-packet and k0 is mean
momentum (or energy) of the wave-packet. We choose
k0 = E2 −∆ >> ∆k = Γ/40. The statistics of scattered
probe photons for a coherent state wave-packet input re-
mains similar to that of a Fock state input, provided that
the bandwidth of the coherent state input is significantly
narrower than the emitter’s line-width. We show this in
Fig.4 for a ladder-type 3LE with a large dephasing loss
from the state |3〉 [14]. The nature of second-order co-
herence changes from bunching (Fig.4(a)) to antibunch-
ing (Fig.4(b)) to one for coherent state (Fig.4(c)) as Ωc
is increased from a weak to a strong value.

In conclusion, we have shown that second-order coher-
ence of the scattered probe photons from a Λ- or ladder-
type 3LE can be tuned by changing Rabi frequency of
the control beam. The transmission coefficient of the
probe beam from a ladder-type 3LE at different strength
of the control beam has been already measured, and var-
ious rudimentary quantum devices, such as a switchable
mirror or a single-photon router which can route a single-
photon signal from an input port to either of two output
ports, have been proposed [14, 19]. These devices might
have important applications in building photonic quan-
tum networks for quantum information processing. The
second-order coherence in these systems can be measured
experimentally using a Hanbury-Brown-Twiss measure-
ment setup [20].
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