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Chapter 1: Introduction 

 

1-1. SuperOPF 
 

     The name SuperOPF is used to refer several projects, problem formulations and soft- 

ware tools intended to extend, improve and re-define some of the standard methods of 

optimizing electric power systems. 

   Our work included applying primal-dual interior point methods to standard AC optimal 

power flow problems of large size, as well as extensions of this problem to include co-

optimization of multiple scenarios. 

   The original SuperOPF problem formulation was based on co-optimizing a base 

scenario along with multiple post-contingency scenarios, where all AC power flow 

models and constraints are enforced for each, to find optimal energy contracts, 

endogenously determined locational reserves and appropriate nodal energy prices for a 

single period optimal power flow problem with uncertainty. This led to example non-

linear programming problems on the order of 1 million constraints and half a million 

variables. 

   The second generation SuperOPF formulation extends this by adding multiple periods 

and multiple base scenarios per period. It also incorporates additional variables and 

constraints to model load following reserves, ramping costs, and storage resources. While 

these enhancements to the formulation add the valuable new capability of addressing the 

uncertainty of both renewables and contingencies in a multi-period context with storage, 

they can easily lead to increases of two or three orders of magnitude in the problem size, 

highlighting the need for suitable decomposition and parallelization techniques for such 

problems. 

   The SuperOPF planning tool, based on a modified version the first generation 

SuperOPF utilizing a DC power flow model and incorporating optimal generation 

investment, is used to study and compare optimal investment paths under different 

environmental and economic policy assumptions for systems as large as the entire 
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Eastern Interconnect. Even with a highly reduced network model and limited number of 

load scenarios the problem easily reaches the order of a few million variables and 

constraints. Modifications have been made to this tool to facilitate a more adequate 

modeling of renewable sources of energy such as wind and solar. Adequately capturing 

the joint distributions of load and wind and solar availability requires a substantial 

increase in the number of representative hours used to represent the operating conditions 

throughout the year. The resulting problem is an extremely large scale LP problem that 

would benefit from advanced algorithms. 

   A third generation of the multi-period SuperOPF, adds both integer variables and a 

receding horizon framework in which the problem type is more challenging (mixed 

integer), the size is even larger, and it must be solved more frequently, pushing the limits 

of currently available algorithms and solvers. 

   Chapter 2 and Chapter 3 describe the problem formulations for the various SuperOPF 

problem types. 

 

 

1-2. Incorporation of Transient Stability Constraints 
 

The consideration of transient stability constraints in optimal power flow (OPF) problems 

has become increasingly important in modern power systems. Transient stability 

constrained OPF (TSCOPF) is a nonlinear optimization problem subject to a set of 

algebraic and differential equations. Solving a TSCOPF problem can be challenging due 

to (i) the differential-equation constraints in an optimization problem, (ii) the lack of a 

true analytical expression for transient stability in OPF. To handle the dynamics in 

TSCOPF, the set of differential equations can be approximated or converted into 

equivalent algebraic equations before they are included in an OPF formulation.  

The direct discretization of the differential equations was proposed in [6], and utilized in 

[8]-[15]. This technique however is subject to inaccuracy and convergence issues due to 

the approximation and the introduction of large numbers of variables and equations for 

each time step. Therefore, the functional transformation technique was proposed in [7] to 

handle differential equations by converting the infinite-dimensional TSCOPF into a 

finite-dimensional optimization problem.  
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Mathematically, the transient stability of a power system does not have an analytical 

expression that can be directly incorporated in an OPF formulation. To avoid this 

difficulty, many researchers use a predefined and fixed threshold for rotor angles as a 

mean to determine transient stability of the system, see for example [6]-[16]. The value of 

the thresholds used in the literature usually varies from 100° to 120°, but the explanation 

on how it is selected is still lacking or nonexistent. Although this proxi may suffice as a 

simplified criterion, it is not an exact expression of transient stability in power system. 

Therefore, the results from using this proxi in TSCOPF may be subject to compromises 

and errors. In Chapter 4, a rigorous evaluation of using a predefined and fixed threshold 

for rotor angles as a mean to determine transient stability of the system. 

 

1-3. A New Method to Incorporate Transient Stability 

Constraints 

Optimal power flow (OPF) is a very important tool in power system planning and 

operation. Early research on OPF only takes static security constraints into account [25], 

[26], and the resulting dispatches may lead to transient instability under some critical or 

severe contingencies. To overcome this issue, the transient stability constrained optimal 

power flow (TSCOPF) was introduced in [27] and has become a new challenge in the 

recent years. 

TSCOPF can be modeled as a large-scale nonlinear programming problem including the 

constraints of differential-algebraic equations (DAE). Solving a TSCOPF problem can be 

challenging due to (i) the differential-equation constraints in an optimization problem, (ii) 

the lack of a true analytical expression for transient stability constraint in OPF. The direct 

discretization of the differential equations was proposed in [29], and utilized in [31]-[39]. 

A functional transformation technique was proposed in [30] to handle differential 

equations by converting the infinite-dimensional TSCOPF into a finite-dimensional 

optimization problem. Unfortunately, even the current best TSCOPF solvers still suffer 

from the curse of dimensionality and unacceptable computational time, especially for 

large-scale power systems with multiple contingencies [37]. Furthermore, it has been 
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shown in [40] that the widely used fixed-threshold proxi for enforcing transient stability 

in TSCOPF can lead to both severe underestimated and overestimated assessments as 

well as degradations of the optimal solutions. To further improve the performance and 

usability of the discretization-based TSCOPF methods on large-scale practical power 

systems, it is crucial that the above issues must be addressed and corrected. In chapter 5, 

thse issues will be addressed and a new method to incorporate the transient stability 

constraints will be presented. 
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Chapter 2 Single Period SuperOPF 
 

The SuperOPF problem is a super-set of the standard optimal power flow problem such 

as solved by MATPOWER [1, 2, 3]. The security of the dispatch is taken into account by 

including a copy of the system for each credible contingency, each with its own dispatch 

and probability-weighted cost of operation. This is accomplished by simply joining these 

copies to form one single large network with multiple “islands” and appropriately scaled 

generator costs. Additional linear constraints are added to restrict by a ramp rate limit the 

deviation of each generator's dispatch in each contingency from its corresponding base 

case dispatch. New variables are included, along with the inequalities that define their 

relationships to one another and to the dispatches, in order to impose additional costs. 

The overall structure of can be illustrated graphically as shown in Figure 2-1. 

 
Figure 2-1: Graphical Representation of Co-optimization Structure 

 

There are three types of additional variables added. First, for each generator i there is a 

variable representing an optimal energy contract, namely    . This variable is used as a 

reference from which upward and downward deviations can be measured. 

In fact, the second set of variables and     
   represent the upward and downward 

deviations, respectively, of the dispatch of generator i in contingency k from the contract 

   . These are sometimes refered to as incs and decs. The third set of variables    
  and    

  

are simply the maximums of these deviations over all contingencies. In other words,    
  

is the maximum of    
  over all k. These represent the reserve capacity needed in order to 

meet the full range of contingencies being considered. The relationships between these 

variables are illustrated in Figure 2-2. 
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Figure 2-2: Contract, Incs/Decs and Reserve 

 

 

2.1 Nomenclature 

 
pik; qik                                 ith active and reactive injection in kth post-contingency state 

                                (k = 0 for base case). 

 

CPi(·); CQi(·)           Cost function for ith active and reactive injections. 

 

   ,                        Purchase amounts specified in the day-ahead contract for active and    

                                reactive power from the ith injection. 

 

    
  ,    

 
                           ith active and reactive upward deviations from contracted amount in   

                                k-th post-contingency state; k = 0 means realized deviation from   

                                contract with no contingencies. 

 

   
  (·);   

  (·)          Cost for incremental deviations from contract day-ahead quantity.       

                

   
 ,    

                     ith active and reactive downward deviations from contracted amount   

                                in kth post-contingency state. 
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  (·);   

  (·)          Cost for decremental deviations from contracted day-ahead quantity. 

 

   
  ,    

 
                              Upward active and reactive reserve amount provided by ith injection. 

 

    
  (·);    

  (·)      Cost functions for upward reserve purchased from ith injection.   

  

   
  ,    

 
                            Downward active and reactive reserve amount provided by ith    

                               injection. 

 

    
  (·);    

  (·)     Cost functions for downward reserve purchased from ith injection. 

 

(  ;  ;   ;  )     Voltage angles and magnitudes, active and reactive injections for   

                               power flow in kth post-contingency state (k = 0 means no contingency  

                               occured). 

 

                           Nonlinear power flow equations in kth post-contingency state. 

 

                          Transmission, voltage, generation and other limits in kth post-  

                              contingency state.  

 

                           Probability of kth contingency (   is the probability of no contingency). 

 

 

                           Number of generators and dispatchable or curtailable loads initially  

                              available. 

 

                            Number of contingencies considered. 

 

                           Set of indices of generators present in the kth contingency. 

 

Individual variables can be grouped in vectors, such as     into   , and it will be 

consistent with the context. 

 

2.2 Stage 1 - Day-Ahead Problem 
 
The first stage or day-ahead problem is formulated as the following non-linear, con-

strained optimization problem. 
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The active power cost component is 

 

 
with three sub-components. Here,    is the probability of transition to the kth 

contingency from the day-ahead base case;    (   ) is the production cost or offer for the 

ith generator in the kth contingency;    
 (   

 ) is an incremental cost, in addition to the 

production cost, on upward deviations from the day-ahead contracted quantity. Similarly, 

    
 (   

 )  is an additional cost imposed on downward deviations from the day-ahead 

contract. These costs allow generators to signal a reluctance to vary their power output 

from the contracted day-ahead quantities. Likewise, the reactive power cost is 

 

 
 

the active reserve cost is 

 
 

and the reactive reserve cost is 

 

Here, upward and downward reserves define a dispatch range relative to the day-ahead 

contracted quantities, (    ;     ). 

 

All of this is subject to nonlinear active and reactive power flow constraints in the base 

case flow and all contingencies, 
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transmission capacity, generation capability curve, voltage limit, dispatchable load 

power factor, and maximum angular separation constraints for all flows, 

 
These represent all of the standard AC OPF constraints implemented by MATPOWER. 

 

In addition, there are new constraints that couple the base case and the post-contingency 

flows, defining the deviation variables and the reserve variables. The first set defines the 

ranges of the upward deviation and upward reserve variables and how they bound one 

another, 

 

 
The next set does the same for downward deviations and reserves, 

 

 
 

And the next one defines the relationship of the upward and downward deviations to the 

injections and contract, 

 

 
 

The contracted quantities can also be limited by lower and upper bounds. 

 

 
 

Then, the deviations from the base case (not from the contracted amount) are bounded by 

the physical ramp rate of each unit. 
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Finally, these constraints allow imposing or relaxing an equality constraint between the 

contracted quantities and the base case dispatch quantities by choice of  

 

 
so that the contracted quantity can be specified to be equal to the base case dispatch if so 

desired. 

 

In this formulation, for the bounds in (2.9) and (2.10) to be tight at the solution it is 

necessary that marginal costs on deviations and reserves (   
 ,    

 ,    
 ,    

 ,    
 ,    

 ,    
 , 

   
 ) be positive. They can be allowed to be zero but that may require adjusting the bounds 

to be tight as a post-solution procedure that does not affect the cost. Negative marginal 

costs are not appropriate for this formulation. 

