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Abstract

The performance of a particular HPC code depends on a multitude of variables,
including compiler selection, optimization flags, OpenMP pool size, file system load,
memory usage, MPI configuration, etc. As a result of this complexity, current predic-
tive models have limited applicability, especially at scale. We present a formulation of
scientific codes, nodes, and clusters that reduces complex performance analysis to well-
known mathematical techniques. Building accurate predictive models and enhancing
our understanding of scientific codes at scale is an important step towards exascale
computing.

1 Introduction

Increasing complexity in high performance computing is drastically increasing the number
of variables that affect the performance of a scientific code, and exascale computing will
only continue this trend [2]. As such, performance analysis and performance tuning are
becoming increasingly difficult problems. In order to properly understand scientific codes,
one needs a way to comprehend each variable and interaction involved. Previous works
have focused on matching performance metrics to known hinderances [6, 8], identifying
bottlenecks [4, 17], knowledge-generation systems [12], or genetic algorithms [15]. We
focus on developing abstractions that reduce performance tuning and analysis problems to
well-studied mathematical problems.

Traditionally, one may view a scientific code as a function that maps an input deck
to a solution. For the purposes of performance analysis, we are more interested in the
time-to-solution than the solution itself. We define a compiler C to be a function that
maps some source code s € S and some compiler options {t; € T1,ts € To,t3 € T3,...} to
an executable e € F.

*With substantial mentorship and contribution from Cornell Wright, David Gunter, and Dave Nystrom.



Los Alamos National Laboratory
LA-UR-14-26577 UNCLASSIFIED

C:SxTixTyxTyx---—FE (1)

We then define a machine M as a function that maps some executable e € E, some
input deck i € I, and some execution parameters {p; € Pj,ps € Py,p3 € P3,...} to a
time-to-solution t € RT.

M:EXIxP xPyxPyx---—RT (2)

We define the combination of some specific execution parameters and some specific
compiler options as a configuration x = {p1,pa2,...,t1,ta, ...}, where z,, = py,, and 2" = t,,.
The domain of all possible configurations is called the configuration space, denoted by % .

Note that the semantics of T;, and P, are arbitrary: the value represented by 7; or
P; can be anything, as long as it is kept consistent. One could define P; as the number
of MPI ranks and 77 as the optimization level. For example, if one were to compile the
source code of the HYDRO program using third-level optimizations with GCC, and then run
the resulting executable on the SUPER cluster using 16 MPI ranks and the input deck LARGE,
the time-to-solution could be represented by:

SUPER(GCC(HYDRO, 3), LARGE, 16)

For convenience, we also define an input deck generating function 7 that maps a source
code s € S and a problem size n € ZT to an input deck i € I, such that the input deck i
represents a problem of size n capable of being solved by an executable generated from s.

T SxZT =1 (3)

2 Strong and weak scaling analysis

Strong and weak scaling analysis are two of the most popular tools for performance anal-
ysis [14]. When comparing two different program configurations (compiler options and
execution parameters), it is often beneficial to compare the strong and weak scaling exhib-
ited by the two configurations.

We show that this kind of analysis can be automated and extended by formalizing strong
and weak scaling, selecting a divergence metric, and searching for an optimal configuration.
Further, we give examples about how this process provides insights into HPC codes.

2.1 Formalizing Strong and Weak Scaling

Strong scaling analysis is performed by varying the number of processors used to solve a
problem of a constant size [14]. In practice, this is rarely done [10]. Ideally, increasing the
number of processors by some factor ¢ € Z* should decrease the time-to-solution by that
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same factor. We can represent this ideal formally. For a given executable e generated from
source code s and where P; represents the number of processors, we say that:

M(e,m(s,k),n,pa,...)
M(e,m(s, k), cn,pa,...)

Weak scaling analysis is performed by varying the number of processors used to solve a
problem of proportional size [14], such that the amount of work per-processor is constant.
Ideally, doubling the number of processors and doubling the problem size should not change
the time-to-solution.

=C

Me,m(s,k),n,pa,...)
M(e,m(s,ck),cn,pa,...)

Of course, these idealized ratios are almost never reached in practice. However, lo-
cating points where these ratios differ significantly from their ideal value can be useful in
identifying scalability issues within applications. We can define two functions, @ and 3,
which measure the difference between the observed ratio and the ideal ratio between ng
processors and mg processors (the scaling error between mi and ng) for strong and weak
scaling, respectively.

