
Statistical Approaches to Aerosol Dynamics for Climate Simulation

Final Technical Report

DOE Award Number: DE-FC02-07ER25817

Wei Zhu (PI), Ph.D. Professor & Deputy Chair 

The Research Foundation of State University of New York 

Department of Applied Mathematics and Statistics 

Stony Brook University 

Stony Brook, NY 11794-3600 

Wei.Zhu@StonvBrook.edu

i



Part I.

Compound Regression and Constrained Regression: 

Nonparametric Regression Frameworks for EIV Models

Ling LENG, Wei ZHU

Ling Leng is Statistical Engineer, Amazon.com Inc., Seattle, WA 98144-2734 (Email: 
linslens(cp,amazon, com). Wei Zhu is Professor of Statistics, Department of Applied 
Mathematics and Statistics, State University o f New York at Stony Brook, Stony Brook, 
NY 11794-3600 (Email: weizhu(cp,notes.cc.sunysb.edit). This work was sponsored by the 
U.S. Department of Energy Grant ER25817 on Climate Modeling.

Abstract

In this work, we introduce two general non-parametric regression analysis methods for 

errors-in-variable (EIV) models: the compound regression, and the constrained regression. 

It is shown that these approaches are equivalent to each other and, to the general 

parametric structural modeling approach. The advantages of these methods lie in their 

intuitive geometric representations, their distribution free nature, and their ability to offer 

a practical solution when the ratio of the error variances is unknown. Each includes the 

classic non-parametric regression methods of ordinary least squares, geometric mean 

regression, and orthogonal regression as special cases. Both methods can be readily 

generalized to multiple linear regression with two or more random regressors.

Key Words: Compound regression; Constrained regression; Geometric mean regression; 

Maximum likelihood method; Ordinary least squares regression; Orthogonal regression.
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1. INTRODUCTION

As the renowned physicist E.T. Jaynes pointed out in his celebrated monogram “the 

most common problem of inference faced by experimental scientists: linear regression 

with both variables subject to unknown error” (Jaynes 2004, pg 497). We readily agree to 

this observation as the errors-in-variable (EIV) modeling problem arises in gauging the 

relationships between two random variables which is indispensible in any research or 

business practice. For example, with the rapid development of gene measurement 

platforms, an urgent task is to calibrate between the fading gene microarray platform and 

the incoming RNA sequencing (RNAseq) technology to ascertain the validity of current 

disease biomarkers. Another example that motivated our research here came from a 

climate modeling project in collaboration with scientists from the Brookhaven National 

Laboratory. In gauging the relationship between the concentrations of organic aerosols 

and anthropogenic carbon monoxide (CO) (Kleinman et al. 2007), both variables, 

measured by the mass spectrometer and the UV fluorescence analyzer respectively, 

contain measurement errors and other volatilities due to air dynamics. Two commonly 

used non-parametric regression methods for EIV models, the orthogonal regression and 

the geometric mean regression, yielded different regression equations as expected. Indeed, 

these are not the only possible solutions. If one can assume the often unattainable 

bivariate normal distribution for the variables, one can apply the general parametric 

structural modeling approach for EIV models that will yield an infinite class o f regression
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lines with the optimal choice depends on the ratio of the error variances, which is usually 

unknown (Lindley 1947; Wong 1989).

To overcome these dilemmas, we have developed two general, and equivalent, 

nonparametric regression approaches entitled the compound regression and the 

constrained regression that will provide intuitive and practical solutions for all EIV 

modeling problems for simple linear regression analysis including our own. These new 

methods are introduced in Section 3 and illustrated through two examples in Section 4, 

following a brief review o f the current EIV modeling methods.

(discuss unknown lambda)

2. EXISTING METHODS for EIV Models

The general parametric EIV structural model for a simple linear regression model is 

as follows (Sprent 1969; Wong 1989):

Here 8 and s are independent random errors. Furthermore, E, is a random variable 

following normal distribution with mean p and variance!2, and independent to both 

random errors. This implies that X and Y follow a bivariate normal distribution:

X = ^ + 8  5 ~7V( 0gs2)

Y = r |+ e  s ~ v ( 0 c ? e2)

E  =  P o  +  P £
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Given a random sample of observed X ’s and Y ’s, the maximum likelihood estimator 

(MLE) of the regression slope is given by

„• S „ - \ S s x + l S „ - \ S I r f + 4l S 'T
Pl 2S

Its value depends on the ratio of the two error variances X = a  \ | a  g , which is generally 

unknown and unable to be estimated from the data alone (Lindley 1947).

It has been shown that the ordinary least squares regressions (OLS) and the two most 

commonly used nonparametric regression methods when both X and Y are random, the 

orthogonal regression (OR) and the geometric mean regression (GMR), can be 

considered special cases in this structural model approach, with the distinction that these 

specific methods do not reply on the bivariate normal assumption.

The OLS slope estimator with Y or X as the dependent variable will minimize the 

squared vertical or horizontal distances from the points to the regression line, and 

corresponds to the MLE of the slope in the structural model approach when X = oo or 

X = 0 . The OLS is suitable when only one of the two variables is random.

The orthogonal regression takes the middle ground by minimizing the sum of 

squared orthogonal distances from the observed data points to the regression line. The 

resulting estimator of the slope is (Jackson and Dunlevy 1988):



It is the same as the MLE in the structural model approach when X = 1, implying the OR 

is suitable when the error variances are equal.

The geometric mean regression takes the geometric mean of the slope of y on x, and 

the reciprocal o f the slope of x on y OLS regression lines resulting in the estimated slope

Pi =  sign(Sxy ) J ( W  VonX  ̂( Po l s , x o n  y  )   ̂ =  sign(SxY ) ] S -
I ^xx

The GMR can also be obtained by minimizing the sum of the triangular areas bounded by 

the vertical and the horizontal projections from the data points to the regression line and 

the regression line itself (Barker et al. 1988). Comparing to the parametric structural 

model approach, the GMR estimator corresponds to the MLE when X = SYr |XA;v (Sprent 

and Dolby 1980). This means that the GMR approach is suitable when the randomness 

comes from the random errors only.