 

The solution to the day-ahead problem yields optimal day-ahead contract quantities (  , 

  
 

 ,   
 ,   ,   

 
 ,   

 ) as well as generation ranges; for all considered scenarios, the ith 

generator's active output will lie in [   -    
 ,    +    

 ], except perhaps in the scenario in 

which that unit is o_-line as a result of a contingency. The treatment of the reactive 

output is similar. The day-ahead planning then results in a contract for providing a 

nominal quantity     at a price determined by the chosen auction institution and the 

marginal cost of energy at the generator's location, with the additional obligation to abide 

by any redispatch issued by the ISO in real time within the range [   -    
 ,    +    

 ]. Such 

redispatch incurs the incremental costs, in addition to energy costs, computed as a 

function of amount of the deviation from the energy contract. This range of generation is 

reflected in the amounts of reserve    
  and    

 
 procured from the ith generator. A day-

ahead settlement can be executed or the parties can wait until the real-time pricing and 

redispatch is performed the next day. 
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2.3 Stage 2 - Real-Time Adjustment of Dispatch 

 
The problem of balancing and pricing the real-time market is now subject to the contract 

issued the previous day. Reserve quantities have already been determined and payed for. 

To compute any needed resdispatch the ISO has available a generation range, together 

with the original energy and incremental energy offers, and the current state of the 

network. Incremental amounts and costs are now determined relative to the     agreed 

upon the previous day.  

 

   Security is still desirable, of course, and the dispatch should still consider the possibility 

of transitioning to other network configurations as a result of contingencies. At this point 

in time, however, the probabilities of occurence for contingencies have changed and in 

some cases, such as the specific realized demand, the uncertainty may no longer exist. 

The time viewpoint available to the planner now is not the same as the one available the 

previous day. There is more information. Either the system is “intact” and exhibits the 

configuration of the base case (with perhaps a somewhat different demand) or a 

contingency has happened and the system has undergone a transition. 

 

2.3.1 Redispatching the Intact System 
 

Assume that an intact system configuration is realized; that is, the configuration 

contemplated in the base case, possibly with a slightly different demand. While the 

transition restrictions needed to enforce a secure dispatch should still be included in the 

model, the probabilities of contingencies used for a pricing run of the model should be set 

to zero, i.e., the contingencies did not materialize. However, the formulation to follow 

could also be used for an hour-ahead or 10 minute-ahead redispatch, in which case some 

probabilities would not be zero. 

 

The problem formulation for the second stage problem can be found by taking the 

first stage problem, treating the energy contracts and reserves as fixed parameters, and 

simplifying. This results in the following formulation. 
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subject to 

 

 
 

 
 

where (  ̂c,  ̂ 
 

,  ̂ 
 

,  ̂c,   ̂ 
 

,  ̂ 
 

 ) are now fixed parameters, taken from the day-ahead 

solution. There is no need to enforce box (    ,     ,     ,     ) limits, since they are 

implicit in ( ̂  
 ,  ̂  

 ,  ̂  
 ,  ̂  

 ). However, it should be noted that for generators with 

trapezoidal feasible regions like those employed in MATPOWER, the upper and lower 

sloped linear constraints still need to be enforced (which MATPOWER does) and if 

binding, the corresponding shadow prices can be decomposed into equivalent       and 

      multipliers.  

 

2.3.2 Redispatching in a Post-Contingency State 

 
If the day-ahead base case no longer describes the current system configuration, possibly 

due to a contingency of some sort, transitions to the previously anticipated contingencies 

from the current state would represent what would have been an (N - 2)-type event the 

day ahead. While the transition to the present state should have been feasible thanks to 

the resources committed day-ahead, it is by no means clear that transitioning to yet 
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another contingency state from here will be feasible given the current set of contracted 

resources. Yet, it makes sense to try to run the problem (2.15)-(2.22), with the base case 

replaced by the present system state and a new set of (currently) credible contingencies, 

to see if it is still possible to redispatch the system securely and economically with the 

available resources. In extreme cases, it may not be feasible to consider any further 

contingencies in dispatching the currently available resources. In any case, a stage 1 

problem, in which additional reserves are procured, may need to be solved for the next 

period in order to return to an acceptable level of security going forward. 
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Chapter 3:  Multi-period SuperOPF 
 
3.1 Introduction 

 
Proper day-ahead scheduling should include consideration of inter-temporal constraints 

in adjacent hours. The most important class of these are the load-following ramp-up 

constraints; there should be enough ramp-up capability available to follow the morning 

peak, otherwise operation is simply not feasible. Two types of decisions affect 

preparedness for the morning peak: the type, number, capacity, location and ramp 

capability of the units that are online (as decided in the scheduling problem known as unit 

commitment), and the actual scheduling of the pool of units currently committed. These 

decisions must also take into account uncertain events such as falling wind output exactly 

as the system tries to follow the peaking load. Of course, ramp-down capability is also 

important in some cases. Additionally, some resources require planning across a time 

horizon due to constraints arising from technical or regulatory considerations. Pumped 

storage plants must obey the former category of constraints; other plants with regulated 

types of emissions (via caps/quotas or taxes) fall in the latter. 

 

   This section focuses solely on the amount of remediation that can be provided by 

proper scheduling of an a priori set of committed generators and dispatchable storage in 

light of possible violation of ramp-up capabilities when trying to meet load peaks, 

particularly if renewable sources happen to falter simultaneously. The formulation 

devised here will then be a fundamental part of the problem that includes the actual 

binary unit commitment decision variables. 

 

   On the day of the execution of the contract, closer to real time, with fixed contracts for 

reserve quantities, the uncertainty in wind, load and contingencies should diminish, and 

hour-ahead redispatches should be carried out using a receding-horizon strategy. The 

redispatch should consider a time horizon starting next hour, bound by both the present 

state of the system and by technical constraints spreading into future hours, not just the 

immediately subsequent hour. Updated information should be used for all uncertain 

quantities. Of course, the result of this optimization, in true receding-horizon fashion, is 
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only implemented starting next hour (though orders would emanate at t = 0 for the 

production setpoint to be reached at t = 1, so that generators start ramping towards it), and 

at that time the optimization is re-run for the hour starting one hour further into the future. 

It is also important to note that when t = 1 arrives, the operating point may be slightly 

different from that mandated at t = 0, due to contingencies, small load prediction errors, 

and small or large wind output forecast errors. The optimization run at t = 1 for obtaining 

the commanded dispatch for t = 2 must include the actual physical initial state of the 

system at t = 1. 

 

   It is important to realize that including the time dimension in the problem and modeling 

ramp constraints the way it is done here is again a compromise between the goals of 

attaining security, accurately representing a stochastic program and keeping problem size 

manageable. In particular, when we choose to enforce ramp limits from any root scenario 

at time t to any root scenario at time t + 1, we are covering for extreme variations that 

may be very rare in actuality, particularly if the scenarios are chosen to represent the 

geographically multivariate tails of the wind output distribution in addition to the most 

plausible scenarios. But worst-case scenario planning dictates this in accordance with 

secure operation philosophy. Furthermore, and this is fundamental, a scenario in an 

orthodox stochastic program with a time dimension involves a complete trajectory 

through the planning horizon, which we are not doing. We are more properly using an 

operating point envelope, rather than a collection of trajectories, for scenario planning. 

 

   Thus, it is important to understand that while the idealized day-ahead problem treated 

in the original optimal day-ahead contract formulation is close to a formal two stage 

stochastic programming problem because most of the uncertainty is relegated to the 

occurrence of contingencies, when we add the horizon planning (time) dimension we 

have to further depart from stochastic programming orthodoxy, which would require 

considering complete trajectories through time as one scenario and would also require the 

use of many trajectories to properly sample the full set of possible trajectories. 
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   Transitioning from the base cases of several scenarios at time t to other base cases at 

time t+1 involves the idea that the actual transition could happen in many different ways, 

and each possible transition has a certain probability of occurrence, conditional on the 

actual realized scenario at time t. A simple model of this setting is based on a probability 

transition matrix that relates the vector of base case probabilities at time t to the vector of 

scenario probabilities at time t + 1. 

 

   Storage units require special treatment in the multiple-scenario case. Because energy 

storage limits must be respected in every realization, and this must be so even when 

considering such multiple scenarios through time, one modeling choice would be to 

include a single set of dispatch variables for storage units through all of the scenarios. 

This, of course, limits flexibility of dispatch in the face of wind or renewable variability. 

A somewhat different approach was taken that offers some added flexibility. Instead of 

using actual stored energy quantity variables for each of the scenarios (which would 

require keeping track of trajectories through time and a geometric quantity of variables 

and restrictions), lower bound and upper bound variables on the amount of stored energy 

are used. Thus, a lower bound on stored energy on the central path at the end of period t 

depends on the lower bound at time t - 1 and the worst case depletion in the base cases of 

the scenarios considered at time t. 

 

  Additionally, in case of a contingency, the use of stored energy in such a situation must 

also respect energy storage limits. A parameter  is provided to weight the fraction of the 

time slice that is spent in the base case operation and in contingent operation, as the final 

leftover energy after the contingency is dependent on that. Normally,  = 0 and the full 

length of the slice is spent in contingent operation. 

 

Storage units can have an initial stored energy quantity, and they could also have a 

leftover stored energy at the end of the horizon or at any other endpoint in the transition 

tree, such as in a contingency. This energy has a value and its expected value must be 

subtracted from the objective function. The price of stored energy is data for the problem. 
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3.2 Relation to Control Problem 

 
The problem described in this section can be thought of as a multi-stage tracking control 

problem; the first set of decision variables or, equivalently, control inputs, being decided 

upon in a day-ahead manner, have an inherent input delay. If offers for the next day 

starting at 0:00 are received by 12:00, then this delay ranges from 12 hours to 35 hours. 

These decision variables simply prepare the system for meeting the load the next day, 

using a secure strategy with least expected cost, whatever the actual outcome is the next 

day. The horizon considered is an N-1-secure look-ahead horizon, meaning that only the 

high probability path in the forward time direction is considered, together with first-order 

branches from this high probability path arising due to credible contingencies. The high 

probability path itself may be modeled using several scenarios, not just a central one. 

Transitions from each of these base scenarios at time t to any of the scenarios at time t+1 

are assumed to be conditional only on the realized scenario at time t. This is a strong 

assumption that is put in place to emphasize security. 

 

   The second stage decision inputs must be specified one hour ahead; the input delay is 

thus one hour. These inputs must take into account decisions incorporated in the previous 

day's contracts, as long as N -1 security is maintained. If not, then all bets are off and 

other procedures, to be considered out-of-ordinary operation, must be employed, such as 

out-of-market commitment or procurement of reserve. A receding horizon formulation 

must be used here too in order to properly take into account intertemporal restrictions that 

will affect next hour's operation. 

 

   There may be other stages with a finer time scale, but these could be very similar in 

their design to the hour-ahead market. However, from the point of view of the tracking 

control problem, in real-time there are automatic controls in place that adjust the _nest 

deviations. This does not occur without some amount of error; small frequency deviations 

that are the result of similarly small power imbalances do exist, and are the result of 

tracking errors. The automated controls use this error to counteract these finer imbalances. 
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3.3 Nomenclature 
 

This section summarizes the nomenclature for this multi-period problem problem. 

Indexing becomes especially tricky, and in order to simplify the indexing notation, the 

index literals and their order are maintained wherever possible. Furthermore, are used, so 

the superindex tijk refers to time period t, generator i (or dispatchable load or storage unit 

i), base scenario j and contingency k. Typical sets of indices include   , the set of root 

cases j considered in the t-th stage; T, the set of indices t of stages, typically 1 ….   . 

 

Symbol                   Meaning 

 

                             Length of scheduling time slice in hours, typically 1 hour. 

 

t                              Index over time periods. 

 

T                            Set of indices of time periods in planning horizon, typically 1 ….   . 

 

j                              Index over scenarios. 

 

                                            Set of indices of all scenarios considered at time t. 

 

k                              Index over post-contingency cases (k = 0 for base case, i.e. no  

                                contingency occured). 

 

   
                                       Set of indices of contingencies considered in scenario j at time t. 

