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Introduction 

• In extreme loading regimes “friction” between 

metals is complex 

– Sticking: Static friction forces keep materials from 

sliding and materials are strong enough to 

withstand those forces 

– Sliding: Static friction is exceeded and Coulomb 

friction forces exist along with dry friction heating at 

the interface (rub your hands together to warm 

them up), materials are strong enough 

– Smearing: Sticking condition, but material strength 

exceeded by Coulomb forces, material plastically 

deforms and produces plastic work heating 

– All cases: heat conduction 

• Plasticity is localized at the surface in a thin 

boundary layer 

– Too expensive to resolve the boundary layer 

• Heat from plastic work and dry friction thermally 

soften the metals which can melt 
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Introduction 

• Thin plastic boundary layer and high relative sliding velocity 

means large strain rates and huge range of strain rates 

– O(108) s-1 at the interface 

• At small length scales, conduction time scales matter 

• Plastic work deposits heat locally that conducts away 

• Coulomb dry friction heating at the surface conducts into both 

materials 

• Complicated. 

• Want a practical model that captures much if not all of the 

physics 
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The Model 

• Coupled multi-scale friction model 

– Macro-scale = Computational mesh 

– Micro-scale = 1D boundary layer mesh at each surface point 

• Spans both contacting materials 

• Micro-scale conduction and plasticity 

– Based on similar approach by Dambakizi 
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The Model: Micro-scale conduction 

• Solves the non-steady heat equation on a 1D mesh using Crank-

Nicholson time integration.  Implicitly evolves temperature field by 

macro-scale Dt 

• Coupled to macro-scale 

– Macro-scale temperature used as Dirichlet BC at each end of the 

1D mesh 

– Heat flux in/out the ends of the 1D mesh coupled to macro-scale 

as macro-scale internal energy source/sink 

– Macro-scale heating (PdV, radiation-electron coupling, etc.) 

deposited uniformly into 1D micro-scale thermal field 

– Macro-scale sliding velocity and friction force provide Coulomb dry 

friction heat source, deposited at the center of the 1D mesh at the 

contact interface 

• Coupled to micro-scale plasticity 

– Micro-scale plastic heating deposited into thermal field 
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The Model: Micro-scale plasticity 

• Quasi-static assumption (Boo!!) 

– Quasi-uniform strain and strain rate 

• Steinberg-Cochran-Guinan (SCG) strength 

(Boo!!) 

– Thermal softening with melt (Yay!!) 

– Not rate-dependent (Boo!!) 

• Quasi-static assumption and rate 

independent strength enable a numerical 

“trick” 
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The Model: Micro-scale plasticity 

• Compute yield stress of each material in 1D zones connected to 

contact interface using SCG model 

• Take minimum of the two (weaker material) 

• Apply this stress to the entire 1D mesh 

– Requires quasi-static assumption 

• Calculate strain increments in each 1D zone 

– Solve SCG stress-strain relation for strain increment and rate 

(divide increment by Dt to get strain rate) 

– Requires rate-independent strength model 

𝑌 = 3𝜏 0 = 𝑌0 1 + 𝛽𝜖𝑝
𝜂 𝐺(𝑃, Θ)

𝐺0
 

𝜖𝑝
𝑛 = 𝜖𝑝

𝑛−1 + Δ𝜖𝑝 Δ𝜖𝑝 =
1

𝛽

3𝜏(0)𝐺0
𝑌0𝐺 𝑃, Θ

1
𝜂

− 1 − 𝜖𝑝
𝑛−1 

𝜖𝑝 = Δ𝜖𝑝/Δ𝑡 

𝐺 = 𝐺0 1 + 𝑔𝑃 − ℎΘ Θ − 300 exp⁡ −
0.001 ∙ Θ

Θ𝑚 − Θ
 

𝜏(0) 
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The Model: Micro-scale plasticity 

𝐺 = 𝐺0 1 + 𝑔𝑃 − ℎΘ Θ − 300 exp⁡ −
0.001 ∙ Θ

Θ𝑚 − Θ
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The Model: Micro-scale plasticity 
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The Model: Micro-scale plasticity 

• Integrate strain rate across 1D domain 

– Gives micro-scale relative sliding velocity 

– Δ𝑢12 = 3 
Δ𝜖𝑝(𝑥)

Δ𝑡
𝑑𝑥

ℎ2
−ℎ1

 