3. COMPOUND AND CONSTRAINED REGRESSION ANALYSES

The parametric structural model approach has two fundamental difficulties for real 

life applications. First, it requires the variables to follow a joint bivariate normal 

distribution. Second, it requires the knowledge of X - the ratio of the error variances, 

which is usually unknown and cannot be estimated from the data statistically (Lindley 

1947; Wong 1989). In addition to these predicaments, the structural model approach has 

also lost the intuitive geometric interpretations enjoyed by the other, albeit more

specialized non-parametric regression methods such as OLS, OR or GMR.
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In this section, we present the compound regression and the constrained regression 

methods -  two general nonparametric regression frameworks for EIV modeling. Both 

methods enjoy clear geometric interpretations. They are equivalent to each other, and to 

the structural model approach when the joint distribution is bivariate normal. We owe our 

inspiration for these new regression approaches to pioneer statisticians in the optimal 

design field where they first coined the compound optimal design (Laiter 1974, 1976) 

and constrained optimal design (Lee 1987, 1988) concepts for designs with multiple 

objectives, and subsequently proved their equivalency under certain conditions (Cook 

and Wong 1994; Clyde and Chaloner 1996).

3.1 Compound Regression Analysis

For the OLS on Y and X separately, variation exists in the Y or X direction only and

thus one would minimize the sum of squared distances along the vertical or horizontal 

axis only to obtain the best regression line for each scenario. When both Y and X are 

random, one would naturally wish to find a regression line 7  = |30 + |3, Y  that will 

minimize variations in both directions. This can be accomplished by minimizing a 

weighted average of the squared vertical and horizontal distances, as illustrated in Figure 

1 below, as follows:

ss, =yi(r-r)2+(i-y)i(V-V)2
2 = 1  2=1

= y I ( i ' - 3 . - P , V ) ! + ( i - y ) i ( V - ^ !1)!. o < y <i .
2 = 1  2= 1  P i
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Figure 1. Illustration of the compound regression analysis method.

At the two extreme values ofy = 1 andy = 0, we obtain the OLS on Y or X 

respectively. For eachy , we can obtain the least squares estimators of the regression

dSS dSS
parameters by solving    = 0 and ------ = 0 simultaneously. Straight-forward

Spo 5Pi

derivation shows that the resulting compound regression model estimators ( 0 and [, 

would satisfy

p 0 = F - p 1X  and J L p *S - J L p *S + &S - S  = 0  (1)
- y  1 - y

X X  1 X Y  X Y  YY
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Solutions can be obtained using any standard numerical software such as MATLAB.

3.2 Equivalence between Compound Regression and Structural Model

In this section, we prove that there is a one-to-one correspondence between the MLE

in the structural model approach (under different X ) and the least squares estimator in

compound regression analysis (under differenty ) for the slope parameter (3,, and thus for 

the corresponding regression line because each line passes through the point (A, 7 ) .

Theorem 1. (a) The compound regression and the structural model approach are

equivalent to each other under the bivariate normality assumption, (b) Furthermore, there

is a monotone relationship betweeny and (3,, and between X and (3,. (Proof is provided in

the Appendix.)

Now that we have shown the equivalence between the structural model and the 

compound regression approaches, our problem transfers from finding the desirable 

regression line from a class of unknown X ' s to a class of unknown y ' s . The constrained 

regression analysis method, shown to be equivalent to the compound regression analysis 

approach, will further elucidate our path to a practical non-parametric solution to the EIV 

modeling problem.

3.3 Constrained Regression Analysis and Regression Efficiencies

We define the constrained regression as follows. As illustrated in Figure 1, given the

constraint of ~Yj)2 < c where c is a user selected non-negative constant, the
9



;=1

compound regression line will minimize '^ j (X i -  X ^ 2
i=  1

Theorem 2. The constrained regression is equivalent to the compound regression in 

that there is a 1-1 correspondence between c ( c > 0)andy (0 <y < l)  . For a given c we

have y = _______ ^YY ~ ^  ̂ _______  and (3 _ ^ xy + )* J^ t ~ $xx i^rr ~ c)~
^ - p x + p x - p x  1 ^
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(Proof is provided in the Appendix.)

The constrained regression can be stated equivalently in terms of the novel concepts 

of regression efficiencies for Y and X defined as

min ” ( Y - Y ) 2 ” ( j - Y OLS(J)f  min ” (X - X f  " (X - X OLŜ f
y . .i i i i i i

e =  Ei_______ = _ei___________  and e =____Ei_________ = _ei____________
X ( T - T )2 £ ( T - T )2 2 £ ( X - X f  £ ( Y , - A )2
Z=1 Z=1 z'=l z'=l

respectively. For a given c*e[0,l], the constrained regression line will maximize e2 

subject toe, > c .

With the equivalence of the constrained and the compound regression approaches, 

we can first calculate all the compound regression lines given that they are

computationally more efficient than their constrained regression counterparts. Then we

plot the efficiency curves for all possibley (0 < y < l ) , and select, from which, the value

of y * corresponding to a desired c (and thus a desirable constrained regression line 

with intuitive interpretations). The intersection of the line y =y* and the curve of e2 in 

the efficiency plot would yield the best efficiency we can achieve for the estimation of X 

given the constraint on the required efficiency for Y. By symmetry, one can reverse the 

order of the importance for X and Y and obtain the best regression line for Y subject to 

e2 > c * . Now that we have circumvented the dilemma o f the unknown error variance ratio 

X, we will demonstrate our approaches with two examples next.



4. EXAMPLES

In this section, we illustrate the newly proposed nonparametric regression approaches 

for simple linear regression EIV models through two examples. The first example is from 

the now classic mathematical statistics textbook by Casella and Berger (2001) where they 

provided a wonderful introduction to the EIV model. The second example is to model the 

relationship between the concentrations o f organic aerosols and anthropogenic carbon 

monoxide -  the original atmospheric science problem that has motivated this work.

