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Executive Summary

In this research project, the interaction of atmospheric pressure plasmas with multi-phase 
media was computationally investigated. Multi-phase media includes liquids, particles, complex 
materials and porous surfaces. Although this investigation addressed fundamental plasma 
transport and chemical processes, the outcomes directly and beneficially affected applications 
including biotechnology, medicine and environmental remediation (e.g., water purification). 
During this project, we made advances in our understanding of the interaction of atmospheric 
pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic 
materials and liquids. We also made advances in our ability to use computer modeling to 
represent these complex processes. We determined the method that atmospheric pressure 
plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical 
and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in 
thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas 
can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These 
findings are important to the advancement of new technology areas such as plasma medicine.

Comparison of Actual Accomplishments to Goals and Objectives of Project

The original project had two objectives -  1) investigation of the role of bubbles in liquids 
on electrical breakdown and the propagation of plasma streamers and 2) investigation of the 
interaction of atmospheric pressure plasmas with liquid layers. During the time of the project, 
the sub-fields of plasma medicine, plasmas on liquids and plasma jets have burgeoned to the 
point of nearly dominating the field of low-temperature plasma as a whole. As a result, the focus 
of our investigation was less on the role of bubbles in breakdown and propagation of streamers 
and more on interactions of atmospheric pressure plasmas with liquid layers and interfaces, and 
organic materials. These interfaces include liquids exposed to the atmosphere and the liquid 
interface in bubbles. These activities included investigation of the plasma sources that are used 
in these plasma-liquid-organic interactions. During the project period, we made many new 
discoveries in how atmospheric pressure plasmas and plasma sources interact with complex 
surfaces, liquids and inside bubbles. We also quantified the fundamental operating properties of 
the two main plasma sources used for atmospheric pressure plasma interactions with liquids and 
complex organic surfaces -  plasma jets and dielectric barrier discharges.
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Products Developed Under the Award

The primary work produce resulting from this grant are refereed journal articles, 
conference proceedings and presentations, seminars and symposia. A list of publications and 
presentations that acknowledge support from the DOE under this grant are listed in Appendix A. 
The products include:

Number:
Refereed Journal Articles 19
Book Chapters 1
Conference and Workshop Presentations

Invited with Proceedings 6
Invited with Abstracts 22
Contributed with Proceedings 4
Contributed with Abstracts 24

Invited Symposia, Seminars, Short Courses 15

Summary of Project Activities

The project activities addressed computational investigations of a comprehensive range 
of topics addressing plasmas interacting with liquids, bubbles in liquids, and the response of 
liquid and organic materials to the delivery of activation energy by atmospheric pressure 
plasmas. Our computational investigations also addressed the plasma sources used in these 
processes. The major findings are discussed in the accompanying journal articles included as 
Appendix B. The findings are briefly summarized here.

(Note: In the following, [JA-x] refers to the xth entry in the listing of journal articles appearing in 
Appendix A.)

[JA-1] One of the major outcomes of atmospheric pressure plasmas interacting with
organic and semi-insulating materials, such as thin liquid layers, is the delivery of electric fields 
into the materials due to the impact of the plasma ionization wave on the surface. In this article, 
we discuss the mechanisms of electric field delivery to individual components of cells under the 
skin.

[JA-2] Sustaining plasmas in bubbles is a means of producing reactive species inside
liquids. Applications include purification of water and chemical processing. In this project, we 
collaboratively investigated the synergistic effects of plasmas in bubbles and the resulting 
stability of the bubble.

[JA-3,4] It is commonly assumed that the ions striking surfaces in atmospheric pressure
plasmas have low energies. In this work, we computationally demonstrated that under select 
conditions, pulses of high energy ions can be delivered to organic surfaces. We examined the 
distribution of ion energies delivered to flat polymer surfaces and small particles suspended in 
air. These results have potentially important implications for the use of atmospheric pressure 
plasmas to treat organic materials and liquid surfaces.
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[JA-5,12,15] The delivery of atmospheric pressure plasmas into the human body in the context 
of plasma medicine is challenging. In the treatment of lung tissue, the plasma may be guided by 
the branching of the bronchial tubes. In these papers we investigated the mechanisms whereby 
atmospheric pressure ionization waves can be guided by tubular, branching structures, and how 
plasmas can be induced in neighboring tubes. We determined scaling laws for the manner in 
which the plasmas can split and be reformed during their travel through the tubes.