 

i                               Index over injections (generation units, storage units and dispatchable   

                                or curtailable loads). 

 

                                              Indices of all units (generators, storage and dispatchable or   

                                 curtailable loads) available for dispatch in any contingency at time t. 

 

                             Indices of all units available for dispatch in post-contingency state k   

                                of scenario j at time t. 

 

     ,                    Active/reactive injection for unit i in post-contingency state k of  

                                scenario j at time t. 

 

  
  (·)                       Cost function for active injection i at time t. 
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                             Active power contract quantity for unit i at time t. 

 

  
    

,   
                  Upward/downward deviation from active power contract quantity for  

                                unit i in post-contingency state k of scenario j at time t. 

 

   
  (·),    

  (·)          Cost for upward/downward deviation from active power contract  

                                 quantity for unit i at time t.                

 

  
  ,   

                        Upward/downward active contingency reserve quantity provided by  

                                  unit i at time t. 

 

   
  (·),    

  (·)           Cost function for upward/downward contingency reserve purchased  

                                  from unit i at time t. 

 

  
  ,   

                        Upward/downward load-following ramping reserves needed from   

                                  unit i at time t for transition to time t + 1. 

 

   
  (·),    

  (·)           Cost of upward/downward load-following ramp reserve for unit I at  

                                  time t. 

 

  
 (·)                         Quadratic, symmetric ramping cost on the difference between the  

                                  dispatches for unit i in adjacent periods. 

 

    
,    ,    ,       Voltage angles and magnitudes, active and reactive injections for  

                                  power flow in post-contingency state k of scenario j at time t. 

 

    (·)                       Nonlinear AC power flow equations in post-contingency state k of  

                                  scenario j at time t.  

 

    (·)                       Transmission, voltage and other limits in post-contingency state k of  

                                  scenario j at time t.   

 

    
    

,     
    

                Limits on active injection for unit i in post-contingency state k of  

                                  scenario j at time t. 

 

    
    

,     
    

               Limits on reactive injection for unit i in post-contingency state k of  

                                  scenario j at time t. 
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  ,      

            Upward/downward load-following ramping reserve limits for unit i. 

 

  
 ,   

                        Upward/downward physical ramping limits for unit i for transitions  

                                   from base (k = 0) to contingency cases. 

 

  
  ,   

                          Upper/lower bounds on the energy stored in storage unit i at the end  

                                   of period t. For t = 0 this is a fixed input parameter representing the  

                                   bounds at the beginning of the first period. 

 

    
  ,     

                    Stored energy (in MWh) max/min limits for storage unit i at time t. 

 

  
                                 Initial stored energy (expected) in storage unit i. 

 

    
  ,     

                  Lower/upper bounds on initial stored energy (expected) in storage  

                                  unit i. 

 

    
  

 

 ,     
  

 

              Lower/upper bounds on target stored energy (expected) in storage  

                                 unit i at end of final period   . 

 

   
    

,    
    

               Charge/discharge power injections of storage unit i in post-  

                                 contingency state k of scenario j at time t. 

 

                               Cost associated with starting out with a given level of stored energy  

                                     at time t = 0. 

 

                                Vector of prices for contributions to terminal storage1 from charging  

                                  or discharging in non-terminal states.  

 

     ,                      Vector of prices for contributions to terminal storage1 from  

                                  charging/discharging in terminal end-of-horizon base states. 

 

     ,                      Vector of prices for contributions to terminal storage1 from  

                                   charging/discharging in terminal contingency states. 

 

 

 

 

 

1That is, expected leftover stored energy in terminal states 
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     ,      ,              Weighted price vectors summarizing contributions to the value of  

                                    terminal storage1 from initial storage/charging/discharging, derived  

                                    from Cs, Csc0, Csd0, Csck, Csdk See (3.91){(3.94) for details. 

 

 

   
  ,     

                     Charging/discharging (or pumping/generating) efficiencies for  

                                    storage unit i. 

 

     
                             Fraction of stored energy lost per hour by storage unit i. 

 

                                Probability of contingency k in scenario j at time t (     is the  

                                    probability of no contingency, i.e. the base case, for scenario j at  

                                    time t). 

 

                                 For contingency cases, the fraction of the time slice that is spent in  

                                   the base case before the contingency occurs ( = 0 means the  

                                   entire period is spent in the contingency). 

 

 
   

                            Probability     
 of contingency k in scenario j at time t adjusted for          

                                    . 

 
 

                                  Probability of making it to period t without branching off the  

                                    central path in a contingency in periods 1 … t - 1. 

 
                                Probability of transitioning to scenario j2 in period t given that we  

                                   were at scenario j1 in period t - 1. 

 

 

                                Binary valued mask indicating whether transition to scenario j2 in  

                                   period t from scenario j1 in period t - 1 should be included in load- 

                                   following ramp requirements. 
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                                 Binary commitment state for unit i in period t, 1 if unit is on-line, 0  

                                   otherwise. 

 

    ,                         Binary startup and shutdown states for unit i in period t, 1 if unit  

                                   has a startup/shutdown event in period t, 0 otherwise.      

 

  
  ,   

                         Minimum up and down times for unit i in number of periods.       

 

   

  
   ,   

                       Startup and shutdown costs for unit i at time t in $ per  

                                   startup/shutdown.  

 

Individual variables can be grouped into vectors such as   
 for all active injections 

considered across all scenarios and contingencies at hour t and it will be consistent with 

the context. The subset referring to scenario j would be    . 

3.4 Formulation 

 
The problem formulation can be expressed as a mixed-integer nonlinear optimization 

problem, where the optimization variable x is comprised of all the  , V , p, q, pc, 

p+, p-, r+, r-, δ+, δ-, psc, psd, s0, s+, s-, u, v, and w variables. The last three are binary and 

the rest continuous. For simplicity, the formulation restricts the treatment of costs, 

deviations, ramping and reserves to consider only active power, but an extension to 

include reactive counterparts is straightforward. 

 

Objective Function 
 

The objective then is to 

 

 
 

where f(x) is comprised of six components. 

 

      
   

Each part is expressed in terms of the individual optimization variables as follows. 
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       --- cost of active power dispatch and redispatch  

     

 
        

       --- cost of contingency reserves 

 

 
      

       --- cost of load-following ramping (wear and tear) 

 

 
 

       --- cost of load-following ramp reserves 

 

 
       --- cost of initial stored energy and value (since it is negative) of expected leftover  

            stored energy in terminal states 

 
       --- startup and shutdown costs 

 
 

This minimization is subject to the following constraints, for all t  T, all j    , all  

k     
 , and all i      : 

 

Standard OPF Constraints 
        

       --- nonlinear AC power balance equations 
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       --- nonlinear transmission flow limits, voltage limits, any other OPF inequality  

            constraints 

 

 
 

Contingency Constraints 
 

       --- reserve, redispatch and contract variables 

 

 
 

       --- ramping limits on transitions from base to contingency cases 

 

 
 

 

 

Intertemporal Constraints 
 

The first of the constraints to spread intertemporally are the load-following ramp 

constraints, including ramping from a known dispatch at t = 0 into the first period. 

 

       --- load-following ramping limits and reserves 

 

 
 

       --- storage constraints 
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If the net increase in stored energy due to charging or discharging for unit i in state tjk is 

defined as 

 
 

then the bound and injection variables are constrained as follows. 

 

 
 

       --- additional optional storage constraints 

             

            Option 1 is to constrain the expected final stored energy in each unit at the end of  

            the horizon2 to equal some target value or lie in some target range. 

 
            Option 2 is to constrain the expected final stored energy at the end of the horizon2  

                  to equal the initial stored energy. 

 

 

 

 

2See (3.80) in the next section for details on how   
  

 

 is computed as a linear 

function of x. 
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            When using this option   
 

 is an optimization variable that can take on any value  

            between its bounds. When not using this option, it is simply a fixed parameter. 

 

Unit Commitment 
 

       --- injection limits and commitments 

 

       --- startup and shutdown events 

 

       --- minimum up and down times 

 

       --- integrality constraints 

 

 

   This formulation for storage accommodates several types of resources. A traditional 

pumped-storage unit fits the model perfectly, as does a battery that does not have to go 

through specific charge-discharge curves that span many time slices (even if the batteries 

do have to go through such curves, a farm of such batteries may mimic an overall battery 

with more dispatching flexibility). A combined ice storage plus air conditioning facility 

can also be modeled. Even dispatchable loads with an energy consumption quota over a 

given horizon can be specified by manipulation of (    
   ,     

  ). 
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   The assumptions regarding the probabilistic weighting of each term in the cost function 

are described now. We start with probability 1 in some initial state at t = 0; active 

dispatches and storage unit states are assumed known. From this initial state, transitions, 

each with some known probability, are possible to any of the scenarios considered for 

period t = 1. Thus, for period t = 1, the sum of the probabilities assigned to each of the 

flows adds up to 1. Now, consider the transition into t = 2. This transition is only possible 

provided that the system did not branch off into any contingency at time t = 1, that is, the 

realized state is the base case of one of the scenarios considered for t = 1. However, the 

sum of the probabilities of the considered base cases for t = 1 is less than 1 provided that 

at least one contingency has a nonzero probability of occurrence (the normal assumption). 

Thus, the probability of actually making it to t = 2 in the considered graph is equal to the 

sum of the probabilities of the base cases at t = 1, and is less than 1 except for t = 1: 

 

 
 

While the fact that the probabilities in future periods do not sum to one may seem odd in 

a non-stochastic scheme, this is the result of the fact that, in an N - 1 contingency fashion, 

we chose to know nothing about the cost incurred after branching off in a contingency 

because that would involve exploration of the geometric possibilities of resuming normal 

operation afterwards. This implies, for the branches that have been trimmed, the 

existence of an unknown cost with respect to the decision variables. Since we do not have 

any information about the relationship of this unknown cost to our decisions, we 

explicitly ignore its impact by excluding it from the optimization. 

 

 

Transition probabilities are governed by a known probability transition matrix at each 

time step: 
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where     is the number of scenarios considered at period t. Here, the columns of 
t
 sum 

to 1, and in fact its coefficients are used to weight the wear and tear costs included in the 

formulation: 

 
Finally, it is useful to include general linear production constraints that can be imposed 

over specific sets of generator, time slice, scenario and contingency tetrads (t; i; j; k) such 

as   
 = (1, 3, 1, 0), (2, 3, 1, 0) … (  , 3, 1, 0), and which take the form 

 

 
 

each of which is completely defined by the index set    , a linear coefficient vector    

and corresponding left and right hand sides   
 

 and   
 . More generally, with 

x = ( , V, p, q,   ,   ,   ,   , r,   ,   ,   ,   ), these constraints can be written as 

 

 
which is of course a block-column representation of 

 

 
but we adopt the former because it is appropriate for explaining decomposition 

techniques. In Figure 3-1, a graphical representation of the problem is depicted. 
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3.5 Value of Residual Storage 

 
The details of the fifth term fs(·) of the objective function (3.4) are presented in this 

section, specifically the last three terms of (3.9) related to the expected residual value 

 
 

Figure 3-1: Overall Problem Structure 

 

of stored energy in terminal states. First, for each storage resource i, this requires an 

efficient way to compute the expected amount of stored energy at the beginning and end 

of each period t for each scenario j. We will denote these by the      χ 1 vectors   
  

 and 

  
  

 , respectively, where      is the number of scenarios in period t. 

 

   The stored energy   
    

 in unit i at the end of period t in base state j can be computed 

deterministically from the stored energy at the beginning   
    

 and the injections in that 

state, where the losses are assumed to be proportional to the average stored energy during 

the period. Using the definition in (3.26), this relationship can be expressed as follows 
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where 
 

 

 

   For a period where a contingency occurs at a fraction  of the way through the period, 

the losses are more tricky to compute. Let us call the expected stored energy at the 

moment the contingency occurs  
    

, expressed as 

 
Then the losses are equal to 

 

where (3.51) follows directly from (3.49) and (3.50), keeping in mind that   
    

 =   
    

 . 