4.1 Example 1

Casella and Berger (2001, pages 542, 579) introduced this classic example for EIV 

model. Figure 2 shows the scatter plot of the data along with the entire class o f compound 

regression lines ranging from OLS(X) to OLS(Y). The question is which regression line 

is the ‘best’ among the entire class of infinitely many regression lines.
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Figure 2. Span of Compound Regression Lines for Example 1.

Table 1. Selected Compound Regression Lines for Example 1.

Y f , fo > ’2
i=i

E ( L - d 2
;=i

e2 el + s2 X

0 (OLS_X) 2.82 -2.31 137.53 17.33 0.24 1.00 1.24 0.00
0.07(OR) 1.88 -0.48 65.87 18.71 0.50 0.93 1.43 1.00

0.10 1.79 -0.30 61.09 19.16 0.54 0.90 1.44 1.13
0.20 1.57 0.13 51.06 20.84 0.65 0.83 1.48 1.50
0.30 1.43 0.39 46.00 22.50 0.72 0.77 1.49 1.79

0.34(GMR) 1.39 0.48 44.43 23.24 0.75 0.75 1.50 1.91
0.40 1.33 0.59 42.72 24.25 0.78 0.71 1.49 2.07
0.50 1.24 0.76 40.31 26.22 0.82 0.66 1.48 2.36
0.60 1.16 0.92 38.40 28.56 0.86 0.61 1.47 2.71
0.70 1.08 1.08 36.79 31.56 0.90 0.55 1.45 3.17
0.80 0.99 1.24 35.39 35.84 0.94 0.48 1.43 3.90
0.90 0.89 1.45 34.11 43.35 0.97 0.40 1.37 5.57

1 (OLS_Y) 0.68 1.86 33.12 71.94 1.00 0.24 1.24 oo

Table 1 above tabulates selected compound regression lines including OLS(X),
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OLS(Y), OR and GMR. The efficiencies for estimating X and Y ranging from 0.24 to 1 in 

opposite directions as the compound regression coefficient Y goes from 0 to 1. The OR 

line is more efficient in reducing variations in the X direction than the Y direction with 

efficiencies for X and Y being 0.93 and 0.50 respectively. The GMR provides a nice 

balance between the two estimations yielding equal efficiencies (0.75) for both X and Y, 

and moreover, a maximum total efficiency of 1.50. Such is not a mere coincidence; in 

fact, it is universally true as stated in the following theorem with proof in the Appendix.

Theorem 3. (a) The Geometric Mean Regression would always yield equal 

efficiencies for the estimations o f X and Y respectively. That is, e2 = e2 for GMR. 

Furthermore, it also maximizes the total regression efficiency (e} + e2) among all 

compound regression lines, (b) The Ordinary Least Squares Regressions for X and Y 

have the same efficiencies, albeit in reverse order, for X and Y. That is, e}_OLS(X) = 

e2 OLSfY) and e2 OLS(X) = e} OLS(Y).

For each given data set, users can select the desired regression line from the entire 

class o f compound regression lines using the regression efficiency plot as shown in 

Figure 3. Suppose that the user want the desired line to be at least 95% efficient for the 

estimation of Y. We will find from the efficiency plot that el = 0.95 corresponds to 

y = 0.8401 and e2 =0.453. Alternatively, if  the user desires for at least 85% efficiency 

for the estimation of Y, he/she will find from Figure 3 that el = 0.85 corresponds to 

y = 0.5686 and e2 = 0.624.

14



0.9

0.8

0.7
0.624

0.6

0.5
0.453

0.4

0.3

0.2

0.5686 0.8401

0.4 0.5
Y

0.9

Figure 3. Regression efficiency plot for Example 1.

4.2 Example 2

Our second example from aerosol analysis also motivated this work. The data consist 

of 113 pairs of CO and organic aerosol concentrations observed above the Mexico City 

(Kleinman et al. 2007). Our goal is to quantify the linear relationship between the natural 

log transformed CO concentration (X), and the concentration of organic aerosol (Y). The 

data and the span of the compound regression lines ranging from OLS(X) to OLS(Y) are 

shown in Figure 4.
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Figure 4. Span of Compound Regression Lines for Example 2.

Unlike Example 1 where the scales o f the two random variables are comparable, here 

the scale of Y can be three times as large as that of X. Subsequently the sum of squares 

for Y would be much larger than that for X which means the former would dominate the 

minimization of the compound regression sum of squares SS for mo sty . We will still 

obtain the entire class o f compound regression lines however the efficiency plot would be 

flat in the middle and then change abruptly at the end of the interval for y — hampering 

the visual inspection and selection of desired compound regression lines. This scale 

inequality, however, can be easily corrected by standardizing the compound regression 

sum of squares as follows:
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Z(r,-t'f Z(x, - x,f
K  =y --------- i-O-y)—^ ----------

minjjy-i ')2 m il, Z^. -X . f
i = 1 i = 1

h r, - r , f  z w - x f
= y  --------- h ( l - y )  n i=l---------------------------- 0 < y  < 1

^^•jZ _ Y _ OLS(J ) ^ 2 ^  _  j ^ O L S ( X ) y

i = 1 i = 1

The resulting standardized compound regression is easily shown to be equivalent to

the constrained regression as well as the structural model. It also has several added

benefits as the GMR now corresponds to y = 0.5, and the regression efficiencies for X

and Y yield perfect symmetrical patterns as shown in Table 2 below.

Table 2. Selected Compound Regression Lines for Example 2.

