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MOLECULAR SoLID EOS BASED ON
QUASI-HARMONIC OSCILLATOR
APPROXIMATION FOR PHONONS

RALPH MENIKOFF

September 1, 2014

Abstract

A complete equation of state (EOS) for a molecular solid is derived
utilizing a Helmholtz free energy. Assuming that the solid is non-
conducting, phonon excitations dominate the specific heat. Phonons
are approximated as independent quasi-harmonic oscillators with vi-
brational frequencies depending on the specific volume. The model is
suitable for calibrating an EOS based on isothermal compression data
and infrared/Raman spectroscopy data from high pressure measure-
ments utilizing a diamond anvil cell. In contrast to a Mie-Griineisen
EOS developed for an atomic solid, the specific heat and Griineisen
coefficient depend on both density and temperature.



Notation

Thermodynamic variables for EOS

V' is the specific volume
T is the temperature

F(V,T) is the Helmholtz free energy

P(V,T) = —0y F is the pressure

S(V,T) = —0rF is the specific entropy

e(V,T) = F + TS is the specific internal energy

Cy(V,T) = (Ore)v = T(0rS)v is the specific heat at constant volume
IV, T) =V (0.P)v is the Griineisen coefficient

Variables for phonon spectrum

v; is phonon frequency for the it* vibrational mode.

0 = hv/ky is characteristic temperature for frequency v

ky is the Boltzmann constant (1.381 x 10723 J/K)

h is the Planck constant (6.626 x 10734 Js)

0/[K] = 1.44 7/[cm™1], spectrometry units of inverse wavelength 7 = v/c
R is the gas constant (8.314 J/mol-K)

M is the molecular weight

n is the number of atoms per molecule

Ny is Avogadro number (6.022 x 10** molecules per mole)

Other thermodynamic variables

p = V=1 is density

c= (@P)}g/ ? is isentropic sound speed

Kr(V,T) = =V (0y P)r is isothermal bulk modulus

Ks(V,T) = =V (dyP)s = pc? is isentropic bulk modulus

Cp(V,T) = (Orle+V P])p = T(0rS)p is the specific heat at constant P
B(V,T) =V=Y0rV)p is coefficient of thermal expansion

Thermodynamic identities

Cy  Kr 1 3T Kr

CyT
Vo — =1-T?2 1
Cp KS pCP VKS ( )

For other identities, see for example [Menikoff & Plohr, 1989; App. A]. Note,
however, that this reference uses K for compressibility which is reciprical of
the bulk modulus used for K here.




1 Introduction

Empirical equations of state (EOS) used for solids typically are of the Mie-
Griineisen form; see for example, [Menikoff, 2007; sec. 4.4]. A key simplifying
property of the Mie-Griineisen EOS is that the Griineisen coefficient is a
function of only V. This is compatible with the specific heat depending
on only a single scaled temperature; that is, Cy(V,T) = é(T/@(V)) and
[ =T(V) = — 4 see for example [Menikoff, 2012]. These properties for T

dinV>
and C'y are reasonable approximations for metals which form atomic crystals.

For a molecular crystal (such as an explosive) the approximations do
not adequately account for the intra-molecular vibrational modes (optical
phonons) which dominate the specific heat. The variation in the intra-
molecular frequencies with density results in the Griineisen coefficient and
specific heat being functions of both density and temperature. The density
and temperature dependence of the specific heat is especially important for
the thermal reaction rate of an explosive.

The phonons can be accounted for utilizing a quasi-harmonic oscillator
approximation; i.e., each phonon corresponds to a quantum harmonic os-
cillator with frequency v; depending on V; see [Born & Huang, 1954]. An
atomic crystal has only acoustic phonons. Typically, a Debye model is used
for the acoustic phonons.

An EOS model for a molecular crystal based on the quasi-harmonic oscil-
lator approximation for each optical phonon has briefly been described before;
see for example [Menikoff, 2007; sec. 4.3.4]. The purpose of this report is to
present the details. The form of the model is suitable for calibrating a com-
plete EOS based on isothermal compression data and infrared/Raman spec-
troscopy data from measurements utilizing a diamond anvil cell to achieve
high pressure.

2 Free energy

It is convenient to specify a complete EOS in terms of the Helmholtz free
energy. Based on a reference isotherm through an initial state (Vg,Tp), the
general form of the free energy (see for example, [Menikoff, 2012; Eq. (30)])



can be expressed as

v INQZNE
F(V,T) = eg — T Sy — /V v’ {P(V’, o) + (VO) Cy (V! Ty) (T = Ty)
0
Td7’
- (T - T/) CV(V7 T/) ’ <2>
™ 1"

where ey = e(Vp, Tp) and Sy = S(Vo, Tp).