[JA-6,9,13] Atmospheric pressure plasmas in the form of ionization waves in dielectric barrier 
discharges (DBDs) are used in the treatment of wounded skin. In these studies, we quantified the 
manner of delivery of activation energy (e.g., ion, photons, radicals) by DBDs into small wounds 
in skin. We numerically demonstrated the spreading of plasma on the surface of skin and into 
small wounds. We estimated the rate of sputtering of cellular membranes by these atmospheric 
pressure plasmas, and how the delivery VUV photon fluxes, ions and radicals depend on the 
topography of the wound.

[JA-7] Plasma treatment of porous materials is of interest in the functionalization of
tissue scaffolding for tissue engineering. The goal in this treatment is to have atmospheric 
pressure plasmas penetrate into randomized structures, usually moisture or liquid covered 
dielectrics, to functionalize the surface with desired chemical properties. In this paper, we 
investigated the mechanisms whereby plasmas can penetrate deeply into such highly porous 
materials.

[JA-8] The code nonPDPSIM  used during this project was employed in a collaborative
experimental investigation of plasma jets for purposes of code validation. The modeling 
platform reproduced experimentally observed distributions of excited states in atmospheric 
pressure plasma jets.

[JA-10] One of the ways to deliver activation energy from atmospheric pressure plasmas 
jets into the human body is the use of endoscopes -  flexible tubes that are inserted into the lungs, 
esophagus or rectum. These tubes have circuitous paths which take turns of differing radii of 
curvature which makes delivery of the plasma questionable. In this project, we investigated how 
atmospheric pressure ionization waves propagate through bending dielectric tubes. We 
quantified the charging mechanisms of the inside surfaces of the tubes and how that affects the 
path the plasma takes. We made predictions of the properties of the je t that emanates from the 
tube.

[JA-11] The 2012 Plasma Roadmap is a comprehensive projection of the direction the 
field of low temperature plasmas will take in the next 5+ years. The principle investigator was a 
contributor to the roadmap in the area of plasma modeling.

[JA-14] In previous work, we determined the ability of atmospheric pressure plasmas to 
deliver pulses of energetic ion fluxes to solid and liquid surfaces. In this investigation, we 
proposed a method to control those ion energies through the use of porous membranes. By 
varying the dielectric constant and the diameter of the pores of the membranes, one can control 
the distribution of ion energies penetrating through the pores to the underlying surface.
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[JA-16] Sustaining plasmas in bubbles in liquids is an extremely promising method to 
deliver radicals into the interior of liquids. In this collaborative study, the mechanisms for 
producing radicals and excited states by atmospheric pressure plasmas in bubbles in water were 
investigated. Quantitative comparisons were made to experiments performed by collaborators.

[JA-17] The majority of atmospheric pressure plasmas in contact with liquids are in the
form of plasma jets. In order to increase the area of the liquid being treated, bundles of plasma 
jets are often used. Experimentally, it is observed that the plasma jets mutually interact. In this 
project, we computationally investigated the mechanisms whereby small arrays of plasma jets 
interact through electrostatic, photolytic and hydrodynamic mechanisms. We found that the 
diffusion of ambient air into the jets will preferentially quench outer jets in the bundle and 
intensity the interior jets.

[JA-18] In most cases of atmospheric pressure plasmas treating human tissue, the tissue is
covered by a thin layer of a water-like liquid. The active species produced by the plasma must 
penetrate through the liquid layer before reaching the underlying tissue. In this investigation, we 
modeled mi cro-pl asm a- streamers as produced by dielectric barrier discharges and their 
interaction with thin layers of water. We quantified the mechanisms whereby the plasma 
produced reactive species are filtered and transformed by the water layer before reaching the 
underlying tissue.

[JA-19] It is often the case that small wounds in skin treated by plasma are filled with a
liquid. The electrical properties of the liquid and the shape of the wound affect the dynamics of 
the plasma and can feed-back to the plasma properties. In this investigation, we modeled the 
interaction of plasma streamers as produced in dielectric barrier discharges with small wounds of 
different sizes filled with liquids having different dielectric properties. We quantified how these 
properties affect the delivery of electric fields to structures in the liquid resembling blood 
platelets and to cells below the liquid.