    

   In this case, the stored energy in unit i at the end of period t in state jk can be computed 

deterministically from the stored energy at the beginning and the injections in states j0 

and jk as follows. 

 

 
 

where 

 



37 
 

 
 

 
 

Let   
  

 and   
  

 be matrices containing appropriately placed efficiencies relating the 

charging and discharging injections, respectively, in state jk of storage unit i in period t to 

the corresponding change in stored energy from the beginning to the end of the period. 

Specifically, the elements    
  

 and    
  

 in row j and column l of   
  

 and   
  

 are set as 

follows 

 

 
 

The reason for keeping   
  

 and   
  

 separate is to make it possible to use different prices to 

represent the gain in value from increasing the amount of residual storage and the loss in 

value from reducing the amount of residual storage. The need to use different prices to 

value charging and discharging is supported by the intuition that stored energy should not 

be used in a given terminal state if there is a better time to use it (expect a higher price on 

the horizon), neither should we be storing additional energy in a given terminal state if 

there is a better time to store it (expect a lower price on the horizon). 
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Using these matrices, (3.47) can be expressed for the vector   
  

 as a deterministic 

function of   
  

 and the injections as 

 

On the other hand, the expected stored energy in each scenario at the beginning of 

period t depends on the corresponding values at the end of period t - 1 and the transition 

probabilities. Let   
 equal the vector of probabilities of each of the base scenarios at the 

end of period t - 1, conditional on arriving at the end of that period without the occurence 

of a contingency. 

 

 
 

If we also let [a] denote a diagonal matrix with the vector a on the main diagonal, then 

the relationship between   
  

 and   
      

 can be expressed as 

 
In other words, 

 
 

where 

 
    

   Stacking the vectors   
  

 and   
   for all storage units (i from 1 to   ) allows the 

relationships above to be expressed in terms of matrices formed by stacking the    
 along 

the diagonals and the   
  

 and   
   vertically. 
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Similarly, scalars  
 
 

 are converted to diagonal matrices   
  

   
 
 ·           

 and stacked to 

form 

 

The full expression for all storage units in all scenarios in period t can then be expressed 

as follows. 

 
The relationships in (3.68) and (3.69) imply that the expected stored energy at any point 

in the planning horizon can be expressed in the following form as a linear function of the 

expected initial stored energy    and the active power injections in x, specifically the 

injections of the storage units. 

 
The following recursive expressions can be used for computing   

 
 ,    

 ,   
 ,   

  ,   
 

 and 

  
  

 

where   
 

 =   
 and   

 
 =   

 
 = 0. 
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If the rows of each of these vectors and matrices are sorted and partitioned by scenario 

(as opposed to by storage unit), we can denote the resulting j-th components, whose i-th 

row corresponds to storage unit i, with a bar, for example   ̅
  

 ,   ̅
  

,  ̅ 
  

,  ̅ 
  

, 

 ̅ 
  

,  ̅ 
  

,  ̅ 
  

,  ̅ 
  

 ,  ̅ 
  

 and  ̅ 
  

 . It should be noted that for the B matrices, the 

corresponding  ̅ 
  

 is just the diagonal matrix [ n], with the individual   
  on the diagonal. 

Using this notation, the expected residual stored energy for all units in a base scenario j at 

the end of the last period nt of the horizon, the vector   ̅
   

 can be written as a function of 

these matrices 

 
 

Likewise, the expected residual stored energy at the end of period t for any scenario j and 

contingency k is expressed as follows, 

 

 
 

The overall expected quantity of stored energy across all non-contingency states at the 

end of the horizon is given by 

 
where        

  = ∑      
 . This expression can be used in constraints, such as (3.31) or 

(3.32) or in constructing terms of the objective function. 

   Finally, we return to the value, call it   (x), of the expected stored energy leftover in 

terminal states, expressed in the last three terms of fs in (3.9). 
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If we were to use a single price for each storage unit i to value all contributions to that 

expected leftover energy, regardless of the state in which they occur, then the value   (x) 

would be that price times a simple probability-weighted sum of the energy in each state, 

modified by the output efficiency. To be more precise, the price relates to the value of 

each MW of recoverable energy3 as opposed to stored energy. 

 

 
 

However, it may be useful to classify the system states into three categories: terminal 

contingency states, terminal end-of-horizon base states, and non-terminal states (base 

states preceding the last period). This allows for the possibility of valuing differently the 

contributions made to the expected terminal stored energy in each of these categories of 

states. It may also be useful to differentiate between the value gained by increasing the 

expected terminal stored energy and the value lost by decreasing it. 

 
     

     

 

 

 

3It is not the amount of energy stored that is of interest, but rather the amount 

which can be recovered after output efficiency losses     
 . 
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This leads to the current design based on the five price model summarized in Table 3-1. 

Expressing (3.82) in terms of (3.78) and (3.79), splitting up the terms and applying 

different prices to the five different types of contributions to the expected terminal 

storage quantities, yields the following. 

 

 

 
where 

 

 
 

   If we use  ̅  to represent the version of An with all columns removed except for those 

corresponding to the relevant charging and discharging injections (psc for n = 2, 4, 6 and 

psd for n = 3, 5, 7), then we can express the cost of initial and terminal stored energy fs 

from (3.9) as 
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where 

 

 
 

 

 
 

Figure 3-2: Problem Decomposition 

 

3.6 Problem Decomposition 

 
Such a formidable problem is hard to solve for realistic system sizes using an island 

representation, as has been done in our earlier work. For example, the IEEE 30 bus 

system with a 24-hour horizon, seven scenarios per time period and 10 contingencies, 

results in 1,848 coupled power flows, and an island representation would involve a 

55,440 bus system with 1,848 islands and many unusual constraints and additional 

variables. Although improvements in the solvers employed by MATPOWER allow it 
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to solve problems of this size, larger systems with more contingencies and efficiency 

considerations suggest that the problem should be decomposed. 

    

    In the current design, the decomposition is done by duplicating the variables 

representing all of the active power injections. One set is used in individual AC OPF 

problems, each representing a specific scenario or contingency in a specific period. 

The other set is used in a central coordination quadratic program containing all of the 

intertemporal and inter-flow constraints and their corresponding variables and costs. 

The overall structure is illustrated in Figure 3-2. With this decomposition scheme, the 

granularity on the level of a single OPF allows for massive parallelization and the central 

quadratic program, although large, can be solved up to realistic-sized problems with the 

current generation of QP and LP solvers. Coordination occurs only at the level of the two 

copies of the set of all active injections. 

 

Essentially, all traditional OPF constraints (3.11) - (3.12) are imposed on the sets of 

variables (      ,      ,      ,      ), where      
 and      

 are the active and reactive 

injections, whereas constraints (3.13) - (3.30), together with network-like proxy 

constraints to limit the search space on      , and the original cost are imposed on 

variables (p, q, pc, p+, p-, r+, r-, s+, s-,  +,  -). Then, quadratic coordination costs arising 

from an augmented Lagrangian coordination scheme are imposed on the active injections 

to force equality of      
 and      . Thus, the costs for each of the OPFs is purely made 

from the coordination costs 

 
 

Where      
 are the coordination multipliers, c is the quadratic augmentation term 

coefficient, so c(    
    

 -     
    

)      
 is the linearization of this term about the previous 

iteration's values of (     ,      ), b is the coefficient of the quadratic regularization 

term 
 

 
(      -     

    
)2; it has a damping effect in the trajectory of the coordination 

multipliers, a useful feature if problem costs are rather flat. Similarly for the QP, 

the cost (3.4) is modified to include the terms 
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An algorithm for solving the problem with this decomposition is as follows: 

 

1. Initialize (     
), perhaps by solving the large QP without the coordination costs 

and with linearized network constraints; the (     
) take the values of the nodal 

prices at the active injection buses. This also assigns initial values to (     ). 

Similarly, obtain initial values for (     ), perhaps by solving each individual OPF 

with just the original fuel cost. 

 

2. Compute the mismatches       -      . 

 

 

3. Update the coordination multipliers according to the mismatches, perhaps by 

 

where   is a step-control parameter. 

 

4.     
    

          

 

    
    

         . 

 

 

5. Solve one OPF for each of the flows considered in the problem, with cost (3.95) 

      and restrictions (3.11) - (3.12); obtain new (     ). 

 

6. Solve one large QP with cost (3.4) ammended with addition (3.96), constraints 

(3.13){(3.30), and proxy network constraints such as 

 

 

            where   
    

 is the system demand in flow (tijk) . From this, obtain new (     ). 
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7. Compute mismatches       -      ; if any are larger in magnitude than some 

tolerance, go to step 3 and repeat. 

 

8. From solution, compute all quantities not expressly obtained, such as expected 

dispatches and expected storage values. 
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Chapter 4: Evaluation Study of the Incorporation 

of Transient Stability Constraints into Optimal 

Power Flow 
 
4.1 Introduction 
 
In this chapter, we provide a detailed investigation of the widely used fixed-threshold 

proxi on its performance in enforcing transient stability constraints in TSCOPF. The 

question of accuracy and reliability from using this fixed-threshold proxi will be 

addressed through extensive time-domain simulation studies. The computations and 

analysis of the exact threshold values under different test systems, loading conditions, 

network topology and contingencies is conducted. To obtain the exact threshold values, 

this chapter presents an exact method using the framework of stability region. A stability-

region framework for TSCOPF is also established to provide a more accurate expression 

of transient stability constraints in the TSCOPF formulation.  

 

Our evaluation study shows that the exact threshold value is not a constant, as assumed in 

the literature, and can vary from 80 to 190 degrees. This leads to the following issues 

related to the current fixed-threshold proxi: (i) the current common threshold values of 

100º-120º can be very conservative as the correct value can be as large as 190º, (ii) the 

common threshold values can also be very optimistic as the correct value can be as small 

as 80º in some systems, (iii) the exact threshold value is not a constant and depends on 

contingencies, loading conditions and network topology, and (iv) the integration time of 2 

to 5 seconds can be problematic for the cases with multi-swing instability. It is 

numerically shown that using the same fixed threshold value can lead to both severe 

underestimate and overestimate transient stability assessments. Instead of using the same 

predetermined and fixed thresholds in the inequalities of every system and contingency, 

we suggest using adaptive limits that depend on the overall system dynamics. 

 

4.2 TSOPF Problem Formulations 
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The TSCOPF problem can be formulated by incorporating a set of transient stability 

constraints into the conventional OPF formulation, which can be described as follows: 

 

4.2.1 Conventional OPF Formulation 

 
 Min

 
( )gf P  (4.1) 

 S.T.   , 0g LP P P V      (4.2) 

   , 0g LQ Q Q V      (4.3) 

  max( , ) 0S V S    (4.4) 

  min maxV V V   (4.5) 

  min max

g g gP P P   (4.6) 

  min max

g g gQ Q Q   (4.7)  

Where ( )f  is an objective function; gP  and gQ
 
are the vectors of generator active and 

reactive power output, respectively; 
max

gP and 
min

gP  are the upper and lower bounds of real 

power output while 
max

gQ and 
min

gQ  are the bounds for reactive power output; 
LP  and 

LQ  

are real and reactive power loads; ( , )P V   and ( , )Q V   are the real and reactive network 

injections; ( , )S V   is a vector of apparent power across the transmission lines whose 

thermal limits are restricted by maxS ; V  and   are the vectors of bus voltage magnitudes 

and angles with associated lower and upper limits of minV  and maxV , respectively. gP , gQ ,  

V  and   are the free variables in the problem. 