Y Pi Po Z ( T - f ) 2
Z=1

E ( y - y )2
Z=1

e2 €l + €2 X

0 (OLS_X) 8.68 -47.13 895.63 11.891 0.755 1.000 1.755 0.00
0.01 (OR) 8.64 -46.90 888.08 11.892 0.761 1.000 1.761 1.00

0.10 8.36 -45.13 835.29 11.943 0.810 0.996 1.806 9.56
0.20 8.12 -43.56 795.04 12.066 0.851 0.985 1.836 19.08
0.30 7.91 -42.23 765.36 12.239 0.884 0.972 1.856 29.47
0.40 7.72 -41.03 742.24 12.458 0.911 0.955 1.866 41.62

0.50(GMR) 7.54 -39.90 723.63 12.725 0.935 0.935 1.870 56.87
0.60 7.37 -38.80 708.42 13.052 0.955 0.911 1.866 77.70
0.70 7.19 -37.68 696.01 13.459 0.972 0.884 1.856 109.73
0.80 7.01 -36.50 686.17 13.981 0.985 0.851 1.836 169.44
0.90 6.80 -35.19 679.17 14.689 0.996 0.810 1.806 338.29

1 (OLS_Y) 6.55 -33.62 676.20 15.750 1.000 0.755 1.755 oo

In addition, Table 2 shows that the efficiency of predicting Y increases from 0.755 to 1 

while the efficiency o f predicting X decreases from 1 to 0.755 asy goes from 0 to 1.
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We also observe that the GMR yields equal efficiencies (0.935) for the estimations of X 

and Y and a maximum total efficiency of 1.870 as proven in Theorem 3. We would highly 

recommend GMR as a balanced choice for the aerosol study. If a slightly higher 

efficiency for the estimation o f Y, say 95%, is desired, we can then adopt the 

corresponding compound regression line withy = 0.575 that has a 92% efficiency for 

estimating X as illustrated in Figure 5.

0.95
0.935
0.917

0.9

0.85

0.575
0.75

0.3 0.4 0.6 0.7 0.9
r

Figure 5. Regression efficiency plot for Example 2.

5. Remarks

In this work, we present two practical solutions to one of the most common problems in 

applied sciences, namely, regression with random regressors, through the novel

non-parametric regression frameworks of compound regression and constrained
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regression. For EIV models in a simple linear regression setting, we have shown that 

these two nonparametric regression frameworks are equivalent to each other, and to the 

traditional parametric structural model approach albeit the latter requires the bivariate 

normality assumption. Furthermore, each nonparametric regression framework contains 

the three classic nonparametric regression methods: the ordinary least squares regression, 

the geometric mean regression and the orthogonal regression as special cases. This lends 

a systematic approach to examine the properties and relative merit of these classic 

methods -  the geometric mean regression emerges victoriously with two wonderful 

properties of (1) equal regression efficiencies, and (2) maximum total efficiencies for the 

estimation of the response variable 7  and the random regressor X.

Compound regression analysis can be readily extended to multiple linear regression 

with k  random regressors by minimizing the compound sum of squares of:

ss, =y,Z(r-i;)2+I
2=1 j = 1

y f t - where 0 ~ T / — f  V/, and 2 ^ =1Y;=1.
2=1

The constrained regression analysis can be extended, by, say, minimizing -  X kjf
i = 1

subject to the constraints that ^ ( 7 . - 7 . ) 2 < c1 and ^  {X.. -  X ..)2 < c. , for
i = 1 i = 1

Cj,c. >0, j = l ,  , k — 1. Their relations, properties and relations to the traditional 

parametric structural model (Kerridge 1967; Patefield 1981) and to the geometric mean 

regression and orthogonal regression, however, await further elucidation for such higher 

dimensional errors-in-variable models.
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APPENDIX: PROOFS OF RESULTS

Theorem 1. Equivalence of the compound regression and the parametric structural 

model approach (when the bivariate normality assumption holds for the latter).

Proof. We first prove there is a monotonic relationship between y and (3,, and 

between X and (3,. Given the limits ofy and k  correspond to the same regression lines, 

OLS(X) and OLS(Y) respectively, it follows immediately that there is a one-to-one 

correspondence between the compound regression and the structural model approach 

when the bivariate normality assumption holds for the latter.

From equation (1), we have

£ _ Y _ Syy — P|Y,y ̂  Sfr ~ Pi ĵyy 1
l-y (Vw f i x  p x  (?

I fSxy > 0, then we have—— < Pj < -^2L, and thus —^ |,<>' vr > 0 . Hencey is a decreasing
^xx Sxy Pi^xr ~~ SXY

function of Pj and vice versa.

If  5 w < 0  , X  < R < X  and ' SJ T ~ & Sxr = } S*r P' ~ tSn l V,v>- It follows
S X X  P , 3 P , ^ - ^  P f  S x x  S X Y  | X s x  —  P i

immediately thaty is an increasing function of P, and vice versa.

Next we show that P, is a monotonic function of A . From equation (1) we have

-^p.x,-+pa,--s„ =o
Using the derivative o f implicit function, we have



y > X -  -  X P X  +  ( 1  -  X ) P X  -  ( 1  -  X X  =  0  

=> P X  +4XP,=S„ S . - P X  -3XP,2S „ 3 i - P , S „  + 0 - X X  S l  + S„- = 0

gpi _  Pi3̂  -  Pi4̂  + -  Srr
d l  4Xp,3̂  -  3Xp,2̂  + (1 -  X ) ^

Further simplification of the numerator and denominator lead immediately to the 

conclusion that X is a decreasing function o f (3, if  > 0 and vice versa, and an 

increasing function of (3, if  5 ^  < 0 and vice versa.

Theorem 2. Equivalence of the constrained regression and the compound regression. 

Proof. (1) Vy , we have [ y minimizing ( l - y ) ^ ] ( X i. - X ) 2+y '^ J(Yi - Y ij 2 .
i = 1 z=l

Let c = Srr(fiJ) = '^ j(Yj -Y j)2 |p = - , f y will minimize ^ ( X 2 - X z)2 under the above
z=i 7 z=i

constraint; otherwise, we will have |3 'satisfy: (i)SYY((3 ') < c; (ii) iVa;v((3 ') < S xx (|3y ) 

which yields

Y^ir (P ') + (1 -  Y )$xx (P ') < y c + (1 — y )SXX ((3y) < y ((3y) + (1 - y  )iS,X7 (Py)

This contradicts the fact that “ (3y would minimize (1- y  ( X , - X ) 2+ y j T ( T - T ) 2 ” .
z=l z=l

Therefore there exists a value c for which (3y will minimize the corresponding constrained 

regression.