=1

ny  M(e,m(s,k),ni,p2,...)
(M. k L) == 4
as( ,KyM1,N2,P2, ) ny M(e’w(s’k)’n27p2,...) ( )

M(e,m(s,k),n1,p2,...)
M (e, (s, %k), N2, P2, .- )

/BS(Muk7n17n27p27"'):1_ (5)

We define a scaling o € ¥ as a set of tuples (ny,ne,z) where z is the scaling error
between n; and nsy for some set problem size. This definition enables us to express strong
and weak scaling as two functions, A and B, that give a scaling for a certain machine,
compiler, configuration, and problem size. Formally, we can define A and B as:

Ak(M,C,S,pg,p;;,...7t1,t2,...) - {(nhn27a,30(87t1’t27m)(M7k7n17n27p27"‘))
\nl EZ+/\TL2€Z+}

(6)

Bk‘(M7 Oasvp25p3a syt ) = {(n17n?aﬁsc(s’tl’t%m)(Makan17n2)p27- . ))
|n1€Z+/\n2€Z+}

(7)

By fixing the problem size (k), it is easy to plot both A and B. Plots of A and B! for a
hydrodynamics code is shown in figure 1la and 1b, respectively. One can also plot a single
row of the contours (ideally, the bottommost row), as shown in figures 2a and 2b.

'Obviously, we limit Z* to a practical cardinality based on the number of nodes available.
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Figure 1: Strong and weak scaling error contours
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2.2 Divergence Metric

From the shape and slopes of the plots in figure 2, a human can see that this particular code
has exponential strong scaling error and fairly linear weak scaling error (starting at around
25 ranks). Given two strong scaling error plots, a human could also easily determine which
plot depicted “better” scaling.

However, in order to programmatically determine which of two scaling plots has “bet-
ter” scaling, one must develop a metric of how quickly error increases. We call this metric
a divergence metric. We'll define a function D : ¥ — R such that D(o) is the divergence
metric of some scaling o. D needs to be defined in such a way that larger values of D
represent a less desirable result than smaller values of D. Formally, for two scalings z and
y, D(z) < D(y) if and only if scaling x is preferable to scaling y.

One possible divergence metric is —R, where R is the correlation coefficient between ng
and scaling error for a fixed n;. Assuming that CorrCoef(¢) is the correlation coefficient
of a set of 2-tuples (z € § — z = (¢ € R,w € R)), we can define our divergence metric
D! (o) as:

D, (o) = —CorrCoef({(na,z) | (n,n2,x) € 0})

This divergence metric has several drawbacks. D!, will not always properly differentiate
between linear error and exponential error. In fact, D/, may label certain exponential errors
as superior to certain linear errors, which is hardly ever the case. Pragmatically, we found
D!, to be a sufficiently capable divergence metric, but more complex codes may require
more sophisticated metrics. This divergence metric would be especially poorly suited for
codes that do not scale linearly (a linear increase in problem size does not create a linear
increase in runtime).

2.3 Optimization
Mathematical optimization problems are classically stated as [3]:

minimize  fo(x)
subject to  fi(x) <b; i=1,...,m

We restate this slightly in order to allow for discrete constraints:

minimize  fo(x)
subject to fi(z)€b; i=1,...,m

(8)

In equation 8, fj is called the objective function, and fi, ..., [, are called the constraint
equations. For our purposes, fy will be a mapping from configurations x € % to divergences
deR (fo:F — R). We can define an fj for both weak and strong scaling, depending on
which divergence we want to optimize. For strong scaling, fj is defined as such:

fo(z) = D(AR(M,C, s,x9,x3,..., x5, 2%,...))
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For weak scaling, fy is defined as:
fO(x) = D(Bk‘(M7 C,S,Q?Q,fﬂg, s ,1?1,.152, s ))

Constraint equations can represent the constraints of a physical machine or compiler.
For example, if T is used to represent optimization level and one’s compiler supports
optimization levels 1, 2, and 3, one might let fi(z) = 2 = ¢; and by = {1,2,3}. Constraint
equations can also be used to eliminate non-optimal solutions. For example, if P, is used to
represent the type of allocation (exclusive, shared, or other), one might let fo(z) = x93 = po
and by = {exclusive}.