Computer Modeling

This project involved the use and improvement of the modeling platform nonPDPSIM. 
This modeling platform was largely developed, validated and released to collaborators prior to 
the start of this grant. As such we refer the reader to the authors’ prior publications, available at 
http://uigelz.eecs.umich.edu for a detailed description of the algorithms and validation of 
nonPDPSIM. During this grant we improved and refined those algorithms. These mathematical 
algorithms and solution methods have been peer reviewed through these many publications. We 
include a brief description of the algorithms here.

The model, nonPDPSIM , is a multi-fluid hydrodynamics simulation in which transport 
equations for all charged and neutral species and Poisson’s equation are integrated as a function 
of time. The fundamental equations for charged species that are solved are,

- V  - s V  ^  = Y 4N ]q] + p s
( 1)
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(2)
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(3)

where s, O, p s, and a  are the permittivity, electric potential, surface charge and conductivity of 
solid materials; and for species j, Nj, <ph Sj and are density, flux, source function and charge. 
Poisson’s equation (Eq. 1), transport equations for conservation of the charged species j  (Eq. 2) 
and the material and surface charge balance equation (Eq. 3) are simultaneously integrated using 
a sparse-matrix and Newton iteration technique.

Updates of the charged particle densities and electric potential are followed by an implicit 
update of the electron temperature by solving the electron energy conservation equation,

where the average electron energy s  = \k T e for electron temperature Te, <j>e is the Scharfetter-

is the electron thermal conductivity. The summation is over electron collisions with species 
having density TV, and rate coefficient k, resulting in change in electron energy As,. The electron 
transport coefficients and rate coefficients for bulk electrons as a function of Te are obtained by 
solving Boltzmann’s equation for the electron energy distribution (EED). Rate coefficients are

coefficients as a function of Te = (2/3)s, where s is the average electron energy. Poisson's 
equation (Eq. 1) is solved throughout the entire the computational domain (except in metals 
where the potential is specified as a boundary condition). Continuity equations for gas phase 
charged and neutral particles are only solved in the plasma regions including liquid. Equation 
(3) for surface and volume charges is solved on and inside all non-metallic materials.

Photo-ionization by streamer generated radiation producing electrons ahead of the 
avalanche front is critical to the propagation of positive streamers. Our approach to 
photoionization is based on line-of-sight propagation of UV ionizing radiation generated by high 
lying excited states that are produced largely in the high E/N in the avalanche front. The UV 
radiation is absorbed (without producing ionization) over a specified mean-free-path which 
determines its extent beyond its origin. Photoionization occurs by absorption of UV radiation by 
selected species. The source term in Eq. 2 includes these photoionization processes which are 
computed using a Green’s functions. The rate of photoionization given by

ds
dt (4)

Gummel form of the electron flux, j  = q<f>e is the total electron current in electric fie ld //, and k

obtained by solving Boltzmann's equation and creating look-tables that provide rate and transport

(5a)
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In these expressions, excited state Nj emits a photon at location r' with a rate given by Einstein 
coefficient v4y and ionizes species Nt with cross section a,, at location r . in traversing the plasma 
the photons are absorbed by species Nk with cross section o/:/. The function G; (r ,r  ) is the
probability of survival of the emitted photon and divergence of its flux between emission and 
ionization.

The model is executed on an unstructured mesh. All Laplacian operators are formulated 
using conservative finite volume techniques. For example, for node z and flux (|),

Y7 / 1 A i k(pi k

(6)

where (j)ik the flux between nodes z and k  defined as being positive if directed away from z, r  is 

the spatial location of node z, AiJ: is the area of the face between the volume cells centered on 

nodes z and k, and Vi is the volume of the cell for node z. The system of equations for charged
particle transport and Poisson’s equation is integrated in time using an implicit Newton’s method 
with numerically derived Jacobian elements . The resulting sparse matrix was solved using the 
numerical package dslucs, obtained from the SLAP Sparse Matrix Library or in parallel using the 
Intel Math-Kernal-Library (MKL). The matrix solver uses a biconjugate gradient spare matrix 
solution technique with incomplete LU factorization for preconditioning.

The transport of secondary beam-like electrons emitted from the surfaces are tracked 
using an electron Monte Carlo Simulation (eMCS). The fundamentals of the eMCS will briefly 
be described. The computational mesh employed in the plasma hydrodynamic portion of the 
model is unstructured. As such, it is computationally expensive to locate particles in the mesh 
during the eMCS to accumulate statistics at nodes in the mesh; or to obtain mesh quantities, such 
as electric fields and collision frequencies, required to advance the trajectories of the 
pseudoparticles. As these assignments and interpolations would otherwise be responsible for the 
vast majority of the computer time spent in the eMCS, the following methodology was used.