Due to the thermodynamic identity (see for example, [Menikoff, 2012;

Eq. (31))),
' V [0vCylr = T [0r(I Cy)lv | (3)

the specific heat and the Griineisen coefficient are not fully independent.
Integrating the identity yields

o (T dT’
LV, T)Cv(V.T) = (V. Ty) Cv(V, Tp) + VW . ?CVa/v ). (4)

Hence, I'(V, T') is determined by I'(V, Ty) and C(V,T).
Utilizing Eq. (3), the pressure can be expressed as
P(V.T) == (0vF)r
T
=PV, Ty) + V= [ dT'T(V,T") Oy (V,T") . (5)

To

This is compatible with the thermodynamic identity

(OrP)y =T Cy/V . (6)

The specific entropy is given by

SV, T) = = (0rF)v
T dT"

= T
S(V’ 0)+ T 1"

Cv(V,T') (7)
where the entropy on the reference isotherm is

v TV,
SV, Ty) = So + gy LV To)

Ty .
v v Cy(V',Tp) (8)



This is compatible with the thermodynamic identities

(0rS)y = Cv/T (9)
Oy S)r =T Cy/V . (10)

The specific energy is given by
e(V,T)=F+TS
T
=e(V,Ty) + dT’' Cv(V, T") (11)

To
where the energy on the reference isotherm is

INQZAVEY)

v Cyv(V', Ty) To| . (12)

|4
e(V,Ty) = eo— [ dV’ {P(V/, ) —

Vo

This is compatible with the thermodynamic identity

(8\/€)T =—-P + FCV T/V . (13)

These formulas show that a complete EOS is determined by two func-
tions of one variable, P(V,Ty), I'(V,Tp), and one function of two variables,

Cy(V,T). Moreover, this formulation is thermodynamically consistent; i.e.,
obeys the differential relation de = —PdV +T'dS.

If Cy(V,T) — 0 as T — 0, then the temperature integrals can be ex-
tended to Ty = 0. Using the cold curve as a reference, P.(V') = P(V,0), the
free energy reduces to

\4 T dT’
F(V,T)=eo— [ dV'P(V') - / (T—-T)Cy(V,T).  (14)
Vo 0 T,

Moreover, the compatibility relation, Eq. (4) reduces to

LV, T)Cy(V.T) = V Cy(V.T') . (1)

Hence, I'(V, T') would be completely determined by Cy (V,T). Furthermore,
from the thermodynamic identity, Eq. (1), Kr = Kg at T'= 0. Consequently,
P.(V) is both the T"= 0 isotherm and the S = 0 isentrope.



For an electrically non-conducting solid, the specific heat is dominated
by lattice excitations called phonons. The last term on the right hand side
of Eq. (14) can be replaced by the phonon free energy; i.e.,

1%
FV.T)=ey— dV' PB.(V') + E (V. T) . (16)
Vo
Since the phonon model is defined by a free energy, it satisfies the compati-
bility relation, Eq. (3). Consequently, the free energy given by Eq. (2) with
the phonon I' and Cy is equivalent to the free energy given by Eq. (16),
provided that

To
PV.Ty) = P.(V)+ V™! [Tal T, T) Cp(V,T) . (1)
0
To !
so= [ LcvwT) . (18)
o T

Utilizing a reference isotherm with T > 0 facilitates calibrating the model
to experimental data. The formulation can also be used with other thermal
models whose domain does not include 7" = 0, such as that of a liquid.

3 Phonon free energy

We base the thermal component of the EOS on two approximations for the
free energy of lattice vibrations. First, in the quasi-harmonic approximation
each atom is assumed to be in a quadratic potential well centered at its
equilibrium position within the crystal lattice, which depends only on V;
see for example, [Wallace, 2002; chpt. 3]. Second, the normal modes of
the lattice vibrations, called phonons, are each treated as an independent
quantum harmonic oscillator.

The phonon specific free energy can be expressed as

Fu(V,T) /dwg V)ln[1 — exp(—hw/k T)] | (19)

where w = 27 is the angular phonon frequency, g(w, V) is the density of
phonon states, and M is the molecular weight. The density of states is



the number of vibrational modes per unit frequency for a given specific vol-
ume V. An important property of a quantum harmonic oscillator is that the
energy eigenstates are equally spaced; i.e., e; = (j + %)ﬁw for j=0,1,2,---.
The quantum zero-point energy, & [ dw g(w, V) hw, is neglected since it is
a function of only V' and is accounted for in the reference isotherm. The
term in the integrand In[l — exp(—hw/k, T')] corresponds to —In Z, where
Z =3, exp(—e;/ky T') is the partition function for a single quantum oscil-
lator.