(2) Similarly one can easily show that Vc , under the constraint of ̂ ( T  -  f ) 2 < c ,
z=l

suppose the estimator minimizing £ (Xi -  X ,)2 is p c, then there exists any , such that pc ,
i= 1

21



where

o _ S'xy ) jtS'yj- ~ (SYY — c)
P c  —  ^

^XX

will also minimize ( l - y ) ^ ( X  - X . ) 2 +y - 7 ) 2 . Furthermore, we have:
i = 1 i = 1

S - p S
y =_

7 7  c  X 7

S %  + 4S -  ?is
7 7  ~  P c  X Y  P  c  X X  P c  X Y

Theorem 3. (a) The Geometric Mean Regression would always yield equal 

efficiencies for the estimations of X and Y respectively, (b) The Ordinary Least Squares 

Regressions for X and Y have the same efficiencies, albeit in reverse order, for X and Y.

Proof, (a) As described above ^ ( 7  - 7 )2 = SYY + P^Y,,. -  2(3,Yvr

E  (X, - X ,)2 = - 1 - E  (7 - 7 ) 2 = ^ S w - 2 - 1 ^
;=i Pi i=i Pi Pi

For geometric mean regression, we have (3, = sign(SX)) ; hence,

Y(Y-YPI S'2 s2min ( 7 - T )2 ZjV 1 ) I —  £ + ̂ 2L- 2

z  , ,

^ X 7  _  O X 7

i i o S 'i t  7 7

F
mX X

Z ( 7 " ^ ) 2 Z ( 7 - ^ ) 2L 13“  V + S y y - 2 ^  ^  2V y y - 2 ^ 1J s Z ^

e =  !----------- = 1=1 s _ S   _ S S - S
xx 'xx ___yy w xx.

■ R _  1 T t . T 7  7 7  C,

> ( 7 - 7 7 1 .  c

i   1 i=1--------------------------------s  s  - s
1

i=    X Y  X X  Y Y  X Y

2 I,(X,-x,)2 ■ X O ' - f F



o V v v
° X X ° Y Y

C    z z°1Y
-S i

Thus we have proven that ej = e2, for the geometric mean regression.

Furthermore, the total regression efficiency simplifies to:
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q + % =  ( - V A r  -  S i,.)  S** Srr
Srr + P fS ^  _ 2 Pi^jyy 

Its derivative with respect to (3, simplifies to:

d { e x + e 2) _ (  1 p7 ) 2 S x r ( S xxS r r ~ S l r )

Setting the above to zero, we find immediately that the geometric mean regression 

maximizes the total regression efficiency with (3, = sign(SXY ) J»V,T / Sxx .

(b) The equality of ei (for y = 0) and 62 (for y = 1) are easily proven as follows:

+ S 2 |S' - 2 S 2 |S  S - S 2 S S S  - S 2y = 0? pi = , e, =

^ f f ly  ^%Y ^ X Y  ^ y ^ X  ^ Y Y ^ X X  V f' xi&yy ^ y y  ^ . \ ' |  ̂ ' x ')' lVj}j ■ ^ v v

S S 2 I S +S - 2 S 2 I S' s  - s 2 s  s  s  - s 2
Y \  P i  ? e 2 2 |  2 22 1 2 o 2 2  2 2 2

S f f ic  S j f f S x W  S j y y J o t S ^  -XY S ' S y y  S xyjy  M & ff i ^ x F  S j o y S f f l m S b f y  S q Y y S j tx
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Abstract: Aerodyne aerosol mass spectra (AMS) datasets typically contain hundreds of 

mass to charge ratios and their corresponding intensities from air sampled through the 

mass spectrometer. The observations are usually taken time sequentially to monitor the 

air composition, quality and change in an area of interest. An important goal o f the 

present AMS data analysis is to reduce the dimensionality o f the original data yielding a 

small set of representative tracers for next generation atmospheric models. In this work, 

we present an approach to jointly apply three multivariate analysis techniques — cluster 

analysis, principle component analysis and non-negative least squares towards this goal. 

Application to a recent field study demonstrates the effectiveness of this new approach. 

Comparisons are made to singly applied multivariate statistical techniques including 

principal component analysis and positive matrix factorization, and guidelines are 

provided.

Key Words Aerodyne Aerosol Mass Spectra, Cluster Analysis, Non-Negative Least 

Squares, Positive Matrix Factorization, Principal Component Analysis
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INTRODUCTION

Atmospheric aerosols are known to play important roles in climate and climate 
change. These include the aerosol direct effect, whereby particles directly scatter solar 
radiation back into space and aerosol indirect effects brought about by the fact that 
aerosol particles, which serve as sites for cloud droplet condensation, influence cloud 
properties. Thus, greater numbers of aerosol particles tend to result in a greater 
concentration of smaller cloud droplets and brighter clouds (this, the so-called first 
indirect effect, also results in the scattering of more solar radiation back into space). 
Greater numbers o f smaller droplets also tend to make clouds more stable - reducing 
precipitation rates and leading to changing patterns of rainfall and increased cloud 
lifetime. All of these effects are dependent on aerosol properties, especially particle 
number, size, and chemical composition. In recent years the study of aerosol composition 
has been greatly advanced through the development of aerosol mass spectrometers and 
though measurements taken by many investigators deploying these instruments at a 
variety of sites around the globe (see, e.g., Jimenez et al. 2003 ; Allan et al. 2003ab; Allan 
et al. 2004 ; Zhang et al. 2005b; DeCarlo et al. 2006 ; Volkamer et al. 2006). Due to the 
complexity o f Aerodyne aerosol mass spectra (AMS) data, indicative of the complexity 
of the aerosol itself, an area of great interest in quantitative study is dimension reduction. 
The goal here is to obtain, from the original high dimensional datasets, a few 
representative tracers that will elucidate the sources and interactions of different aerosol 
components, and to identify the most important tracking variables for the next generation 
of climate models.