The advancement of trajectories in the eMCS is performed on a Cartesian mesh (CM) 
which is over-layed onto the unstructured hydrodynamics mesh (UM). The CM overlays only 
that portion of the UM in which beam electron transport is expected to be important, a choice 
refined by iteration and experience. The resolution of the CM is chosen to be fine enough to 
capture the small scale features of the UM. As the number of arrays in the eMCS which are 
indexed on the CM is small, there is not a large computational penalty to having a fine enough 
resolution in the CM to capture the resolution of UM.

At the beginning of the eMCS, Green’s functions are developed for interpolation of 
quantities from the UM to the CM, and vice-versa. To interpolate from the UM to a node in the 
CM, the nearest nodes from the UM in each of the four Cartesian quadrants centered on the node 
in the CM are located. Quantities on the UM in adjacent quadrants are interpolated to the axes of
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the CM; and those axial quantities are then interpolated to the central CM node. To interpolate 
from the CM to a node in the UM, the mesh cell in the CM containing node in the UM is located. 
The four vertices of the cell in the CM then provide values to perform a 2-dimensional 
interpolation to the node in the UM. As such, the ideal spacing of the CM is to have a single 
node from the UM in each cell of the CM. In practice, this is not possible and so search 
algorithms are employed to locate the appropriate vertices in the CM and nodes in the UM to 
facilitate use of the Green’s functions.

The electric potentials produced in the fluid module are interpolated to the CM. Based on 
incident ion fluxes and secondary electron emission coefficients, electron pseudoparticles are 
released with an energy of 4 eV from nodes on surfaces in the UM. These pseudoparticles are 
weighted by the magnitude of the local ion flux, the secondary electron emission coefficient and 
the number of particles released at each node. The weighting of each pseudoparticle has units of 
electrons/s. Using the Monte Carlo techniques, the trajectories of the secondary beam electrons 
and their progeny are integrated as a function of time. Pseudoparticles (and their progeny) are 
tracked until they hit boundaries, move out of the confines of the CM or fall below a specified 
energy thereby joining the bulk electron distribution. The weightings of these latter 
pseudoparticles are summed into sources S, for electrons and are included in Eq. 1. The 
trajectories of the beam electrons are sampled with each move of the pseudoparticles, binning 
them in energy and location on the CM to produces spatially dependent electron energy 
distributions, f { s , r ) having units of electrons-cm"3eV"1. When convolved with electron impact 
cross sections, source functions having units cm'3s'1 are produced which then contribute to St for 
the appropriate species. These source functions are then interpolated onto the UM.

The fluid averaged advective velocity is obtained by solving a modified form of the 
compressible Navier Stokes equations in which source terms for momentum imparted from the 
electric field are included. In doing so, we assume that the pressure is sufficiently high and the 
rate of momentum transfer is sufficiently large that little momentum is instantaneously stored in 
the electrons and ions. As such, the electron and ion momentum sources instantaneously appear 
in the fluid equations. The equations we solve for the fluid averaged advective velocity, v , are

dp _
—  = -V  • pv 
dt
dpv
dt

= -V P  -  V • pvv,. -  V • t  + ^ qiN iE

,T  -- -V  • (-  KVr + vc„t ) - P ( V  • v)+  (t • V v )- £  Ah,S, + Y I - E  

= - v . ( - K „V7-J

dt

dpcX
dt

(7)

(8)

(9)

(10)

where p  is the total mass density (including charged species), T  is the gas temperature, P  is the 
thermodynamic pressure (ideal gas behavior), r  is the viscosity tensor, k  is the thermal 
conductivity, cp is the heat capacity, and A/?; is the heat of formation for reaction i having source
function St. Eqs. 7-9 are solved throughout the plasma volume. Eq. 10, with the subscript m 
denoting non-plasma materials, is solved only in solids and non-plasma gases. The last term in
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Eq. 8 accounts for momentum imparted from the electrostatic field E  where the sum is over all 
charged species having density M and charge q,. The last term in Eq. 9 accounts for Joule 
heating due to acceleration of ions in the electrostatic field having current density / .