To localize an excitation within a particular unit cell of the lattice, one
needs to introduce the wave vector k, and utilize eigenfunctions of the crystal
Hamiltonian that have the form given by Blochs theorem

() = explik - Flu() , (20)

where u(7) is a periodic function on the crystal lattice. To avoid aliasing
and obtain a unique decomposition, k is restricted to the first Brillouin
zone; i.e., the unit cell in reciprocal lattice space. The energy eigenstates
then determine vibrational frequencies that depend on the wave vector; i.e.,
sy () = e (F).

The classical analog is instructive; a periodic lattice of molecules in which
the motion is governed by Newtons law with a force field consisting of springs
connecting neighboring atoms. The lattice vibrations correspond to the nor-
mal modes, for which the displacement of each atom is proportional to
expli(k - ¥ — wt)]. To leading order, the solution to the equations of mo-
tion satisfy a dispersion relation for the vibrational frequencies, w(lg) For a
crystal containing a mole of molecules, there are 3n /N4 normal modes. Since
Ny is very large, k can be regarded as continuous. This motivates utilizing
the density of states to account for the distribution of frequencies.

-,

The phonon spectrum w(k) splits into acoustic and optical branches; see
for example [fig. 17, Kittel, 1967] or [fig. 3.3, Poirier, 1991]. In effect, for a
given molecular vibrational mode, k gives rise to a phase shift between atoms
in neighboring unit cells. Since the atoms are all coupled through the force
field, the motion in neighboring unit cells can affect the mode frequency.

For the three acoustic branches w;(k) — ¢; k as k — 0, where the ¢; are
the acoustic speeds; one longitudinal mode and two transverse modes. Each
of the 3n — 3 optical branches is associated with a specific vibrational mode
of the molecule, and typically has a narrow band of frequencies in the range
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of infrared light. Typically, the Debye model is used for the three acoustic
modes. We later show that except for very low temperatures the Debye
model specific heat can be approximated by a harmonic oscilator phonon
mode with an effective frequency proportional to the Debye temperature.

We approximate the density of states with the sum of Dirac d-functions;
i.e., glw,V) =321 5<w - wi(V)). The density of states is normalized such
that each vibrational frequency corresponds to a mole of molecules. The
phonon free energy can then be written in terms of the free energy of har-
monic oscillators,

3n
Fo(V,T) = M7V Y Fuo(V, T 05) (21)

=1

It follows that the thermodynamic variables for each mode are additive; i.e.,

3n
Sph(v7 T) = Mil Z Sho(‘/y T7 Vi) ) (22&)
=1
3n
epn(V,T) = M7 eno(V, T 14) (22b)
=1
3n
CV,ph(V7 T) = M_l Z CV,ho(V'; T7 Vi) ) (22C>
=1
3n
Pyp(V,T) =M™ > Ppo(V.T;v;) . (22d)
=1

From the thermodynamic identities
(OrS)v = Cv/T
(OyS)r=TCy/V,
the Griineisen coefficient can be expressed as

It follows that I' is the specific heat weighted average of the mode T';, or

oV, T) = (23)

3n
LV, T)Cv(V,T) =Y Tno(V, T; 1) Cvno(V, T v5) (24)

=1



3.1 Quantum-harmonic oscillator

For each mode, the free energy per mole corresponds to that of a quantum
harmonic oscillator,

Fo(V, T;v) = RT In(1 — exp[—0(V)/T]) , (25)

where 0(V) = hv(V)/k, is the characteristic temperature associated with
the frequency v(V)). The entropy, energy, specific heat per mole and the
pressure (P,/M) are given by

Sno(V,T)/R = — In[1 — exp(—a)] + m . (260)
enlV.T)/(RE) = 22D (261)
Cun V)R = [ s | exn(a) (260)
Tho(V) = —dln@/din V' (26d)
Pu(viT) = 2oV vy (26¢)

where © = 6(V')/T. Since R = Ny ky, the average number of excitation per
molecule is epo/(Nahv) = epo/(RO). At T =60, 2 =1 and ep,/(R6) = 0.58;
i.e., on average slightly more than % an excitation per molecule. We note
that 'y, is a function of only V. Nevertheless, from Eq. (24), the Griineisen

coefficient I' is a function of both V and T.

The limiting properties of these variables are as follows. As T' — 0,

T — 00,
Sho_)oa
eho =0, Cyp—0.

The limit S — 0 is known as Nernst theorem (or the third law of thermo-
dynamics). It implies that the S = 0 isentrope coincides with the T'=0
isotherm. This requires that Cy, — 0. Consequently, zero temperature is
unattainable experimentally. Hence, the need for a formulation based on a
reference isotherm with 7 > 0.



As T — oo,
z—0,

Sho — R In(T/0) ,
€ho—>RT, Cv7h0—>R.

Consequently, the total specific heat approaches the limit
3n
Cyph = M™! > Cvno(V,Tiv3) = 3n- (R/M) . (27)
i=1

This is known as the law of Dulong and Petit, or the classical limit in which
all the phonon modes are completely saturated.