In previous studies, several multivariate analysis techniques have been singly applied 
individually towards the dimensional reduction of Aerodyne AMS data. These include 
principal component analysis (Zhang et al. 2007) and cluster analysis (Marcolli et al. 
2006). The most widely used technique to extract information on organic aerosol types 
from Aerodyne AMS data in the atmospheric research community is Positive Matrix 
Factorization (PMF), also known as the non-negative matrix factorization (Lee and Seung 
1999). PMF has been developed (Paatero and Tapper 1994) to yield factors, which 
combined with non-negative coefficients are reflective of the positive mixing of a basis 
set of chemical components (the factors) that contribute to aerosol mixing state. Recent 
references include (Lee et al. 1999; Ramadan et al. 2000; Larsen and Baker 2003; 
Maykut et al. 2003) and two review papers (Engel-Cox and Weber 2007; Reff et al. 2007). 
However, a number o f weaknesses are inherent in PMF, especially its subjectivity and 
non-uniqueness (Ulbrich et al. 2009), make it clear improvements are needed and that 
better methods must be developed to better serve the atmospheric research community.

In this paper, we propose a joint cluster analysis on variables (VARCLUS) (Harman
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1976; Cattell 1965; Rummel 1970), principle component analysis (PCA) (Jolliffe 2002) 
and non-negative least squares (NNLS) (Lawson and Hanson 1974; Donoho and Stodden 
2003) approach to better achieve the goal of dimension reduction. Each method alone is 
not new; however, their combination is novel and, as shown later, rather effective in 
solving the problem at hand. The paper is arranged as follows: a brief introduction is 
provided to a set of AMS data collected from an aircraft flying in and downwind of 
Mexico City; the proposed method is described in detail in the method section while the 
corresponding output is displayed with application to the given AMS data; Finally, it 
concludes with a comparison between the proposed method and the existing methods, 
especially PCA and PMF.

THE AEROSOL MASS SPECTRA DATASET

Instrumentation

The aerosol mass spectra analyzed in this work were recorded using an Aerodyne 
aerosol mass spectrometer during a flight of the US Department of Energy (DOE) G-l 
aircraft in and downwind of Mexico City during a morning/pre-noon flight on March 19, 
2006 (Kleinman et al. 2008). The basic mechanism of operation of the spectrometer can 
be found in (Jayne et al. 2000). In summary, the air sample flows through an orifice and 
particles are focused by an aerodynamic lens and passed through a chopper, which is set 
to either an open or a blocked mode. Vaporized and ionized, particle species are 
introduced into the quadrupole mass spectrometer sequentially with their weights and 
frequencies recorded. A more detailed description of the Aerodyne mass spectrometer can 
be found in (Jimenez et al. 2003).

Data Pre-processing

Each mass spectrum contains signals with m/z values ranging from 1 to 452, and 
spectra were recorded every 12 seconds with a total of 943 spectra in the initial dataset. 
During initial processing, two types of data were obtained — data recorded when the 
aerosol beam was unobstructed (MSSopen) and data collected when the beam was 
blocked by the chopper (MSSClosed). Each mode has its own baselines, designated as 
MSSOpenBaseL and MSSClosedBaseL. The difference between the open mode and the 
closed mode was used to remove the contribution from background gas in the detector,
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resulting in the data file analyzed in this paper named MSSDiff and defined as:

MSSDiff = (MSSOpen - MSSOpenBaseL) - (MSSClosed - MSSClosedBaseL)

Data in MSSDiff contain negative values, which are expected for signals that are 
close to zero in the presence of noise. We retain the negative values for the analysis 
because the proposed joint cluster and NNLS approach allows negative values.

In this paper, we focus on the subset of m/z values from 1 to 100, because mainly 
low-m/z fragments are generated from larger m/z organic species with electron impact 
ionization. Therefore the majority o f signal in an instrument like the Aerodyne AMS is 
found in the m/z range below 100. Twenty-eight peaks related to large air/water or no 
useful aerosol signals (m/z’s 1-11, 14, 16-18, 20-23, 28, 32-36, 39-40, and 47), were 
removed by setting the corresponding intensities to 0. Other inorganic peaks like those 
due to sulphate or nitrate particles were retained for analysis. Two spectra (time = 353, 
643 seconds) showed a signal several times higher than the third highest spectra. They 
were clear outliers and thus removed.

METHOD

Notations and Overview

Let DATA represent the pre-processed AMS data with N  columns for m/z values 
ranging from 1 to TV, (TV, =100), and Nt (M =941) rows for the N, spectra. Thus the ith 
column of the matrix DATA is the time series corresponding to m/z value z, while the I t h  
row of DATA is the mass spectrum sampled at time point t. Our goal is to find a mass 
spectrum basis, MS, with a small number of entries Nc, such that

DATA = C*MS + E

(1)

Here, DATA and the error terms E are N, *N, matrix (in our work N, = 941, TV,- = 100). 
MS is an Nc *N  matrix, Nc«  N t. Our goal includes two parts: first, we need to decide 
upon Nc, the number of basis spectra (equal to the number of candidate tracers); second, 
we need to estimate MS. The above model was first presented in Zhang et al. (2005a) in a 
regression form. In her work, she selected two “tracers” (m/z = 44 and m/z = 57), and a 
two-step regression was applied. Both the values of “tracers” (which is C in equation (1)) 
and the coefficients (which is MS in equation (1)) have physical meanings. Ulbrich et al. 
(2008) presented the decomposition process with the PMF approach. In general, the
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decomposition scheme is shown in Figure 1.

DATA MATRIX

In Rows: In Columns:

Nt m a s s  s p ec t ra  N, time ser ies

(Nt rows for Nt (N column for N, 
time s tep s )  m/z  va lues)

or

DATA

SIZE: Nt X N.

TRACER 1

C1 X MS1

Nt X 1 1XX;

TRACER N

... .1 i t . .

+ Residuals

+ CNc X MSNc

Nt X I 1XN;

+ Residuals

N, XN;

Fig. 1 Schema of the decomposition of the AMS dataset. The time series o f the tracers 

make up the matrix C and the mass spectra of the tracers make up the matrix MS in 

Equation (1).