 

4.2.2 Transient Stability Constraints  

 

The constraints associated with transient stability consist of swing equations (a set of 

DAEs) that describe the generator rotor angle deviation after a disturbance and stability 

limit criteria to determine whether the system is stable.  

 

Swing equations 
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The classical model of a synchronous generator is adopted, and loads are modeled as 

constant impedances. The rotor angle deviation of the i-th synchronous generator can be 

expressed by differential equations as follows [15]: 

  
( ) , 1,...,

i i

i i mi ei i iM P P D i n

 

  



   
 (4.8) 

 

where, 
1

( ) ( cos sin )
n

ei i k ik ik ik ikk
P E E G B  


  is the electrical power at machine i , iE  

is the constant voltage behind direct axis transient reactance. 
iD  and 

iM   are the 

damping ratio and inertia constant of machine i .and miP  is the mechanical power. 

( )ij n nY Y 
 
 ( )ij ij n nG jB    is the reduced admittance matrix. 

 

Stability Region 
 

A stability-region framework is proposed to provide a more accurate expression of 

transient stability constraints in the TSCOPF formulation.  

Let us consider a general nonlinear dynamical system described by: 
  ( )x f x  (4.9)  

 

An equilibrium point is a solution to the equation 0 ( )f x . An assymptotically stable 

equilibrium point sx  of (4.9) is the point where all the eigenvalues of the Jacobian matrix 

have negative real parts. The flow or trajectory of the system (4.9) is the solution to (4.9) 

at time t  starting at x , and it is denoted by ( , )t x . The stability region of an 

asymptotically stable equilibrium point (SEP) sx  can be expressed as: 
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( ) { : ( , ) , as }s sA x x t x x t     (4.10) 

To analyze transient stability due to a fault, the system is considered to go through 

three stages: pre-fault stage, fault-on stage and post-fault stage. The fundamental issue of 

transient stability analysis is whether the system trajectory, starting at the post-fault initial 

state ( )clx t , will settle down to post

sx . Transient stability analysis is to determine whether 

the initial point of the post-fault trajectory is located inside the stability region of the 

equilibrium point post

sx . It can be mathematically expressed by checking the following 

condition: 

 ( ) ( )post

cl sx t A x
  
 (4.11) 

To be practical we let N  be the set of the contingencies being considered in a 

TSCOPF problem, and ( )post

siA x i N  denotes the stability region of post

six  associated 

with the contingency i. Then the mathematical expression of the transient stability 

constraints in TSCOPF based on the stability-region framework can be described as 

follows. 

 ( ) ( )post

i cl six t A x i N      (4.12) 

In summary, the TSCOPF problem can be formulated as follows: 
 

 Minimize (4.1)  

 Subject to (4.2)-(4.7) 

                 (4.8) and (4.12)                                                                (4.13)

  

 

Fig. 4-1:  The sustained fault-on trajectory ( )fx t , starting from the pre-fault SEP
pre

sx , moves 
toward the stability boundary ( )post

sA x  and intersects it at the exit point, ex . 
pre

sx  is assumed to 
lie inside the stability region of post-fault SEP ( )post

sA x . 
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4.3 Proxi for Transient Stability Constraints and Numerical 

Issues 
 

Solving a TSCOPF problem as formulated in (4.13) can be very challenging because (i) 

there are infinite-dimensional variables, equalities and inequalities associated with the 

swing curves (4.8), and (ii) the expression in (4.12) does not have a closed-form 

analytical expression. To avoid these two numerical difficulties, many researchers 

consider the transient stability constraints in TSCOPF through discretized swing curves 

[6], [8]-[15] and constrain the relative rotor angle within a predefined limit [6]-[16]. By 

using the implicit trapezoidal rule [6] or Taylor series expansion, differential equations 

can be discretized and converted into numerically equivalent algebraic equations, which 

can be easily included in the OPF formulation. The following criterion is widely used in 

TSCOPF research as a proxi for ensuring system transient stability. 

 
maxmax

max

( ) ( )

0

i COIt t

t t

   

 
  (4.14) 

where ( )i t  is the rotor angle of machine i at time t. ( )COI t is the center of inertia (COI) 

reference angle. 
max  is a fixed angle threshold, normally set between 100° - 120°. 

maxt
 
is 

the total integration time. In TSCOPF, 
maxt  is typically set to 2-5 seconds. This constraint 

requires the rotor angle deviation of all machines, with respect to the center of inertia, to 

be no greater than 
max  at all time. If the condition is satisfied, the operating point is 

considered transiently stable. 

Although the proxi (4.14) has been commonly used in the TSCOPF formulation, there 

are several technical and numerical issues that must be addressed: 

1. Accuracy and validity of the criterion – The inequality criterion in (4.14) is merely an 

approximated and simplified form of the real expression of transient stability in (4.12). 

Moreover, the predefined thresholds, or
max  in (4.14), are heuristically chosen and 

vary considerably from 90° to 140° in the literature [6]-[16].  
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2. Computational burden – The discretization of the differential equations introduces a 

large number of new equations and variables for each time step. The number 

multiplies when multiple contingencies or a longer integration duration is being 

considered.  

 

3. Convergence – A large number of constraints and variables may cause a TSCOPF 

program to diverge. 

 

4. Scalability – Although in theory this guideline can be extended to consider multiple 

contingencies or detailed generator models, it is computational impractical due to the 

extra computational burden. 

 
In this chapter, we will address the issue of accuracy and, to a certain extent, address 

the issue of computational burden.  

4.4 Method for Computing Exact Threshold 
 

An exact method is proposed to compute the exact thresholds using the framework of 

stability region. The exact threshold represents the highest value of rotor angle deviation, 

with reference to the center of inertia (COI), such that the post-fault trajectory remains in 

the stability region of the post-fault system and converges to the post-fault stable 

equilibrium point. The method for computing the exact threshold values is presented 

below. 

Given:  A contingency with a specified fault-on trajectory and a specified post-fault SEP.  

Method: Computing exact threshold values for angle inequalities 

Step 1: Compute the exact critical clearing time (CCT) in the direction of fault-on 

trajectory by using a time-domain method. 

 

Step 2: Perform a time-domain numerical integration starting from an initial point with 

fault clearing time slightly less than the critical clearing time. This step produces a 

critically stable post-fault trajectory. 
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Step 3: Identify the maximum angle deviation 
max

exact
 
along the critically stable post-fault 

trajectory, which can be found at the highest or lowest peak of the trajectories. 

 

Output: The exact threshold value of the contingency in the context of angle inequality 

(4.14) is 
max

exact . 

Table 4-1: Clearing Times And The Peaks Of Post-Fault Trajectories 

Wscc9, Fault-Bus: 9, Tripped-Line: 9-6 

Clearing 

times 
Peak* (degree) 

0.2429 = 

CCT 166.16 

0.202 100.00 

0.20 98.27 

0.15 66.58 

0.10 45.95 

0.07 37.15 

* A peak value represents the maximum  

amplitude of post-fault trajectories 

 

One distinguished feature of the proposed method is that it reflects the network 

topology, loading conditions, etc. and is based on the exact relevant stability boundary of 

the transient stability models [23]. It has been observed from our numerical results that 

the peak value of the angle deviations of post-fault trajectories strictly increases as the 

fault clearing time increases. The simulation results summarized in Table 4-1 and Figure 

4-2 confirm this observation. This observation shows that the highest rotor angle 

deviation, or the exact threshold, can be obtained from a critically stable post-fault 

trajectory whose initial point lies just inside the stability boundary of the post-fault 

system. 

4.5 Proxi from Stability Region Viewpoint 
 

To address the accuracy issue of using (4.14) in place of (4.12), we present a numerical 

result showing the performance of the fixed-threshold proxi in estimating CCTs. The 

WSCC9 [22] with constant impedance loads and a uniform damping of 0.1 is considered. 
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Bus 9 is shorted during the fault-on period and line 9-6 is tripped by the protection 

system. The actual CCT of this system and contingency is 0.2429 second. Figure 4-3 and 

4-4 show the same set of post-fault trajectories in different spaces and representations. 

Figure 4-3 displays post-fault stable and unstable trajectories in the state space, along 

with the exact stability region of the post-fault SEP. The stable trajectory moves inside 

the stability region and eventually converges to the post-fault SEP. On the other hand, the 

unstable trajectory, starting from the outside the stability region, directly diverges to 

infinity. Figure 4-4 contains the same stable and unstable trajectories as shown in Figure 

4-3; however they are represented as swing curves versus time.  

 

 

Figure 4-2: The exact threshold value can be obtained at the highest peak of the critically stable 

post-fault trajectory. The fault-on trajectory crosses the stability boundary at the critical clearing 

time of 0.2429 second  
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Figure 4-3:  Critically stable swing curves when clearing time is 0.2429 second, slightly less than 

the CCT. The peak of the rotor angles is observed at 2.9 radian or 166.16°. 

 

 

 

Figure 4-4: A stable trajectory travelling inside the stability region in the state space, while an 

unstable trajectory lying outside the stability region moves away from it. 
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Figure 4-5: The stable swing curves and unstable stable swing curves in Figure 4-2 as a function 

of time. The exact threshold value of 2.9 radians of 166.16 degrees was found at CCT = 0.2429 

second by an exact method, and compared to the commonly used threshold of 100°. 

 

 

 

Figure 4-6:  At fault clearing time = 0.1420 second, a stable post-fault trajectory is confined in the 

correct limits of +/- 177.62°. 
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Figure 4-7  At fault clearing time = 0.110 sec, a stable post-fault trajectory is confined in the 

commonly used limits of +/- 100°. 

 

 

Figure 4-8:  Fault clearing time = 0.1420 sec, the post-fault trajectory converges to a post-fault 

SEP 
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Figure 4-9:  A multi-swing unstable post-fault trajectory can take more than 15 seconds before 

encountering an angle separation. 

 

Using the proposed exact method, we can obtain a critically stable post-fault trajectory 

when the fault clearing time is 0.2429 second, and the exact threshold value of 166.16°, 

see Figure 4-2 or 4-5. When compared to the exact value, the common fixed-threshold of 

100° is very conservative with a relative threshold error of 39.82%. The estimated CCT 

associated with the 100° threshold is equal to the highest fault-clearing time such that the 

post-fault trajectories lie entirely in the +/- 100° range. In this contingency, the estimated 

CCT associated with the 100° threshold is 0.202 second, see Table 4-1. This translates to 

a 13.54% relative error of estimated CCT by the 100° fixed threshold proxi.  
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in the literature, will it affect the accuracy of the proxi in enforcing transient stability 

in TSCOPF? If it does, how large the errors can be expected? 

 

2. Due to the highly-computational nature of this solution method, longer integration 

times are undesirable. As can be seen in [6, 10, 11, 12], only 2-5 seconds of 

integration time is performed to solve TSCOPF problems. This practice may become 

problematic in the case of multi-swing instability, where the rotor angle separations 

usually take longer to occur. We will address this issue and find out the outcome of 

using a short integration time along with a fixed-threshold proxi to solve TSCOPF in 

this situation.  

 

We next show the numerical results on the IEEE145 test system. Loads are modeled as 

constant impedances and the uniform damping of 0.1 is considered. Bus 7 is shorted 

during the fault-on period and line 7-6 is tripped to clear the fault. The actual critical 

clearing time is 0.1424 second.  

Table 4-2: Relative Error Percentage of Estimated CCT’s 

 max 100    
max 120    

Fixed threshold 100° 120 

Exact threshold
 

177.62° 177.62° 

Threshold relative error % 43.70 32.44 

Estimated CCT 0.0751 0.1100 

Actual CCT 0.1424 0.1424 

CCT relative error % 47.26 22.75 
 

 

4.6.1 Underestimate of Threshold and CCT 

Figure 4-6 shows a critically stable post-fault trajectory when the fault clearing time is 

0.1420 second, slightly lower than the CCT. All 50 machine rotor angles are presented in 

Figure 4-6. Figure 4-7 displays the displacement from the post-fault SEP to the trajectory. 