4 Molecular solid EOS model

Substituting the phonon specific heat and Griineisen coefficent into the for-
mulae in section 2 leads to a model EOS for a molecular crystal. The pressure
and energy can be written as follows:

P = P+ M S S vy i) esa
e(V,T) = e(V,Ty) + M~ Szn ei(V,T) — (V. Ty)| (28D)
where

e(V,Tp) = eo — VVdV’ [P(V’,T(]) — M 32% F"(VY’) Cvi(V!, To) To| |

- (29a)
B exp(—0:(V)/T)
@(ViT) = ROV) g0 e (200)
dln 6,

Cos(v,T) = R|— 2V ooy (294)

1 —exp(—0;(V)/T)
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Thus, the model is specified by a reference isotherm, P(V,Tj), and the char-
acteristic temperatures of the phonons, 6;(V) for ¢ = 1,---,3n. These
quantities can be measured experimentally. However, some constraints are
necessary for the model to be well behaved. For example, from Eq. (28a),
continuity of the pressure on an isotherm 7" # Tj requires that I';(V') is con-
tinuous for all modes. This in turn requires the phonon frequencies and their
first derivatives to be continuous.

For completeness, we note that the total specific heat is given by
3n
Cv(V,T)=M" Z Cvi(V,T) , (30)
i=1
and the Griineisen coefficient by

2n Ty(V) Cyy(V,T)

o =1

With the aid of the thermodynamic identity Eq. (13) applied to each phonon

mode, the isothermal bulk modulus can be expressed as

[Ca(V)J?
Vv

3n
Kp(V,T) = Kr(V,Tp) + M1

i=1

_Mlé Vddv<ri(vv)> eV, T) - eV 1))

JaviT) — (v Ty)]
(32)

where KT(V, To) = —V%P(V, To) and éZ(V, T) = 61(‘/, T) - Cv’i(v, T) T.

Thermodynamic stability requires Kr > 0. Since Cy,; is monotonically
increasing with T, for T' > Ty,

61(‘/, T)—eZ(V, To) < CVJ'<V, T) (T—Tg) < vai(V, T) T—CVJ(‘/, To) TO . (33)

Consequently, the second term on the right hand side of Eq. (32) proportional
to I';® is negative. In fact from Eq. (29b) and Eq. (29d), it can be shown
that é;(V,T) is monotonically decreasing with 7" and bounded;

—1RO,(V) < &(V,T) <0 . (34)

Therefore, at high temperature, the third term in Eq. (32) proportional to
e;(V,T) needs to be positive. Hence, %(Fi(V)/V) < 0, which places a
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constraint on how the phonon frequencies can vary with V. For T < Tj,
K7 < 0 could be regarded as a van der Waal loop and regularized with a
Maxwell construction. This may apply for V' > V4, in which case the van
der Waal loop could be associated with sublimation; i.e., break down of the
assumption of a single phase solid EOS model.

Continuity of K7 requires both I'; and its derivative are continuous.
Hence, from Eq. (29¢), continuity of the first and second derivatives of the
mode frequencies. A discontinuity in K7 is physically possible. In fact, this
occurs at phase boundaries, and leads to splitting of rarefaction waves. A
discontinuity in the second derivative of some mode frequency would have a
similar effect on rarefaction waves. However, for large molecule with many
modes, a kink in the derivative of any one mode frequency would have only
a small effect on I' and K.

Finally, thermodynamic identities determine the isentropic bulk modulus,
specific heat at constant pressure and the coefficient of thermal expansion;

Kg=Kp+ ((?/V)Cy T, (35)
Cp=(Ks/Kr)Cy , (36)

An additional continuity constraint on I'; is needed for rarefaction waves to
be smooth; i.e., the characteristic speed u + ¢ varies smoothly, where u is
the particle velocity and ¢ = (V Kg)'/? is the isentropic sound speed. Along
a rarefaction, the change in the characteristic speed can be expressed as [see
Menikoff & Plohr, 1989; Egs. (3.23) and (3.24)]

dP
d(u+c)=gﬁ, (38)

_VE@PP/oVR)s 1<8pc)
N 2c? e\ 0p /s

_1 [1 _¥ (aKS>
2 Kq\ 0V /g
G is known as the fundamental derivative of fluid dynamics, and must be
positive for shock waves to be compressive and rarefaction waves to be ex-
pansive. It follows from Eqs. (35) and (32) that the second derivative of T;
needs to be continuous in order for G to be continuous.

g

. (39)
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Figure 1: Normalized specific heat. Red curve is Cy /R for the harmonic oscillator
model. Black curves are Cy /(3 R) for the Debye model. 6}, and 6p are respectively
the characteristic temperatures for the harmonic oscillator and Debye model.