• Get macro-scale sliding velocities 𝑈1 and 𝑈2 

• Get macro-scale relative sliding velocity 

– Δ𝑈12 = 𝑈2 − 𝑈1 

• Scale strain increments so integral matches macro-scale relative 

sliding velocity 

– Δ𝜖𝑝
𝑛𝑒𝑤 = max⁡ 0,

Δ𝑈12

Δ𝑢12
Δ𝜖𝑝  

• Deposit heat into 1D model based on scaled strain increments 

• Evolve 1D plastic strain field based on scaled strain increments 

•  𝜏𝑡 = 𝜇𝑡 ∙ 𝜏 0  is the Tresca (smearing) friction force 

 

ℎ1 ℎ2 

Mat 1 Mat 2 𝑥 
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The Model: Other stuff 

• In addition to the micro-scale aspects: 

• Sticking traction is computed 

• Coulomb traction is computed 

– 𝜏𝑐 = 𝜇𝑐 ∙ 𝑃 

• Tresca (plasticity/smearing) traction 𝜏𝑡 is computed 

• Minimum traction is determined 

– If Coulomb, no plasticity, but we must solve the conduction 

problem with a dry friction heat source 

– If Sticking, no plasticity, just conduction without a dry friction heat 

source 

– If Tresca, evolve plasticity, deposit plastic work, no dry friction 

heating 

• Can change throughout a simulation 
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The Model: Recap 

• Handles sticking, Coulomb and Tresca 

friction automatically 

• Coupled multi-scale model 

• Micro-scale plasticity and heat conduction 

• Coupled to macro-scale internal energy, 

velocity and stress fields 

• Some big warts in the micro-scale plasticity 
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FLAG Input Syntax 

• Must indentify “material 1 side” vs “material 

2 side” 

– Each has different SCG parameters, mesh 

depths, conductivities 

• Must specify thermal and mechanical 

properties 

• Only true knobs are the friction coefficients 

𝜇𝑡 and 𝜇𝑐 

• Calibrating rate-independent SCG model 

parameters for higher rates would probably 

be considered knobs 
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FLAG Input Syntax 

Add this to your typical slideline definition: 

 
mk /global/mesh/hydro/lhydro/kbc(SlipFrict)/slide/enforcement/friction/multi_scale 

   alias pffrict      pffrict      $Friction forces 

   alias p_tau        p_tau        $Friction tractions 

   alias p_taustick   p_taustick   $Sticking tractions 

   alias p_taucoulomb p_taucoulomb $Coulomb tractions 

   alias p_tautresca  p_tautresca  $Tresca tractions 

   alias p_relvel     p_relvel     $Relative sliding velocities 

   alias p_x0temp     p_x0temp     $Temperature at 1D interface 

   alias p_maxtemp    p_maxtemp    $Maximum temperature on “my” side of 1D mesh 

   alias p_maxeps     p_maxeps     $Maximum effective plastic strain on my side 

   alias p_pressure   p_pressure   $Contact pressure 

   alias p_heatflux   p_heatflux   $Heat flux through my end of 1D mesh 

   alias kp_frictype  kp_frictype  $Friction type (0=none, 1=stick, 2=Tresca, 3=Coulomb 

  

   bdy1 = "Be_Contact_Bdy“         $kbdy node name identifying side 1 (Beryllium) 

   map_opt = 2                     $Project onto z-axis when mapping across interface 

   gap_max = 0.01                  $In contact if gap is less than this 

 

   rmu_c   = 0.3                   $Coulomb friction coefficient 

   rmu_t   = 0.9                   $Tresca friction coefficient 
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FLAG Input Syntax (cont’d) 

$ 1D mesh specs 

   h1      = 1.0e-3       $1D mesh depth into material 1 

   h2      = 1.0e-3       $1D mesh depth into material 2 

   nz      = 40           $1D zones in each material (80 zones total) 