Having expressed the problem in terms of mathematical optimization, there are a large
number of applicable techniques to find an optimal configuration [16]. In fact, many
knowledge-based performance tuning techniques [6, 8, 12] are essentially complex heuristic
functions utilized by standard optimization algorithms. Since the evaluation of A and
B can be very costly, it is often advantageous to define enough constraints so that one’s
optimization algorithm only has to search in one or two dimensions at a time.

The result of optimization is not just an optimal member of .%, but also data about
how configuration variables (p, and t,) affect performance. The optimal configuration
itself is often less useful than insights gained from looking at which configuration variables
produced the optimal configuration. While testing another HPC application, we found that
the optimal configuration did not saturate each MPI slot with an MPI rank, suggesting
that our application (at that problem size) was memory-bound, not CPU-bound. In the
case of a certain hybrid MPI/OpenMP application, the optimal configuration used only
one OpenMP thread. This revealed a workload distribution bug that had previously gone
unnoticed.

3 Hotspot Analysis

Software profiling enables a user to see how much time specific functions in a program
are using [9]. This sort of analysis is often called hotspot analysis, as it can reveal which
functions are dominating a program’s runtime [18]. However, in the world of HPC, the
functions that dominate a program’s runtime often change with the scale of the run. For
example, at small sizes, an integration function might dominate, but at larger scales,
communication functions [5] or decomposition algorithms may take longer.

We present a formulation of hotspots that enable standard mathematical techniques to
gain insights into the runtime profile of HPC applications. First, we define some semantics
of hotspots and hotspot collection. Then, we specify the requirements for a distribution-
difference function and provide two examples. Finally, we explain how the output of such
functions is useful for understanding HPC applications.
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Hotspot Profile 1 (a) Hotspot Profile 2 (b)
Function | Proportion | Frequency | Function | Proportion | Frequency
functionl 0.87 174 functionl 0.82 328
function2 0.05 10 function?2 0.08 32
function3 0.04 8 function3 0.05 20
function4 0.04 8 function4 0.05 20

Table 1: Two example hotspots from runs taking 200 seconds and 400 seconds. y? = 2.684
and p = 9'(a,b) = 0.443.

3.1 Formalizing Hotspots

Again, we use our formulations of compilers, source code, and executables, but we modify
our formulation of a machine, M. Previously, the output of M was a time-to-solution.
Now, we define My, which outputs a hotspot profile, which is a set of 2-tuples such that
each tuple (z,y) contains the name of a function (z) and the proportion of a program’s
runtime that function took (y). Using S to represent the domain of all function names
(strings), we have:

My :ExIx P xPyx-—{(z,y) € (S,R")} (9)

We use 7 to refer to the domain of all hotspot profiles.

Assuming (again) that P; represents the number of processors used to run a problem,
we define HE (M, k,n) to be the hotspot profile of running source s compiled by compiler
C on machine M at a problem size k over n nodes with configuration x € .%.

HE (M, k,n,z) = My(C(s,zt, 22, ...), n(s, k), n, 0, x3,...) (10)

3.2 Distribution-difference function

As with the divergence function, a human could look at two different hotspot profiles and
perhaps see if functions took more or less time as the scale changed. However, automating
this process requires a distribution-difference function 2. Unlike the divergence function,
this function maps two different hotspot profiles to a number in the range {0...1}, such
that a number close to 0 means that the two profiles are very similar, while a number close
to 1 means that the hotspot profiles are very different.

D xH —{0...1} (11)

We have a similar requirement for & as we did for D in that, for three hotspots
hl,hz,hg S f%ﬂ, if hi is more similar to hy than it is to h3, @(hl, hQ) < .@(hl,hg).

One possible distribution-difference function is a Pearson’s x? test of independence,
which measures the likelihood that differences in categorical data arose by chance [13].
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Since we have proportional data between zero and one, we’ll transform our proportions
into time units by multiplying each value by the total runtime (in seconds). Consider each
function as a category, and define the frequency of each category as the number of seconds
spent in that function®. See Table 1 for an example.