The normalized phonon mode specific heat, Eq. (29d), is shown in fig-
ure 1. For comparison, the specific heat for the acoustic modes from the
Debye model is also shown. We note that the Debye specific heat can be ap-
proximated by the specific heat of a harmonic oscillator by a simple scaling
of the characteristic temperature; i.e., 0, = 0.7320p. The largest difference
is at very low temperature. For T" > 0.26,,, the acoustic specific heat is
well approximated by a phonon mode specific heat. Typically, the Debye
temperature is low and at ambient temperature the acoustic contribution to
the specific heat is nearly saturated.

Hydro codes typically use the pressure as a function of (V,e) since the
equations for hydrodynamics express the conservation of mass and energy. To
utilize Eq. (28a), an iterative algorithm, such as Newton’s method, is required
to solve Eq. (28b) for T'. Since the thermal term of P and e are expressed as a
sum of 3n terms each of which involves an exponential, evaluating P (V] e) is
computationally expensive. Alternatively, the model can be used to generate
an EOS table. The advantage is that evaluating the pressure from a table is
independent of the complexity of the model. The trade-off is loss of accuracy
due to interpolation; especially for derivatives needed to calculate the sound
speed.
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4.1 Remarks

In contrast to the Mie-Griineisen EOS, the Griineisen coefficient for the
molecular model, Eq. (31), is a function of both V' and T. Typically, the
higher frequencies have a smaller mode I';. Increasing temperature increases
the specific heat, and consequently the relative weight of the higher frequen-
cies. Hence, for fixed V', one can expect ['(V,T) to decrease as the tempera-
ture is increased. More generally, in the low temperature limit, I'(V') = I"; (V)
is the lowest frequency mode, presumably the acoustic modes. In the high
temperature limit, I'(V) = (3n)~' 3, T;(V) is the average over all modes.

For the Mie-Griineisen model, the thermal pressure relative to the Tj
isotherm is Piperm = w le —e(V,Tp)]. In contrast, the thermal pressure for
the molecular model can be expressed as

Ptherm = Mil ?gn;rl‘(/‘/) [61(‘/, T) - 61(‘/, TO):| (40&)
_ <P(V;/T)>T0 [e(V, T) —e(V, To)} (40b)

where the temperature averaged effective Griineisen coefficient is

V) [e(V.T) = eV, Ty)]

DV, T))z, =
< ( >>T Z?:nl sz; d7” C,V’i(‘/’ T/)

(40c)

As T — Ty, formally (I'(V,T))r, = 0/0. Applying 'Hopital’s rule gives
Eq. (31). However, in general (I'(V, T'))r, # I'(V,T) whenever I is a function
of T. We expect the temperature averaged effective Griineisen coefficient to
decrease as T' increases.

When all the mode I'; are equal, it follows from Eq. (31) that the Griineisen
coefficient depends only on V; i.e., the molecular EOS model reduces to the
standard Mie-Griineisen model. Moreover, from Eq. (29¢), the mode fre-
quencies can be expressed as 6;(V) = %L/O) 6(V'), where

o(V) = QOeXp[— /VV dVF(V)/V] , (41)

and 0y = 1 K merely sets the temperature unit.

14



The specific heat, Eq. (30), can then be expressed as

o by T
Cy (V. T) = M ;C(@(Vo) 9(V)> , (42)
e =R [1_@‘;(_@}2 exp(—1) . (43)

Hence, when the I'; are all equal, C'y, reduces to a function of a single scaled
temperature, 7/60(V).

5 High pressure phonon spectrum

Infrared absorption and Raman scattering measurements are used to deter-
mine the molecular vibrational spectrum, which we identify with the phonon
frequencies. Diamond anvil cell (DAC) experiments are about the only tech-
nique that can compress a solid to high pressures and maintain the pressure
long enough to perform the spectrum measurements. The best example of
the extent to which the vibrational spectrum can be determined is the re-
cent paper by [Bowden et al., 2014] which reports on an extensive series of
experiments carried out for TNT that determined the pressure dependence
of the frequencies up to 14 to 20 GPa for almost all of the 3n —6 = 57 intra-
molecular vibrational modes; i.e., excluding the molecular translation and
rotational modes, which for a solid are low frequency acoustic and libration
modes.

This is the type of data needed to calibrate the molecular solid EOS model
of the previous section. Here we discuss general issues related to determining
the spectrum and utilizing the available data to determine the specific heat
and Griineisen coefficient needed for the EOS model.