$ Be is side 1 

   rk1     = 2e-11        $Conductivity of material 1 

   g01     = 1.51         $G_0 SCG initial shear modulus of material 1 

   y01     = 3.3e-3       $Y_0 SCG initial yield stress of material 1 

   ymax1   = 1.31e-2      $Y_max SCG maximum yield stress of material 1 

   beta1   = 26.0         $SCG work hardening coefficient of material 1 

   eta1    = 0.78         $SCG work hardening exponent of material 1 

   g1      = 1.54         $SCG P-dependent shear modulus coefficient for mat 1 

   htheta1 = 2.58e-4      $SCG T-dependent shear modulus coefficient for mat 1 

   tmelt1  = 1820.0       $Melt temperature of material 1 

$ Cu is side 2 

   rk2     = 4.01e-11     $Conductivity of material 2 

   g02     = 0.477        $G_0 SCG initial shear modulus of material 2 

   y02     = 1.2e-3       $Y_0 SCG initial yield stress of material 2 

   ymax2   = 6.4e-3       $Y_max SCG maximum yield stress of material 2 

   beta2   = 36.0         $SCG work hardening coefficient of material 2 

   eta2    = 0.45         $SCG work hardening exponent of material 2 

   g2      = 2.83         $SCG P-dependent shear modulus coefficient for mat 2 

   htheta2 = 3.77e-4      $SCG T-dependent shear modulus coefficient for mat 2 

   tmelt2  = 1790.0       $Melt temperature of material 2 
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Results 

• LANL laser-driven flyer Cu/Be friction experiment 

• ~150m/s Cu flyer velocity 

• Composite Cu/Be target 

• Point and line VISAR diagnostics and TIDI on the 

back surface of the target 

Cu 

Cu 
Be 

Friction 
1mm 

0.5mm 

10mm 

2mm 

8mm 

6o 

150m/s 
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Results: The Model 

Be 
Cu 

Cu 

VISAR 

Friction Slideline 

Frictionless Slideline 
v0=150m/s 

• PTW’ for all materials 

• 2 slidelines, one frictionless, one with friction 

• Cu and Be SCG friction parameters from Steinberg compendium 

• 11 VISAR probes 
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Results: Pressure at 60ns 
• Be sound speed higher than Cu 

• Velocity difference at interface causes sliding 

• Cone angle increases contact pressure 
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Results: Micro-scale behavior 

What’s happening here? 

• Will evaluate each aspect of the model at one point on the interface 

• Demonstrate increasingly coupled effects 
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Results: Pure Conduction 
• Set impact velocity to 0 

• Only conduction 

• Cu and Be initialize to different temperatures 

Be side 

Cu side 

Time 
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Results: Bulk Heating 
• Set impact velocity to 150m/s 

• Frictionless (set Coulomb friction coefficient to zero) 

• Force insulating condition at contact interface 

• Cu and Be heating due to macro-scale PdV work and Dirichlet BC 
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Results: Bulk heating with conduction 

• Same as before, but conduction enabled across interface 
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Results: Bulk and Coulomb heating 

• Turn on Coulomb friction 

• Set SCG Y0 to a large number so smearing friction is disabled 

• Coulomb dry friction heat source at interface until sticking condition occurs 
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Results: Smearing friction 

• Turn off Coulomb friction (set coefficient to large value) 

• Use correct SCG parameters 

• Plastic work heating in Cu 
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Results: Smearing friction 

• Cu plastic strain field essentially constant 

• Temperatures not high enough for much thermal softening 

• Not much temperature difference to see strength differences 
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Results: Whole tamale 

• Set everything to proper values 

• Essentially no Coulomb friction or sticking, purely smearing 



28 

Results: Line VISAR 

• Don’t understand experimental results 

• Don’t follow expected trends 

• Suspect experiment warrants more 

complicated initial conditions 

• Need to simulate AWE/CEA Al/SS friction 

experiments 
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Summary 

• Coupled multi-scale friction model is in 

FLAG 

• 1D micro-scale thermal conduction coupled 

to macro-scale and 1D micro-scale 

plasticity 

• Sticking, Coulomb and Tresca conditions 

• Plasticity model assumes quasi-static 

conditions and is rate-independent 

– Biggest concern with the current model 
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Conclusions 

• Much of the individual aspects of the model 

have been tested independently and in 

increasingly coupled cases, works as 

designed 

• Plasticity assumptions are invalid, but may 

be “sufficiently valid”? 

• Friction has an effect, but better 

experiments need to be simulated for 

validation testing 



31 

Future Work 

• Simulate AWE Al/SS friction experiments 

• Test on integrated applications 

• Replace plasticity model 

– 1D implicit elastic/visco-plastic hydrodynamics 

solver (velocity field, momentum equation, etc.) 

– 1D pure shear (xy) assumption 

– PTW’ (or multiple) plasticity model(s) 

• Rate dependence, thermal softening, work 

hardening, etc. 

• 𝜅(𝜌, Θ) for more accurate conduction 