With a € € and b € 2, let |a| be the cardinality of a (the number of members of a).
Then, in order to use the y? test, we need to calculate the expected number of seconds
for each function. F, calculates the expected value for each function in the hotspot profile
a and Ej calculates the expected value for each function in the hotspot profile b (where
functions are indexed by 7).

(a; + b;) * Zlf‘ an
S ay +by)

(a; + b)) * M b,
> M(a; +0;)

Then, we can use these two functions to create a distribution-difference function:

Ea(a> b? 2) =

Eb(av ba Z) -

|al 0]

a; — Eq(a, b, 2 P — a, ,i2
7'(a,b) = Xjo 1 Z( Eia(,b,l;) : +Z(b Eii(bg L (12)

where X2 is the right-tailed x? probability with n degrees of freedom. Table 1 has
example data with 2’ calculated.

3.2.1 Another possible distribution-difference function

Note that we can easily order the members of a hotspot profile based on the second member
of each tuple (the proportion of time). In the event of a precise “tie”, the order of the
tied tuples may be arbitrary. Thus, if we consider two ordered arbitrary hotspot profiles
a €  and b € 7, we can consider ag to be the largest value in a. Then, we can use a
number of well-known rank comparison techniques [19] to determine if the ordering of a is
substantially different from the ordering of b.

One such technique is Kendall Tau [11]. Given the following values:

e N, the total number of pairs, which is equal to 3|a|(|a| — 1)

e (), the total number of pairs whose ordering has not changed, i.e., if f; is before f4
in a, and fi is also before f4 in b.

e D, the total number of pairs whose ordering has changed, i.e., if fo is after f in a,
but fs is before fi in b.

2For exceptionally long runtimes, using minutes or even hours might be appropriate.
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then we can compute 7 as:

The value 7 will be 1 if the two lists are perfectly similar, and —1 if the two lists are
perfectly dissimilar. Thus, we can define a distribution-difference function as:
(1+71) 1-—7

27 (a,b) =1 — = (13)

3.3 Analysis

One can use standard search techniques to find scales or problem sizes for which the
hotspot profile changes substantially using either of the provided distribution-difference
functions (equations 12 and 13), or other techniques. One can search for a point where the
hotspot profile changes significantly (at a certain confidence), or one can plot the change
in the hotspot profile as a problem scales. Regardless, one needs to define a function
f:.Z x F x Z* — R that can be searched.

f(l’,y,k‘) = @(HS(M,]C,ZBQ,LII),HS(M,]{,yo,y))

Notice that you can search in the configuration space (by varying x and y), or through
various problem sizes (by varying k). Any number of searching techniques can be used,
but a simple linear scan is normally a good starting point. Note that, while other perfor-
mance analysis tools identify hotspots [17, 18, 9], the technique proposed here searches for
differences in those identified hotspots.

This approach is especially useful for finding bugs in workload distribution functions.
Often, when a problem is run on an odd (or prime) number of nodes using an odd (or
prime) workload size, work is not distributed optimally, causing a large change in the
hotspot profile. Figure 3a shows a large hotspot profile difference around rank 11, which
revealed a workload distribution bug. Figure 3b shows the hotspot profile differences after
fixing the bug.

4 Machine-Machine Comparisons

Up until now, we have only looked at varying problem size and configuration. We have kept
the machine, M, constant. However, the formalizations presented here can be extended to
do some (basic) comparisons between two or more machines. This can be extremely useful
when deciding how to allocate resources, and when deciding what additional computing
capabilities improve performance.

We’ll define a simple function that measures the performance of a code on a given
machine. Then, we’ll show how standard linear regression techniques can be used to
compare the performance of two machines. Again, the nature of the formalizations will
make it clear how the process can be automated.

10
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Figure 3: Hotspot profile differences using x? distribution-difference function
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4.1 Formalizing Machine-Machine Comparisons

We can use equation 2 to build two simple functions to measure the time-to-solution of a
code s € S on two different machines, M and M’. Given a compiler C3, a problem size k,
and a configuration state x, the time-to-solution for M is:

M(C(s,x',22,...), (s, k), x1,22,...)
And for M’, the time-to-solution is given by:
M (C(s,zt,2%,...),7(s,k), 21, 22,...)