The measured infrared absorption and Raman scattering spectrum from
DAC experiments show peaks, some sharp others spread out and overlap-
ping. The peaks represent excited states of the crystal associated with the
molecular vibrational frequencies. The width of the peaks are related to the
relaxation times of the vibrational states. The relaxation times can be cal-
culated using several techniques, see for example, [Piryantinski et al., 2007],
[Pereverzev and Sewell 2011], [Pereverzev et al., 2013] and [Pereverzev et
al., 2014]. A crude estimate of the line width can be obtained using the
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uncertainty principle, Ae At > 0.5 h and some simplifying assumptions. For
Ae = h Av and a scattering time At of a few vibrational periods (i.e., pro-
portional to 1/v), the width of the peak would be dv/v of a few percent.
The width is increased by thermal broadening, and strain gradients within
the sample. The gradients arise from stress concentrations at the contacts
between the small crystallites compressed within the working volume of the
DAC. The random orientation and anisotropic stress-strain response of the
crystal also contribute to the gradients.

We note that the momentum transfer from infrared absorption or Raman
scattering imparts to a molecule a very small velocity and negligible kinetic
energy. For example, the momentum transferred by a photon (hv/c) with
A =v/c=1000cm™" to a TNT molecule (M = 227 g/(mole - N)) would
give the molecule a velocity u = hv/(M ¢) = 1.7x 1077 nm/ps, and the ratio
of the kinetic energy compared to the photon energy of hv/(2 M ¢?) ~ 10712,
Consequently, the momentum can be neglected.

Two additional complications arise from the crystal structure. First, the
crystal symmetry can result in selection rules for which some phonon modes
do not couple to light scattering, and hence do not show up in the measured
spectrum. Second, there can be more than one molecule in the unit cell. For
example, the stable structure of TNT at ambient conditions is monoclinic,
space group P2;/a, and has 8 molecules per unit cell; see [Vrcelj et al., 2003].

With z molecules per unit cell and n atoms per molecule, there are in
principle 3 z - n phonon modes. Most but not all of the molecular vibrations
are z-fold degenerate. Near degeneracy may contribute to the width of the
peak in the measured spectrum. Also some peaks split or new ones arise
as the sample is compressed. This may be an indication of strain gradients
breaking the degeneracy or affecting the symmetry, and hence the selection
rules.

To account for the additional modes, the model equations for P and e,
Eq. (28) and Eq. (29a), need to be modified. The sum over the modes 337
is extended to the sum over all mode frequencies with a weight factor; i.e.,
> Wt;, where the weight factor is the degeneracy of a frequency divided by
z, in order that Y, Wt;, = 3n.

To help identify the vibrational modes and their degeneracy, density func-
tional theory (DFT) computations are used. The calculated frequencies cor-
respond to the vibrational modes for a molecular gas. A gas molecule has
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3n — 6 vibrational modes; i.e., of the total 3n modes, 3 degrees of freedom
correspond to translation and 3 to rotation of the molecule as a whole rather
than vibrational modes. For a solid, the translational modes are replaced by
the acoustic phonon modes previously discussed. The molecular rotations
correspond to low frequency modes (v < 3THz or 7 < 100cm™!) called
librations that occur in molecular dynamics simulations; see [Pereverzev et
al., 2013]. The librations are similar to hindered rotors which are groups of
atoms whose rotational amplitude is limited by neighboring molecules, see
[McClurg, 1996]. Since the librations involve interacts between molecules,
the low frequency modes set the time scale for excited molecules to ther-
mally equilibrate with the lattice; typically about 1 ps.

An additional complication arises for some crystals such as TNT. Within
the unit cell, two molecular confirmations occur [Vrcelj et al., 2003]. DFT
computations for each confirmation [Clarkson et al., 2003] are used to deter-
mine the degeneracy of the frequencies in the measured spectrum [Bowden et
al., 2014]. This yields a weight factor of either 1 or % for the mode degeneracy.

DAC experiments have been used to measure both density and phonon
frequencies along an isotherm. The results are typically reported as P(V, Tj)
and v;(P). The mode Griineisen coefficient, can be calculated using the chain
rule;

KT(V, T()) dVZ'
vi(P(V. 1)) 4P
where K7 is the isothermal bulk modulus. The bulk modulus is calculated

by fitting the (V, P) data to an analytic form (such as a Birch-Murnaghan
function), and then taking the analytic derivative of the fitting form; i.e.,

(V) = (P(V.Ty)) (44)

dP(V,Tp)

Kr(V.Ty) = —
(V. Tp) V qv

(45)

The fitting form serves to smooth the data.

The bulk modulus can increase significantly with pressure. For example,
at room temperature, K7(15 GPa)/Kr(1atm) ~ 15 for TNT. Consequently,
if dv; /d P is constant, I';(V') would not be constant. In contrast to the typical
assumption for atomic solids that I'(V')/V = constant, the mode I'; for the
high frequencies tends to start off low at ambient pressure and then increase
with pressure, at least initially.
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Measured phonon frequencies typically range from a low of about 100 cm ™!