It confirms that this trajectory is stable and asymptotically converges to the post-fault 

SEP. Figure 4-6 presents an example of a stable trajectory which the TSCOPF criterion in 

(4.14) with 100° fixed threshold considers unstable. The rotor angles at the following 

buses are all larger than 100° or 1.7453 radian at some points along the curves: 2, 3, 4, 6, 
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7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 25, and 26. To confine the whole swing 

curves in the +/- 100° limits, the fault clearing time has to be significantly reduced to 

0.0751 second, see Figure 4-7. We show in Table 4-1 that the peak value of swing curves 

strictly increases as the fault clearing time increases. This means that, for this system and 

contingency, using a 100° threshold is equivalent to restricting the fault clearing time to 

be equal or less than 0.0751 second. In other words, it is equivalent to having an 

estimated CCT of 0.0751 second. Table 4-2 contains the relative errors of CCTs and 

threshold values when fixed thresholds of 100° or 120° are used in the TSCOPF proxi. 

This numerical result shows that using a fixed-threshold proxi (i.e. 100°) in TSCOPF can 

lead to a severe underestimate of the exact threshold and CCT. The relative error for 

threshold value in this case can be as high as 43.70 %. In the context of optimization 

problems, this means that a large number of feasible solutions, those that are transiently 

stable, may be considered unstable and disregarded due to the predetermined threshold 

value being too small and conservative.  

4.6.2 Overestimate of Threshold and CCT 

The test system is IEEE145 with constant impedance loads and a uniform damping of 

0.1. Bus 8 is shorted during the fault-on period and line 8-7 is tripped to clear the fault. A 

high loading condition is considered in this case. The actual CCT is 0.071 second. Using 

the proposed exact method, we found the exact threshold value of 95°. Figure 4-9 shows 

a multi-swing unstable swing curve when the fault clearing time is 0.072 second, slightly 

larger than the actual CCT. It can be observed that the separation of the rotor angles does 

not occur until after 15 second in the post-fault stage. If the common 100° threshold is 

considered in (4.21), the violation of the inequality will occur at 17.35 second. This 

becomes a problem because, as described in section III, the post-fault integration time is 

normally limited to 2-5 seconds. This means no violation will occur within this period 

and the angle separation at 17.35 second will not be detected. Using the correct threshold 

value of 95° will however result in a correct detection at 2.46 second, see Figure 4-9. 

This is an example where using a fixed-threshold proxi (i.e. 100°) can lead to an 

overestimate of CCT, and a false assessment. In the context of optimization problems, 

this means that some infeasible solutions, those that cause transient instability, may be 

considered feasible when solving for an optimal solution.  
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In summary, we present the numerical results to show that if the threshold value in 

(4.14) is predetermined and fixed for every case and contingency, it may lead to both 

severe underestimate and overestimate assessments in TSCOPF. It is also shown that 

using the exact threshold values in, which can be found by the proposed exact method, 

can eliminate these shortcomings.  

4.7 Accurate Thresholds under Different Conditions 
 

It has been shown that the correct threshold value in (4.14) can be different for each 

system and contingency, and that using a fixed threshold, as suggested in the literature, 

can lead to an inaccurate proxi for transient stability constraints in TSCOPF. We next 

examine the exact threshold values under the following different conditions: (i) types of 

contingencies, (ii) loading conditions, and (iii) severe contingencies. The numerical study 

on the IEEE145 shows that the exact threshold values vary significantly from 80°-190° 

under different system conditions. This emphasizes the importance in adjusting 
max

 
of 

(14) in accordance to the system’s dynamics and contingencies. 

4.7.1 Type of Contingencies 

Table 4-3: Exact Threshold Values in Different Types of Contingencies  

Contingencies CCT(sec) Threshold (degree) 

Secure CCT > 0.2  

59: 59-72 0.2415 174.24 

116:115-116 0.2866 192.63 

1: 1-2 0.4067 176.47 

8: 7-8 1.0596 165.81 

11: 9-11 2.4959 172.69 

Average threshold = 176.24 degree 

Critical 

0.1 < CCT 

< 0.2  

6: 7-6 0.1671 190.11 

7:7-6 0.1424 182.66 

104: 7-104 0.1681 195.03 

98: 58-98 0.1208 144.10 

89: 59-89 0.1402 155.10 

Average threshold = 170.52 degree 

Insecure CCT < 0.1  

17: 17-22 0.0835 139.74 

33: 33-34 0.0676 115.22 

99: 36-99 0.0419 110.70 

2: 2-113 0.0693 113.45 

Average threshold = 119.78 degree 
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Table 4-3 shows the correct threshold values when different types of contingencies are 

considered. Since the protection system is normally activated within 5-8 cycles, or 

0.0833-0.1333 second after a disturbance, any case with a CCT lower than 0.1 second 

will be considered insecure. If the CCT lies between 0.1 and 0.2, it will be considered 

critical. When the CCT is greater than 0.2, that contingency is considered secure.  We can 

see that the threshold values are smallest in the insecure group with the average value of 

119.78°, followed by 170.52° of the critical group. The secure group has the highest 

average value of 176.24°. It can be observed that as the CCT decreases, the threshold 

tends to decrease in general.  

This numerical result shows that true threshold value for each contingency is different 

and it is related to the value of the critical clearing time. It can be observed that the exact 

threshold value decreases as CCT decreases.  

4.7.2 Loading Conditions 

 

The effect of loading conditions on the threshold value is studied and presented in 

Table 4-4. Three contingencies (one from each contingency group) are considered in this 

study. It can be observed from the results that as loads increase, both CCTs and threshold 

values strictly decrease. The results are uniform among all three types of contingencies. 

Note that the insecure contingency contains less data than the other two due to the lowest 

load margin.  The result illustrates how the loading condition has a direct impact on the 

exact threshold value of each contingency. As loads increase, the exact threshold value 

also decreases. 

 

 

 

 

 



63 
 

Table 4-4: Exact Values of Thresholds in Different Loading 

Conditions  

Loading CCT(sec) Threshold (degree) 

Secure Contingency: 8:7-8 

Original 1.0596 165.81 

+5% 0.7708 164.55 

+10% 0.5433 154.13 

+15% 0.3686 127.83 

+19% 0.166 107.49 

+19.5% 0.075 104.11 

+20% 0 - 

Critical Contingency: 7:7-6 

Original 0.1424 182.66 

+5% 0.1167 171.03 

+10% 0.0837 145.36 

+14% 0.0311 126.28 

+15% 0 - 

Insecure Contingency: 17:17-22 

Original 0.0835 139.74 

+5% 0.0431 119.63 

+6% 0.0221 97.92 

+7% 0 - 

 

 
 

 

 
 

 

 
 

Table 4-5: Exact Values of Thresholds in Severe Contingencies 

Contingency CCT(sec) Threshold (degree) 

Line out: 17-22 

59: 59-72 0.0209 90.46 

115: 115-116 0.0198 89.76 

1: 1-2 0.0212 92.48 

6: 7-6 0.0164 83.23 

98: 58-98 0.0173 85.49 

89: 59-89 0.0103 79.41 

104: 7-104 0.0115 81.69 
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4.7.3 Severe Contingencies 

Table 4-5 presents the threshold values of some severe contingencies of IEEE145. 

Line 17-22 is permanently taken out when the test for other contingencies is run. It can be 

observed that the exact threshold values of all the cases are below 100°. If the criterion 

(4.14) is used with a fixed 
max 100   , and if the multi-swing instability is taken into 

consideration, these insecure contingencies may be considered secure by the proxi. To 

avoid this type of false assessment in TSCOPF, either the integration time must be 

extended well beyond 5 seconds, or an exact threshold value must be used.  

4.8 TSCOPF using Different Threshold Values 
 

Through a numerical study on several single-contingency TSCOPF problems, we 

demonstrate that the TSCOPF solution can be significantly different when different 

values of threshold in (4.14) are considered. The test system is WSCC9 with a uniform 

damping of 0.05. The system cost function can be found in [24]. The results show that the 

objective function values at optimal power flow solutions vary considerably under 

different fixed threshold values. Figure 4-10 displays the single-contingency TSCOPF 

solutions associated with three different values of fixed threshold. It can be observed that 

the objection function can be improved by adjusting the fixed-threshold value in (4.14). 

The costs are highest when the threshold value is 100°, and gradually decrease as the 

threshold value is raised. The objective function values appear be the lowest or the best 

when the threshold value is relaxed to 160°, the highest of the three values we tested. 

Regarding the system transient stability, the stability requirement is satisfied in all 

threshold values and contingencies as we can see that the CCTs are all greater than the 

required 0.20 second. The CCTs however appear to be on the conservative side in all 

cases, with 100° threshold being the most conservative.  

This result shows that if the threshold value in (4.14) is chosen without the actual 

knowledge of system dynamics, it may cause unnecessary conservativeness and 

degradation of the optimal solution. This demonstrates the importance of adjusting the 

threshold values in accordance to the dynamics of studied systems. By properly reflecting 
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accurate threshold values, the TSCOPF solutions can be improved without losing system 

transient stability.  

4.9 Conclusion 
 

This chapter provides a critical evaluation of the fixed-threshold proxi for transient 

stability constraints in TSCOPF. An exact method to determine exact threshold values is 

developed based on the stability region framework. The proposed method has been 

applied to derive exact threshold values of power system under different test systems, 

loading conditions, network topology and contingencies. Our evaluation study shows that 

the exact threshold values are not constant, as assumed in the literature, and can vary 

from 80 to 190 degrees depending on several factors such as types of contingency, 

loading conditions, and network topology. By using the commonly used fixed-threshold 

proxi (i.e. 100° or 120°) to express transient stability in TSCOPF, it can lead to severe 

underestimate assessments as well as overestimate assessments. We also demonstrate that 

if the threshold value in the proxi is chosen without the actual knowledge of system 

dynamics, it may lead to unnecessary conservativeness of transient stability and 

degradations of the optimal solutions. 

We emphasize that the current fixed-threshold proxi used in the TSCOPF literature is 

merely a simplified form of the real expression of transient stability in power systems. 

Therefore, it may be subject to errors and incorrect assessments. To achieve accurate 

results in TSCOPF, it is critical that the threshold value is adjusted based on the system 

dynamics and its loading conditions, and this adjustment should be based on the 

knowledge of stability regions. The proposed method can meet this requirement. 
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Chapter 5 A Novel BCU-Based OPF Method for 

Large-Scale Power Systems with Transient 

Stability Constraints 

 
5.1 Introduction 

This chapter proposes a novel BCU-based TSCOPF method that overcomes these 

issues through the combination of a fast screening algorithm by BCU method [46] and a 

BCU-based computation of accurate system-dependent threshold values.  

The BCU method is incorporated into the proposed method to reduce the computational 

burden by eliminating irrelevant contingencies. It screens out the majority of secure 

contingencies and prevents the TSCOPF formulation from considering unnecessary 

contingencies. A BCU-based scheme is proposed to provide an efficient way to compute 

system threshold values. Although a scheme for computing exact threshold values has 

been proposed in [40], it is based on a time-domain approach which is computationally 

expensive and impractical for large-scale power systems. To overcome this limitation, a 

BCU-based scheme is proposed for fast computation of system threshold values. The 

scheme is tested on several case studies and shown to yield fairly accurate and 

conservative estimations of the exact threshold values. The CPU time required by the 

proposed BCU-based scheme is remarkably reduced when compared with the time-

domain-based method.  