The above decomposition can be solved by the principal component analysis (PCA), 
factor analysis (FA) or positive matrix factorization (PMF). Both PCA and FA yield a 
suggestive Nc based on the variation explained by the basis. However, their output factors, 
with both positive and negative coefficients, are often unacceptable. The PMF method 
yields non-negative factors and coefficients. However, these factors are not always 
interpretable and furthermore, the PMF output is not unique (Lee and Seung 1999, 2001; 
Ulbrich et al. 2008).

Hence we propose a combined cluster analysis on variables (VARCLUS), PCA and 
non-negative least square (NNLS) approach to better achieve the goal of dimension 
reduction. In summary, first we use VARCLUS to determine the dimension Nc. Next we 
perform the PCA to obtain the matrix C. Finally we apply the NNLS to estimate the 
non-negative matrix MS. More details are given below.
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VARCLUS and PCA

The AMS data is usually sufficiently linear so as to return explainable clusters with 
m/z values belonging to the same aerosol chemical class grouped together. Therefore the 
number of major aerosol classes can be estimated by the number of major clusters. Since 
the first principal component (PCI) for each cluster is a weighted linear combination of 
all m/z values in the given cluster, usually with non-negative coefficients, and would 
explain the most (and often the majority) variation in the given cluster, it is the natural 
choice as a representative tracer for each cluster. VARCLUS is a procedure 
complemented in SAS. VACLUS iteratively splits variables into a binary tree by finding 
the first two principal components, performing an orthoblique rotation, and assigning 
each variable to the rotated component with which it has the higher squared correlation 
(SAS Institute, 2008). Hence, VARCLUS is the most suitable hierarchical clustering 
technique consistent with within-cluster PCA.

Thus the dimension of basis Nc equals to the number of major clusters, and the basis 
consists o f the first principal components from each major cluster. The matrix C is thus 
determined with its columns consisting of P C I’s from all major clusters, which we refer 
to as the basis/tracer set. We denote the columns of DATA as M Zi, MZioo (each of 
length 941), while the rows of DATA as Ti, T 9 4 1  (each of length 100). Thus, the i h

column of C is C = V  a,MZ, . VARCLUS produces disjoint clusters so that each
1 A ^ k e C lu s t e r # i  k  k  r  J

Q  is a weighted summation of disjoint subset of the m/z’s (i.e., M Zk’s). For practical 
reasons, clusters that would explain a small amount of variation in the data are either 
merged to its nearest major clusters, or simply discarded.

Non-Negative Least Squares (NNLS)

Now that we have obtained the basis dimension Nc and the basis matrix C, our next 

goal is to find the matrix MS in D A T A  =  C * M S  + E  such that we can express
941*100  941*vVc JVc*100

each original m/z value as a linear combination of the basis with non-negative 
coefficients. This will further elucidate the relations between the original AMS data and 
the newly obtained tracer set. In other words, we need to calculate the coefficients /?, 
required to be non-negative, in the following equation system:
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M ZX — PUQ  + P12C2 +... + P ̂ NcCNc + e1 

MZ^ — P2JCj + P2 2C2 + ... + P2tNĉ Nc e2

^ZlOO Pioo.l^l +  Pi 00,2 ̂ 2  + • • •+  P l00 ,7Vc^7Vc +  1̂00

This is achieved through the NNLS algorithm by minimizing || DATA -  DATA ||2, with

the constraints that each p is non-negative. The details of the NNLS algorithm can be 
found in Lawson and Hanson (1974). For better fit, we add the intercepts in the above 
linear equation system as follows.

M Z \ =  P  1 , t  P  Q  , t  P i  C  f,'T  + P  N c C N c  t e  1 

M Z 2 —  P  2 , " t "  P  Q  , T  P i  T , - 2- N c ^ N c  i f  2

M Z l o o~ P  i of" P> C i P , i -rc foP  2 m^Nc e 1 0 0 , 1 0 0

(2)

In matrix form we have: DATA  = C * M S  , where C is C with an extra
941*100 941*(lV c+ l) (lV c+l)*100

column o f l ’s, and M S  is MS with the added row (P10,P20..., pi00 0 ) , a vector of intercepts 

allowed to be negative as it is unrelated to any mass spectrum.

RESULTS

The VARCLUS output, a hierarchical tree, is shown in Figure 2. Based on the output 
tree and the related aerosol information, we have, clearly, 4 major clusters. More 
importantly, each of these clusters corresponds to a unique aerosol class of interest with 
their members (m/z’s) highly consistent to the corresponding factors from theoretic
analysis as shown in Tables 1 and 2 for the organic and the inorganic aerosols
respectively.
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54 , 55 , 56 ,57 , 58 , 59 ,63 , 67 , 68 , 69 , 70 , 

71 ,72 ,74 ,76 , 77 , 78 ,79 , 82 , 83 , 84 , 85 , 

86 , 87 , 89 ,91 , 92 , 93 ,94 , 95 , 96 , 97,99

OOA&I3BOA

N irate

25 , 12 , 13 ,29 ,31 ,

75 , 37 ,44 , 52 ,60 ,

100 61,73

88,
90  24 , 

49

19

Sul ate
30 ,

46
48 ,64 ,

65,66 ,

80,81 ,

98
62

Fig. 2 VARCLUS output: the hierarchical tree showing 4 major clusters with member 

m/z values written in blue. Only six m/z’s (in black) are excluded from these major 

clusters. Cluster 1 (HOA), 2 (Sulfate), 3 (OOA and BBOA) and 4 (Nitrate) contain 47, 7, 

10 and 2 m/z values with its PCI explaining 91, 99, 90 and 100% of the cluster variations 

respectively.

Table 1 Organic aerosol factors. The underlined m/z’s are critical signals for each factor.