(60 = 140K) to a high of about 3200 cm™* (# = 4600 K). The highest frequen-
cies typically correspond to hydrogen stretch modes of H-C or H-N or H-O
bonds. The low frequencies are difficult to measure. The ones corresponding
to librations may not be in the measured spectrum.

For the specific heat, figure 1 shows that a mode is half saturated at
T~ é@, and 92 % saturated at T' = #. Consequently, at room temperature
(300 K), modes with § < 900 K or frequencies 7 < 625 cm ™! would be at least
half saturated and contribute significantly to the specific heat. Low frequency
modes that are not in the measured spectrum would be fully saturated and
contribute R per mole to the specific heat. All the low frequencies need to
be accounted for to get the specific heat correct.

The specific heat Cy from the phonon spectrum can be checked against
the measured value at the ambient state (room temperature and atmospheric
pressure) of the specific heat at constant pressure Cp. The thermodynamic
identity

Cy  Kr 1 BT Kr

C P K S 1% Op
can be used to correct for the difference between Cp and Cy . Either the
measured sound speed ¢, which determines the isentropic bulk modulus,
Kg = pc?, or the measured coefficient of thermal expansion, 3, can be used.
For a solid, Cy is typically a few per cent less than Cp.

(46)

All phonon modes, including the saturated ones, contribute to the Griineisen
coefficient. One way to account for low frequency modes not in the measured
spectrum is to lump them together and fit their collective mode I' such that
Eq. (31) gives for I'(Vp, Tp) the value obtained from the thermodynamic iden-
tity

I'=p3c%/Cp (47)

with the measured values of the coefficient of thermal expansion, sound speed
and heat capacity Cp.

Finally, we note that the mode frequencies can be used within the simpler
Mie-Griineisen EOS to incorporate part of the temperature dependence of
the specific heat. It is thermodynamically consistent to use a C'y that is a
function of a single scaled-temperature variable with a Griineisen coefficient
depending on only V. Thus, the specific heat for the Mie-Griineisen model
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can be specified by
Cvara(V,T) = Cy (Vo, T/6(V)) , (48a)
S(V) = exp { /V V dv'T(V) /V’] , (48D)

with Cy (Vp, T) defined by Eq. (22¢) and Eq. (29d). The specific heat for the
Debye model is also of this form, and has been used as a fitting form in which
the Debye temperature is treated as a fitting parameter. This has the right
qualitative behavior. However, Cy(V,T) would only be accurate for V' = Vj.

6 Extensions

Two extensions to increase the domain of applicability of the EOS model
are discussed next. They represent extrapolations of the free energy beyond
the data for the phonon spectrum. The aim is to preserve thermodynamic
properties of interest, and thereby limit the loss of accuracy inherent when
extrapolating the molecular solid functional form we are using for the free
energy.

6.1 Solid-liquid phase transition

One of the applications of a molecular EOS is to an explosive. Some explo-
sives, notably TNT, only have a significant reaction rate above the melting
temperature. Therefore, it is important that the thermal component of an
EOS account for the latent heat of melting. This requires incorporating a
solid-liquid phase transition in the EOS model.

We assume that the phase boundary is defined by a melt curve, P, (T),
and that the solid and liquid saturation boundaries are specified by the func-
tions V;(T) and Vi(T'), respectively. We further assume that = > 0 and
that Vi(T) < Vi(T). The idea is to use the molecular solid free energy,
Fy(V,T), for V< V((T), and to construct a liquid free energy, Fy(V,T), by
extrapolating the functional form for Fj to the region V' > V,(T') such that

the thermodynamic constraints at the phase boundary are satisfied.
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Along an isotherm in the mixed region, Vi(T) < V < Vi(T), the free
energy varies linearly with V' between the values on the solid and liquid
saturation boundary; i.e.,

Vo(T) = V|F,(Vs(T), T V —=Vs(V,T)|F(V,(T), T
p vy 2 D = VIR <>W(;)+_[V;(T)< IEVI.T)

On the phase boundary, thermodynamic consistency requires that the pres-

sure and the Gibbs free energy, G = F' 4+ PV, of the solid and liquid are
equal; i.e.,

Po(T) = P(Vi(T),T) = P(Vi(T), T) , (50a)

Go(Pn(T), T) = Go(Pn(T),T) . (50b)

To build in the solid-liquid phase transition, we define the liquid free

energy in terms of the molecular solid fitting form based on the phonon
spectrum

FV,T) = F(V = AV(T),T) = Pn(T) AV(T) , (51a)
AV(T) = Vy(T) = V(T) . (51b)

The liquid pressure is
PV, T) = =0y Fy = P(V = AV(T), T) . (52)

By construction, for a given value of T', both the pressure and the Gibbs free
energy match on the solid and liquid saturation boundaries. We note that
F; utilizes the harmonic oscillator approximation for the phonon modes. In
the liquid regime, anhamonicity is expected to become important.