The unique features of the proposed BCU-based TSCOPF method are as follows:  

(uf1) it enables the TSCOPF to solve practical power systems with a large contingency 

list,  

(uf2) it provides accurate threshold values which improves the accuracy of transient 

stability constraints and quality of the TSCOPF solution,  

(uf3) it can lead to better optimal solutions (in the context of objective function values) 

(uf4) it can be applied to any discretization- based TSCOPF methods.  
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The numerical results show significant improvement in both computational capability 

and solution quality in all case studies. These promising results show that the proposed 

BCU-based method is suitable for solving the solution of large-scale TSCOPF problems 

with large contingency lisst. 

5.2 TSCOPF Problem Formulations 

The TSCOPF problem can be formulated as a large-scale nonlinear programming 

problem associated with DAE constraints [27]. 
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min ( , )
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x z
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H x x z

G x x z

                                                                                   (5.1) 

where vector x  are state variables such as voltage magnitudes and angles, while z  are 

the control variables such as power outputs, transformer tap ratios, phase shifter positions, 

etc. 

 

5.2.1 Objective function 

 The objective functions in TSCOPF are generally the same as those in 

conventional OPF. In this chapter, minimization of generation cost functions is 

considered. 
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5.2.2 Conventional OPF equality and inequality constraints 

    1)  Power flow equations: 
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where gP  and gQ  are the vectors of generator active and reactive power outputs, 

while 
lP  and 

lQ  are real and reactive power loads. ,V θ  are the vectors of bus 

voltage magnitudes and angles. 
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    2)  Static security constraints: 
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 (5.4) 

5.2.3 Transient Stability Constraints 

The rotor angle deviation of the i-th synchronous generator can be expressed by 

differential equations as follows [48]: 
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where,
1

( ) ( cos sin )
ng

ei i k ik ik ik ikk
P E E G B  


  is the electrical power at machine i , iE  

is the constant voltage behind direct axis transient reactance. 
iD  and 

iM   are the 

damping ratio and inertia constant of machine i .   and miP  is the mechanical power. 

( )ij n nY Y 
 
 ( )ij ij n nG jB    is the admittance matrix. 

Let us consider a general nonlinear dynamical system described by: 

  ( )x f x  (5.6)  

 

An equilibrium point is a trivial solution of (5.6). An assymptotically stable 

equilibrium point sx  of (5.6) is the point at which all the eigenvalues of the 

corresponding Jacobian mattrix have negative real parts. The trajectory of the system 

(5.6) is a solution at time t  starting at x , and it is denoted by ( , )t x . The stability region 

of an asymptotically stable equilibrium point (SEP) sx  can be expressed as [41]: 

 

 
( ) { : ( , ) , as }s sA x x t x x t     (5.7) 

 

To analyze transient stability due to a fault, the system is considered to go through 

three stages: pre-fault stage, fault-on stage and post-fault stage. The fundamental issue of 

transient stability analysis is whether the system trajectory, starting at the post-fault initial 

state ( )clx t , will settle down to post

sx . In other words, transient stability analysis is to 
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determine whether the initial point of the post-fault trajectory is located inside the 

stability region of the equilibrium point post

sx . It can be mathematically expressed by 

checking the following condition: 

 ( ) ( )post

cl sx t A x
  
 (5.8) 

To be practical we need to consider a large set of contingencies. A large RTO in the 

East of U.S. evaluate about 3000 contingencies in on-line environments. Let N  be the set 

of the contingencies being considered in a TSCOPF problem, and ( )post

siA x i N  

denotes the stability region of post

six  associated with contingency i. Then the mathematical 

expression of the transient stability constraints in TSCOPF based on the stability-region 

framework can be described as follows. 

 ( ) ( )post

i cl six t A x i N      (5.9) 

 

Figure 5-1:  The fault-on trajectory ( )fx t , starting from the pre-fault SEP
pre

sx , moves toward the 
stability boundary ( )post

sA x  and intersects it at the exit point, ex .  

 

Solving a TSCOPF problem is challenging because the expression of transient stability 

constraints does not have a closed-form analytical expression. As a result, a predefined 

and fixed threshold for rotor angles of the following form has been popular to represent 

transient stability constraints  
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where ( )i t  is the rotor angle of machine i at time t. ( )COI t is the center of inertia (COI) 

reference angle. max  is a fixed angle threshold, normally set between 100° - 120°. maxt
 
is 

the time duration. In discretization-based TSCOPF, maxt  is typically set to be between 2 

and 5 seconds.  

It can be shown that the exact threshold values are system-dependent, loading-

condition-dependent and network-topology-dependent. The exact threshold values can 

vary from 80 to 190 degrees depending on several factors such as types of contingency, 

loading conditions, and network topology [40]. It is also shown that using the same fixed 

threshold for every contingency can lead to severe underestimated and overestimated 

stability assessments as well as degradations of the optimal solutions.  

Therefore, it is strongly recommended that the following stability criterion (5.11) be 

adopted instead of (5.10): 
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where  max ( )j z  are the threshold values to be computed on the fly. These thresholds 

depend on the system control variables z , and each contingency j  and can be computed 

by the proposed method. The numerical discretization technique is applied to discretize 

the differential equations into a set of equivalent algebraic equations. Based on the 

equations (5.2)-(5.5) and (5.11), our TSCOPF formulation can then be described as 

follows: 
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                                                                                     (5.12)
 

where vector x̂  are the new state variables which includes all discretized state variables.  

       The difference between the proposed formulation and the traditional discretization-

based TSCOPF formulation is the inclusion of accurate expression of transient stability 

criterion shown in (5.11) and a much less number of contingencies to be considered. 
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Instead of using the same fixed threshold value for every power system and for each 

contingency, we propose to compute on the fly the threshold values that reflect system's 

actual dynamics under study contingencies. 

5.3 Controlling Unstable Equilibrium Point  

Let pre

sx be a pre-fault stable equilibrium point (SEP), ( )fx t  be the corresponding fault-

on trajectory and post

sx  be the post-fault SEP. Let ( )post

sA x  denote the stability boundary 

of the post-fault SEP post

sx . A comprehensive theory of stability boundary 

characterization of nonlinear systems has been developed in [43] and [44]. The exit point 

plays a direct relationship between the fault-on trajectory and the post-fault system as it 

uniquely defines the controlling unstable equilibrium point (CUEP). 

Definition 1: (Exit-Point) Given a contingency on a power system stability model, the 

point at which the sustained fault-on trajectory intersects with the stability boundary of 

the post-fault SEP is called the exit-point of the fault-on trajectory (relative to the post-

fault system). In addition, the fault-on trajectory exits the stability region after the exit 

point. 

Definition 2: (CUEP) The CUEP of a fault-on trajectory ( )fx t  is the UEP whose stable 

manifold contains the exit point of ( )fx t  (i.e. the CUEP  is the first UEP whose stable 

manifold intersects with the fault-on trajectory ( )fx t  at the exit point). 

Theorem 1: (Existence and Uniqueness of the CUEP) Given a pre-fault SEP, a fault-on 

system, and a post-fault system with an SEP post

sx . Let the post-fault system admit an 

energy function  2( ) : nV R R   and let the stability region of post

sx  contain the pre-fault SEP. 

Then, the CUEP of the fault-on trajectory always exists and is unique. 

Proof: The existence of the exit point of a fault-on trajectory is ensured as long as the 

energy function value increases along the fault-on trajectory. This proof is built on the 

following facts.  
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1) A sustained fault-on trajectory must exit the stability boundary of a post-fault 

system. 

2) The exit point of the fault-on trajectory must lie on the stable manifold of a UEP on 

the stability boundary of the post-fault system. 

Fact 1) is a consequence of the following two conditions: (i) the fundamental 

assumption of direct methods that the pre-fault SEP lies inside the stability region of the 

post-fault SEP and (ii) the energy value increases along a fault-on trajectory. Fact 2) is a 

consequence of the following fundamental theorem [29]: the stability boundary is 

contained in the union of the stable manifolds of the UEPs on the boundary. Combining 

both facts, we complete the proof. 

According to Theorem 1, the stable manifold of CUEP forms the relevant stability 

boundary toward which the fault-on trajectory moves. If the fault is cleared before the 

fault-on trajectory reaches the relevant stability boundary, then the post-fault system will 

be stable; otherwise, it will be unstable. Hence, the CUEP method for direct analysis of 

transient stability is composed of the following two tasks: (i) compute the CUEP relevant 

to the fault-on trajectory, and (ii) approximate the stable manifold of the CUEP by the 

constant energy surface passing through the CUEP. 

In this chapter, the BCU method [46] is adopted to compute CUEPs and perform direct 

analysis of system transient stability. The BCU method plays a vital role in our proposed 

BCU-based TSCOPF methods by providing a fast assessment and screening tool, and 

assisting in the computation of system threshold values. 
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5.4 A BCU-Based Scheme for Computing Threshold  

 
Figure 5-2: Visualization of two initial points for computing system thresholds.  Point 1 can be 
computed by time-domain-based while Point 2 by the proposed CUEP-based scheme. System 
thresholds computed from point 1 leads to an exact value while the results computed from point 2 
are estimated and conservative values. 

 

Figure 5-2 illustrates the main differences between the time-domain-based method and 

BCU-based methods in computing system threshold values. To obtain an exact threshold, 

a post-fault trajectory starting from a point lying just inside the stability boundary (point 

1) must be computed and analyzed [40]. This exact point however can be very expensive 

to compute due to the requirement of locating the exact relevant stability boundary in the 

direction of the fault-on trajectory. This usually requires several numerical integrations of 

the post-fault system. On the other hand, the CUEP method approximates the relevant 

stability boundary and computes point 2 as an approximation of point 1. This scheme is 

much faster than the time-domain-based approach due to the direct identification of the 

initial point 2 (for computing system thresholds) via the constant energy surface passing 

through the CUEP. A comprehensive theoretical foundation of CUEP has been developed 

in [45,50] The proposed scheme is presented as follows: 

Given:   A contingency with a specified fault-on trajectory and a specified post-fault SEP.  

Method: Computing accurate threshold values for angle inequalities in the form of (5.11). 

Step 1: Compute the CUEP, CUEPx , relative to the fault-on trajectory using the BCU 

method. 
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Step 2: Find the point along the fault-on trajectory that crosses the constant energy 

surface passing through the CUEP. 

  

Step 3: Perform a time-domain numerical integration starting from the point computed in 

step 2. (This step produces an estimated critically stable post-fault trajectory.) 

Step 4: Identify the maximum angle deviation max

est
 
along the critically stable post-fault 

trajectory, which can be found at the highest or lowest peak of the trajectories. 

 

Output: The estimated threshold value of the contingency in the context of angle 

inequality is max

est . 