We then define a simple helper function, hy;*(k), which gives the time-to-solution of
s € S running on machine m with configuration x, problem size k, and executable e:

N (k) = me n(s, k), a1,aa, ) (4

4.2 Regression techniques

The standard form of a linear model [13] is:
y=a+bx

where a represents the y-intercept of the line and b represents the slope. For a given
e, s, and x we can generate a number of samples on each machine and then use one of a
number of techniques (like ordinary least squares) [1] to fit the data from each machine to
a linear model.

First, select some subset z C ZT. Then, create a set of tuples h&5" such that:

ho® = {(i, h*(0)) | i € 2} (15)

We can then build a linear model of M using iﬁw‘”, and we can create a linear model
of M’ using h{;/*. This will give us two y-intercepts (aps and apr) and two slopes (bay
and bM’)

4.3 Analysis

The slopes of the generated equations are easy to interpret. If by; > by, then increasing
the problem size on machine M will increase the time-to-solution more than the same
increase in problem size on machine M’. Interpreting the intercepts can be slightly more

3Certain compilers may operate differently on different machines, or may only be available on specific
platforms. Thus, comparing the performance of two machines often amounts to comparing the performance
of two different hardware/software combinations. It may not always be possible to search or sample from
the full domain of compilers or compiler options when comparing across two machines.

12
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complicated. Generally, if one line is not above the other for all of Z™, there is some-
thing making one machine faster for smaller problem sizes. Perhaps one machine has more
processors per node, a faster network interconnect, or a larger cache. Regardless, linear
analysis provides a simple way to do a quick, automated comparison between two ma-
chines. It also enables one to quickly see how changes in a machine’s hardware affect code
performance (by comparing the linear models generated on the machine before and after
the hardware change).

Using more complex regression techniques can provide different and often more useful
insights into the performance signatures of two different machines. We show how to inter-
pret a simple linear model, but since code performance is rarely perfectly linear [2], other
models may prove more useful.

Until now, we have assumed that the input deck generation function () produces decks
that have a particular performance signature that scales linearly (doubling the problem size
approximately doubles the time-to-solution). In reality, this is rarely the case, as different
input decks will often have different performance signatures. For example, one input deck
may require a large amount of floating-point operations, while another input deck may
require a large amount of memory. Using simple machine-machine comparisons can aid
in matching an input deck’s performance signature to a machine’s capabilities, which can
lead to improvements in an organization’s workload distribution.

5 Conclusion

Several of the techniques presented here have helped to analyze and understand real-world
HPC codes. These automated techniques greatly improve the quality of HPC models, and
can aid developers in locating bugs and performance bottlenecks. While these techniques
are not sufficient on their own, they make excellent additions to a programmer’s perfor-
mance analysis toolbox. Due to the automated nature of these techniques, they can be
run frequently and unsupervised, making them good candidates for performance regres-
sion testing and analyzing multiple codes at once. With an increasing number of variables,
exascale computing will require even more advanced techniques that can be applied in an
automated manner.

13
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A Mathematical Symbols and Notation Reference

R the domain of real numbers R* | the domain of positive real numbers

Z the domain of integers Z+ | the domain of positive integers

S the domain of all strings J¢ | the domain of all hotspot profiles

S the domain of source code E the domain of executables

P, | the domain of execution parameter n T, | the domain of compiler option n

% | the domain of configurations X the domain of scalings

Tn, configuration notation for p, z™ configuration notation for t,

C | a compilation function (1) M | a time-to-solution (machine) function (2)
7w | the input deck generation function (3) o | a scaling

a | strong scaling error function (4) B | weak scaling error function (5)

A | strong scaling generator function (6) B | weak scaling generator function (7)

D | divergence metric 2 | distribution difference function (11)
Mjp; | hotspot profile generator function (9) HE | hotspot profile for s compiled by C (10)
&% | time-to-solution helper function (14) | h%¥® | tuples of points sampled from hi>® (15)

We use set builder notation [7] to construct sets.

p={z|F(z) NG(x)}

(16)

The notation in equation 16 can be read as “the set of all x such that F(x) and G(x)
is true.” In other words, p is the set of any and all possible values of = such that F(z) and

G(z) are true.

Equation 16 can be stated equivalently as:

(z € p) = [F(z) A G(2)]

Or as:

Va(F(x) A G(x))

14
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