Taking the derivative with respect to T' of Eq. (51), yields the change in
entropy

AS(T) = Se(Vi(T), T) = S.(Vi(T), T) , (53a)
dP,
= 2 .AV(T) . b
e AV(T) (53b)
This is equivalent to the Claudius-Clapyron relation
dP, AS
a7~ AV (54)
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It follows that the specific energy of the liquid is

6((‘/, T) = Fg + TS@
dF,
— e,(V = AV(D),T) + [T S = Pu(D)| AV(T) . (55)
The last term would need to be added to Eq. (28b) for the specific energy in
the liquid regime. It would contribute to the specific heat but not Eq. (28a)
for the pressure.

The latent heat of the phase transition is L = AH, where H = e+ PV
is the enthalpy. It can be expressed as

L(T) =T AS(T) , (56a)
dP,
=T AV(T) . (56b)

Thus, the measured values of the melt curve and the latent heat determine
AV. The isotherms of the solid and P,,(7") determine V(7). Consequently,
extending the solid EOS to account for the solid-liquid phase transition re-
quires only P,,(T") and L(T).

6.2 Expansion region, V > 1}

Two issues arise with extending the molecular solid fitting form, Eq. (28),
to the expansion regime. First is the choice of a reference curve for V' > V4.
Second is that with increasing V' the vibrational frequencies 1; — constant
in order for C'y to be a function of only 7', and so that the vibrational modes
do not contribute to the thermal pressure.

It is natural to consider two cases based on the critical isotherm. Above
the critical temperature, T, isotherms do not distinguish between the liquid
and vapor phases. Below the critical temperature isotherms cross the liquid-
vapor phase boundary.

6.2.1 Above critical isotherm

The domain T" > T, excludes the liquid-vapor phase transition and greatly
simplifies extrapolating the EOS into the expansion region. It is then natural
to use the melt temperature at V for T, of the reference isotherm.
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For large V, isotherms should behave like that of an ideal gas. For the
reference isotherm,

Pet(V) — (RJM)Tyet/V a8V — 00 . (57)

For the EOS to extrapolate smoothly, P,.¢(V') needs to match the values of P,
dP/dV and d? P/dV? at (Vj, T;et) from the liquid isotherm defined in previous
subsection.

The optical frequencies v;(V') need to approach a constant at some fi-
nite value V,. Moreover, the constant should correspond to the vibrational
frequencies for an isolated molecule; such as obtained from a DFT compu-
tation. This results in I';(V) = 0 for V' > V.. Hence, the vibrational modes
contribute to the specific heat but not the thermal pressure. The continuity
constraints on v; and its derivatives discussed in section 4 apply at both Vj
and V.

For the three modes corresponding to rotations of the molecule, the lim-
iting frequency v; should have a characteristic temperature ; << T ¢ in order
that the specific heat of each mode saturates at %R/ M.

For the three acoustic modes, each frequency needs to satisfy
[;(V)=-Vdlny;/dV — % . (58)

Hence 1;(V) x V73 — 0 as V — oo, and Cy,; — $(R/M).

In the limit V' — oo only the acoustic modes have a non-zero I';. From
Eq. (31), T(T) — (R/M)/Cy(T). This is consistent with Eq. (57). Thus,
the limiting behavior of the mode frequencies results in the molecular model
EOS approaching an ideal gas EOS.

6.2.2 Below critical isotherm

Below the critical isotherm, the EOS model needs to account for the mixed
liquid-vapor region. One approach is that used in the construction of a
SESAME EOS table. The cold curve (Tt = 0) is used as the reference
curve. The model neglects sublimation; i.e., the solid-vapor phase boundary.
Pt(V) is constructed with a van der Waal loop starting at V' corresponding
to the value of the liquid saturation boundary at P = 0. The initial part of
the van der Waal loop has P, < 0.

22



The same consideration as in previous subsection apply to extrapolating
the mode frequencies. This determines the thermal component of the EOS.
From Eq. (32), the isothermal bulk modulus increases with temperature. At
some finite temperature, it is positive along the entire isotherm. Thus van
der Waal loops occur only for a limited range of temperatures. Applying the
Maxwell construction to eliminate the van der Waal loops, then defines the
mixed liquid-vapor region.

An EOS with a liquid-vapor mixed region may be problematic for fluid
flow simulations since they tacitly assume a single phase; i.e., the thermody-
namic state is characterized with only (V,e). The use of the average density,
p = 1/V, implies a material is homogeneous, and hence intimately mixed.
At pressures well below the critical point, vaporization typically is associated
with a large change in volume; i.e., Viiq(P) < Viup(P). For many applica-
tions, this results in the liquid and vapor being phase separated, which would
require a two-phase flow formulation. A single-phase fluid description would
not have the correct wave properties when the material is in the mixed region.
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