Table 5-1: Exact (Time-domain) vs. Estimated (BCU) Threshold Values 

Contingencies 

TD-based 

Exact 

Threshold 

(degree) 

BCU-based 

Estimated 

Threshold 

(degree) 

Relative 

Error % 

Secure CCT > 0.2   

59: 59-72 174.24  164.11 5.81 

116:115-116 192.63  173.3 10.03 

1: 1-2 176.47  172.09 2.48 

8: 7-8 165.81  151.67 8.53 

11: 9-11 172.69  165.7 4.05 

Critical 0.1 < CCT <0.2   

6: 7-6 190.11  188.41 0.89 

7:7-6 182.66  175.52 3.91 

104: 7-104 195.03  175.28 10.13 

98: 58-98 144.10  140.34 2.61 

89: 59-89 155.10  143.08 7.75 

Insecure CCT < 0.1   

17: 17-22 139.74  133.32 4.59 

33: 33-34 115.22  110.47 4.12 

99: 36-99 110.70  99.01 10.56 

2: 2-113 113.45  104.52 7.87 
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Table 5-2: Exact (Time-domain) vs. Estimated (BCU) CPU Time 

Contingencies 

TD-based 

CPU time 

(sec) 

 

BCU-based 

CPU time 

(sec) 

Relative 

improvement % 

Secure CCT > 0.2   

59: 59-72 132.48 15.23 88.50393 

116:115-116 156.22 16.09 89.70042 

1: 1-2 142.48 12.23 91.41634 

8: 7-8 135.23 12.1 91.05228 

11: 9-11 149.01 17.64 88.16187 

Critical 0.1 < CCT <0.2   

6: 7-6 128.46 13.35 89.60766 

7:7-6 148.1 15.48 89.5476 

104: 7-104 132.09 11.29 91.4528 

98: 58-98 133.67 12.31 90.79075 

89: 59-89 143.59 16.75 88.33484 

Insecure CCT < 0.1   

17: 17-22 153.27 11.04 92.79702 

33: 33-34 147.48 13.58 90.79197 

99: 36-99 139.95 12.02 91.41122 

2: 2-113 131.3 14.6 88.88043 

 

The proposed scheme has been evaluated on several test cases. Parts of the evaluation 

results are summarized in Table 5-1 and Table 5-2. The tests were performed on three 

groups of contingencies based on their level of severity. In Table 5-2, it can be seen that 

the estimated thresholds are uniformly and slightly smaller than the exact threshold 

values. The average relative error from all 14 cases is 5.95%. Table 5-2 shows the 

comparison of CPU time between two approaches. It is clear that the computational times 

by the proposed BCU-based scheme are much less than the original time-domain-based 

approach. The average relative improvement for CPU time is 90.17%. Although the 

computation has been greatly reduced due to the approximation, the system thresholds 

estimated by the proposed scheme still reflects the network topology, loading conditions, 

etc. and is based on the concept of relevant stability boundary of nonlinear systems [50]. 

From these numerical studies of the BCU-based scheme, we obtained the following 

observations: 
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(1)  The threshold values estimated by the proposed scheme are slightly smaller than 

the exact threshold values, with very small relative errors.  

(2)  The threshold values estimated by the proposed scheme are always less than the 

exact threshold values. This shows the slightly conservative nature of the proposed 

scheme.  

(3)  The BCU-based scheme is much faster than the time-domain approach in 

computing threshold values. 

(4)  The conventional TSCOPF guideline with a fixed 100° threshold is too 

conservative for all cases in Table 5-1. 

 

5.5 Proposed BCU-based TSCOPF Method 

The proposed BCU-based TSCOPF method is presented in Figure 5-3. The method has 

the following key steps: 

1. Assessment and screening step (contingency reduction step) 

2. Calculation of accurate threshold value step (threshold value calculation for each 

critical contingency) 

3. Reduced-size TSCOPF problem formulation 

4. Solving the reduced-size TSCOPF problem 

 
Figure 5-3: The conceptual BCU-based TSCOPF method for large-scale power systems with 
large contingency lists. The method consists of (i) fast assessment and screening by BCU 
method for taking out irrelevant contingencies (ii) computation of system and contingency 
dependent threshold values via a BCU-base scheme, (iii) Reduce-space interior point method. 
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    1)  Assessment and screening 

 

Practical large-scale power systems are subject to large contingency lists, but 

typically only a few contingencies are indeed insecure and critical, and require 

preventive control actions. Due to the computation limitation of numerical 

discretization-based TSCOPF, it is important not to include a large number of 

contingencies in the formulation. To help a large number of secure contingencies from 

getting included in the main TSCOPF solver, the BCU method is incorporated as a fast 

screening tool. This ensures that only critical or insecure contingencies are included in 

the TSCOPF formulation. As a result, a large-size contingency list is then reduced to a 

much smaller size of critical contingency list. 

    2)  Computation of  accurate threshold values 

 

The importance of using accurate threshold values in (5.11) has been stressed in [40]. 

The proposed BCU-based scheme is implemented to compute accurate system 

threshold for each critical or insecure contingency. One advantage of using this 

scheme as a screening tool is that, the CUEPs are already computed in the screening 

process, and hence can be readily used by the scheme. 

    3)  Reduced-size TSCOPF formulation 

 

The BCU-based TSCOPF formulation is formed by enforcing the angle-limit 

inequalities only for the critical and insecure contingencies. The threshold values 

computed by the BCU-based time-domain scheme are used as accurate threshold 

values. 

    4)  Solving the reduced-size TSCOPF 

The reduced-space interior point method [37] is applied to solve the BCU-reduced 

TSCOPF formulation. 

The flow chart of the proposed BCU-based TSCOPF method which includes a 

computational loop that constantly checks and updates the system contingency list and 

threshold values is shown in Figure 5- 4. We begin this procedure by solving a standard 



78 
 

OPF. The BCU method is then executed to screen out secure cases and to calculate 

CUEPs for computing accurate threshold values of critical contingencies. Once the 

threshold values are computed, the main TSCOPF solver is executed to solve the BCU-

reduced TSCOPF problem. This process repeats until no insecure contingency is found. 

The procedure is described as follows: 

 
Figure 5-4: The flow chart of the BCU-based OPF method for solving large-scale TSCOPF 
problems with a large-size contingencies. 

 

Given:   A power system case with a contingency list.  

Method:  Computing TSCOPF solution based on the proposed BCU-based scheme. 

Step 1: Solve standard OPF without considering any transient stability constraints. 
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Step 2: Run BCU method to filter out screen out secure cases. Save the CUEPs of 

insecure and critical cases. 

 

Step 3: Check if all contingencies are secure. If yes, end the program and output solution, 

otherwise proceed to step 4. 

Step 4: Include all insecure and critical contingencies in the reduced contingency list 

 

Step 5: Compute the accurate threshold value of each insecure and critical contingency in 

the reduced contingency list using the proposed BCU-based scheme. 

 

Step 6: Form the BCU-reduced TSCOPF formulation in expression (5.12) using the 

threshold values computed in step 5. 

 

Step 7: Solve the BCU-reduced TSCOPF formulation using the reduced-state interior 

point method and repeat step 2. 

 

Output: A transient stability constrained optimal power flow solution. 

5.6 Case Studies 

In order to evaluate the robustness and efficiency of the proposed BCU-based method, 

detailed numerical results for different test systems are presented in this section. Table 5-

3gives a summary of these test systems.  

Table 5-3: Summary of All Test Systems 

Test Systems BN  
GN  

maxT (SEC) t  

WSCC9 9 3 2.00 0.01 

IEEE39 39 10 2.00 0.02 

IEEE145 145 50 2.00 0.02 

IEEE162 162 25 2.00 0.02 

IEEE300 300 69 2.00 0.02 

CASE678 678 170 2.00 0.02 

 

*NB = Number of buses, NG = Number of generators 

Tmax = Total integration time, Δt = integration step size 
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In realistic scenarios, it is inevitable that large numbers of contingencies must be 

considered when TSCOPF problems are solved. Without a fast screening tool, it can be 

extremely expensive or impossible to perform the TSCOPF computation. Table 5-4 

shows the screening performance of the BCU method in eliminating irrelevant or stable 

contingencies. The accuracy of the BCU method is confirmed by the time-domain 

simulation program. Although a small number of secure cases did not get screened out, it 

is due to the slightly conservative nature of the CUEP method. Moreover, the 

computation times taken by the BCU method are much less when compared to the 

traditional time-domain approach. This confirms that the BCU method can greatly reduce 

the number of contingencies to be included in the main TSCOPF formulation. 

Table 5-4: BCU Classifiers and Screening performance 

System Nl 

Contingency screening 

BCU method 

Drop-out cases 

Time-Domain 

stable cases 

BCU Screening 

Rate % 

WSCC9 10 8 8 100 

IEEE39 50 45 46 97.83 

IEEE145 300 293 295 99.32 

IEEE162 300 295 297 99.33 

IEEE300 300 298 299 99.67 

CASE678 300 298 298 100 

*Nl is number of contingencies in the contingency list 

 

Table 5-5: Capability to handle large contingency lists Conventional TSCOPF  100° 

(IPM) vs. BCU-based TSCOPF (IPM) 

System *Nl 

CPU time (sec) 

Conventional 

TSCOPF 

100° (IPM) 

Conventional TSCOPF  100° 

(IPM) 

*with TD screening 

BCU-based 

TSCOPF  

(IPM) 

WSCC9 10 4.759 8.41 4.623 

IEEE39 50 - 40.33 21.06 

IEEE145 300 -  1256.45 538.42 

IEEE162 300 -  2696.78 1002.59 

IEEE300 300 -  4073.19 1716.44 

CASE678 300 -  14493.05 6128.81 

*Nl is number of contingencies in the contingency list 

** Post-fault numerical integration of 5 seconds is used to assess transient stability. 
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Table 5-6: TSCOPF Solution Quality Fixed threshold 100° vs. Computed Thresholds 

(BCU-based) 

System Nl 

Objective function value at TSCOPF 

solution 

Relative 

improvement 

% Conventional 

TSCOPF 100° (IPM) 

*with TD screening 

BCU-based 

TSCOPF  

(IPM) 

WSCC9 10 $15,421 $14,031 9.01% 

IEEE39 50 $65,330  $61,248  6.25%  

IEEE145 300 $203,449  $185,226  8.96%  

IEEE162 300 $148,405  $132,110  10.98%  

IEEE300 300 $544,095  $523,060  3.87%  

CASE678 300 $832,713  $790,432 5.08%  

*Nl is number of contingencies in the contingency list 

 

Table 5-5 provides a comparison summary of the OPF solutions obtained by the 

conventional method and by the proposed BCU-based TSCOPF with a focus on the 

capability in handling large contingency lists. Both methods utilize interior point method 

as the main TSCOPF solver. The third and fifth columns show that the conventional 

approach cannot solve most of the cases while the BCU-based approach is successful in 

all cases, including 678-bus system with 300 contingencies. Forth column of Table 5-5 

presents the CPU time when conventional TSCOPF is performed along with a time-

domain-based approach for screening. It can be seen that the CPU times by the time-

domain approach are much higher than the BCU-based approach in all cases. This 

inferior performance in computational speed by the time-domain approach is mainly 

caused by the time-consuming numerical integrations of post-fault systems. 

The advantage of using accurate system threshold values is presented in Table 5-6. 

The widely-used fixed threshold proxi with 100° is utilized by the conventional TSCOPF 

(with TD screening). We note that the BCU-based TSCOPF method computes and uses 

the actual system threshold values. The results show that by using more accurate 

threshold values, the quality of the optimal solutions of all test systems is greatly 

improved. The resulting objective function values of total generation costs are shown in 

the Table 5-6. The average improvement on the objective function values is 7.03%.  
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5.7 Conclusions 

The TSCOPF problem is indeed a challenging optimization one. A BCU-based 

method is proposed for computing solutions of large-scale TSCOPF problems with a 

large set of contingencies. Details of the BCU-based method are discussed, including the 

BCU-based scheme for computing accurate system thresholds and the implementation of 

the BCU method as fast screening tool. The key features of the proposed BCU-based 

TSCOPF method are as follows: 

1) The BCU method provides a fast and effective tool to screen out irrelevant or secure 

contingencies. This capability greatly reduces the required computational burden 

when large contingency lists are considered. 

 

2) The BCU-based method for computing system threshold values provides the 

TSCOPF solver with accurate system-dependent threshold values. This improves both 

the accuracy in stability assessment and the quality of the TSCOPF solution. 

 

3) This BCU-based method is applicable to any discretization based TSCOPF solvers.  

 

Numerical results on several TSCOPF problems indicated that the proposed BCU-

based method improves (i) the computational speed, (ii) the capability of TSCOPF 

method to handle large contingency lists, (iii) the accuracy of transient stability constraint 

in TSCOPF formulation, and (iv) the quality of optimal solutions of every test system. 

These promising results suggest that the proposed method can be an effective alternative 

for solving large-scale TSCOPF with large contingency lists.  
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