Ion energy and angular distributions (IEADs) to surfaces are computed using the Plasma 
Chemistry Monte Carlo Module (PCMCM) in nonPDPSIM. The PCMCM is executed on a 
Cartesian mesh that overlays a subset of the computational domain. Pseudo-particles 
representing ions are launched from sites within the PCMCM mesh with weightings proportional 
to their rate of generation by electron impact and heavy particle reactions. Pseudo-particles are 
also launched from the boundaries of the PCMCM mesh in proportion to the entering fluxes of 
ions. Monte Carlo techniques are used to advance their trajectories in time varying electric fields 
while accounting for elastic and inelastic collisions. The energy and angles of particles as they 
strike surfaces are recorded over a predetermined period of time to provide IEADs as a function 
of location on the polymer surface and time. Electric potentials as a function of position 
computed on the unstructured mesh are interpolated onto the rectilinear structured mesh that 
overlays the unstructured mesh to enable the Monte Carlo algorithms to more rapidly execute. 
As the filament evolves, snapshots of electric fields are transferred to the PCMCM to produce a 
time sequence of the IEADs to the surface. The time interval between export of the electric 
fields to the PCMCM as well as the mesh resolution were extensively parameterized to insure 
that the IEADs were not sensitive to these values. In the end, the typical resolution for structured 
PCMCM meshes were 0.5-1 //m.

In modeling the interaction of atmospheric pressure plasmas with liquids, we used two 
approaches. The first method considered the liquid as a non-plasma-penetrating dielectric. In 
the second method, we treating the water in the same way we treated gas phase plasmas. In 
extending nonPDPSIM  into the liquid phase, we attempted to make a minimum of limiting 
assumptions. The numerical mesh is divided into zones which are specified as being gas or 
liquid. Computationally and algorithmically, the liquid zone is treated identically to the gas 
phase. The same equations (e.g., Poisson’s, transport and energy conservation, radiation 
transport) are solved in the liquid as in the gas. In order to properly include the larger dielectric 
constant of the liquid, an atomic polarizability is specified for each species so that the number 
density weighted polarizability yields the proper dielectric constant. Transport coefficients for 
neutral and charged species, and absorption cross sections, are determined by the local densities 
on a mesh-point-by-mesh-point basis.

The rate of transport of gas phase species into the liquid is determined by Henry’s law 
considerations. Henry’s law states that at a constant temperature and at equilibrium, the density 
of a gas dissolved in a liquid, water in this case, is proportional to the partial pressure of the gas 
in the vapor phase. A larger Henry’s law constant indicates a greater likelihood that the species 
in contact with water will dissolve into the liquid. For example, H2O2 and HNO3 are quickly 
solvated in water, while the solvation process for NO and O3 is slow. Henry’s law was 
implemented into nonPDPSIM  in the following manner. The interface between the gas and 
liquid phases is located by determining liquid mesh po in ts,/ that have gas phase mesh points i as 
at least one neighbor. For diffusive transport from the gas into the liquid, the diffusion 
coefficient between i and j  is given by

(  hn, -  n S
j

hn,
( i i )

Where D t is the diffusion coefficient in the gas phase, //, and n, are the densities of the species in



the gas and water, and h is Henry’s law constant. This effectively shuts off diffusion into the 
water when the equilibrium density at the surface is reached.

Due to their higher potential energies, we assumed that all ions, as well as electrons, and 
pass directly into the liquid. That is, the liquid mesh point having a gas phase mesh point as a 
neighbor receives charged species with a rate of diffusion (or drift in the electric field) given by 
their gas phase transport coefficients. For these species the diffusion coefficient for transport 
into the liquid is given by the gas phase values. For transport of the charged species out of the 
liquid into the gas, the liquid transport coefficients are used, which effectively traps the charged 
species in the liquid. From a practical perspective, the diffusion out of the water of dissolved gas 
phase ions or electrons is highly unlikely since their rates of solvation or charge exchange are 
large.

The exception to these practices is the evaporation of the liquid. We do not explicitly 
address the surface tension of the liquid-gas interface. Instead, we assume that the gas phase 
density of liquid vapor at the liquid surface is given by its saturated vapor pressure, which is 27 
Torr at 300 K for water. The corresponding vapor density is then used as a boundary value for 
diffusion of the liquid vapor from the interface into the gas.
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