Organic aerosol factors Ionized at 600C m/z
0:C

ratio

HOA

hydrocarbon-like organic 
aerosols

CnHm -» Cn_xHmy +

27, 29, 44, 
43,55,

57,69,
71

Less
Oxidized

OOA2 
Oxygenated organic

C„HmO —» C2H30 +, C3H30 +, 43, 
55, ... 1

aerosols tvne II
BBOA 

biomass burning organic 
aerosols

R ^ R '+,c 2H4o 2+, C3H30 2 44,
45, . . . Mor

OOA1 
Oxygenated organic 
aerosols type I

C„HmO, —»CO,+ , HCO,+ , R 60, 
73, ...

e
Oxid

ized

Table 2 Inorganic aerosol factors, with major signals (m/z’s) listed.
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Inorganic aerosol 
factors

Major components m/z

Sulfate
SO, S 02, SO32", HSO3",

h 2s o 4
48, 64, 80, 
81, 98

Nitrate NO, N 0 2 30, 46

For the VARCLUS algorithm, the similarity measure is the Pearson correlation. For 
the particular atmospheric application we reported here, the correlation measure is most 
meaningful because of the inherent linearity o f the aerosol mass spectra (AMS) data. In 
AMS data, organic aerosols usually come from several main sources. For example, 
hydrocarbon-like organic aerosols (HOA) mostly come from fossil fuel, while 
oxygenated organic aerosols (OOA) mostly from secondary organic aerosols (SOA) 
(Zhang et al. 2007). This property lent theoretical foundation and explanation to our 
VARCLUS approach and results -  where our clusters clearly correspond to the four major 
aerosol classes. In addition, all P C I’s in these clusters represent a high percentage of 
variation explained. Thus, it is reasonable to use these P C I’s as the basis (tracer set) for 
the given AMS data. The proportion of total variation explained, calculated as the ratio of 
the summation of all PCI variances divided by the total variances, is 95%.

Based on the VARCLUS clusters and the subsequent PCA output, we obtained the 
matrix C and as illustrated in Figure 1, we proceed to estimate the MS basis matrix MS 
using NNLS. The resulting four non-negative MS basis are as shown in Figure 3.

1 r 
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0
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43
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Fig. 3 MS basis obtained using NNLS for the four major clusters of HOA, Sulfate, 

OOA&BBOA and Nitrate.

SUMMARY AND DISCUSSION

Many commonly used multivariate statistical methods are not suitable in the intended 
AMS data analysis o f dimension reduction and tracer extraction due to negative 
coefficients of the resulting basis. For example, Figure 4 below shows the mass 
spectrum basis obtained by using the first four PC’s o f a single principal component 
analysis based on the entire mass spectra. It contains large negative values, which is hard 
to interpret in the mass spectrum language.

100 120

-10
100 120

100 120

100 120
m/z

Fig. 4 The mass spectrum basis obtained using the first four principal components of a 

single principal component analysis based on the entire mass spectrum data set.

Both the PMF and the proposed method of joint VARCLUS and NNLS analysis can 
achieve non-negative tracer coefficients. The major criticism of the PMF is its 
non-uniqueness and subjectivity. Generally speaking, PMF is not unique. For example, if
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X = ABC, where A, B and C are all positive matrix, then we have different PMF’s in X = 
(AB)*C = A*(BC). The different factorizations are called “rotation” in factor analysis. 
For the proposed joint analysis method, there is little flexibility in deciding the major 
clusters and thus the basis. For example, once the C matrix has been computed, the MS 
matrix determined by the NNLS procedure is unique.

As Paatero (See Ulbrich et al. 2008) pointed out “It is unfortunate that introducing a 
priori information also introduces some subjectivity in the analysis.” To apply PMF 
analysis, one needs to decide at least two things: the number of factors and the “rotation” 
parameter. Otherwise one will find the solution non-unique. Both of these choices have 
determinant effect on the final output. For our method, we still have to refer to some prior 
knowledge. However, the “subjectivity” exists in only one step -  the determination of 
major clusters based on the VARCLUS output. Even for this step, our decision is based 
mainly on objective criterion such as the percent variation explained by each cluster as 
shown in the given study.

A summary o f comparison among current methods for aerosol mass spectra data 
study is shown in Table 3.

There is still space for us to improve in the proposed method. First, since the sources 
of organic aerosols are complicated, the disjoint clustering method may not perform well 
for overlapping aerosol groups. Next, if the first principal component for a given cluster 
could only explain a modest amount of variation, one would need to find additional 
tracer(s) for the given cluster. Perhaps a combined VARCLUS and PMF approach with 
the PMF done within each cluster would better serve our purposes. Further research is 
warranted in this area.
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Table 3 Comparison of methods for aerosol mass spectra data study

Methods
How to determine the 

dimension (Nc).

How to find the 

tracer matrix C

How to find the 

basis spectra MS
Comments

PCA in 

rows 

(mass 

spectrum 

)

Based on PCA output 

to get an appreciable 

proportion of variation 

explained.

No output for 

C

PCA applied to find 

MS

Negative 

values in 

MS (see 

Fig. 4).

PCA in 

columns 

(time 

series)

The same as above.
PCA applied to 

find C.
No output for MS.

Meaningles 

s time 

series.

PMF
Comparing output 

with different Nc.

Find C and MS together with certain 

PMF algorithm.

Non-unique

subjectivity

in

determining

Nc.

Hierarchi

cal

Based on both 

clustering structure
No output for C.

Clustering 

applied to

MS are 

usually not
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Cluster

Analysis

chemistry knowledge. find MS clearly

explainable

Iterative

Regressio

n

(Zhang et 

al. 2005a)

Nc=2.

Use m/z44 and m/z 57 as 

two tracers to form 

matrix C(0) at the very 

beginning; Use Ordinary 

Least Square (OLS) 

regression to find C(l) 

based on M S(l_1).

Use OLS 

regression 

to find 

M S(i) based 

on given 

C(i).

Information 

lost; 

possible to 

get 

negative 

results.

VARCLU

S+NNLS

Based on both 

clustering structure 

and chemistry 

knowledge.

Use linear combinations 

of m/z’s in clusters as 

tracers to form matrix C.

Use NNLS 

to find MS 

based on C.

Valid for 

data 

structure 

exploration; 

non-negativ 

eMS.
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