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Abstract 

This report documents a literature survey of so-called “Model Assisted Probability of Detection” 
(MAPOD) approaches that may be useful in determining the probability of detection (POD), a metric for 
quantifying the performance of nondestructive evaluation (NDE) methods.  The objective of this report is 
to summarize MAPOD concepts that have been proposed to date in order to assess specific approaches 
that may be appropriate for application to improve estimates of POD for field NDE of nuclear power 
plant components.  The limitations of laboratory-based studies to replicate actual field conditions are 
well-recognized and not limited to the nuclear power industry.  Probability of detection estimates based 
on laboratory studies generally provide ideal environments for performing examinations as compared 
field settings, which typically will result in non-conservative estimates of POD for field applications.  As 
a consequence of this effort, the authors conclude that use of MAPOD concepts to improve estimates of 
field NDE performance may require access to certain field data, or alternatively, may require significant 
laboratory studies to assess the influence of human and environmental shaping factors.  If the necessary 
field data cannot be made available, it is proposed that laboratory efforts will have greater chance of 
success by focusing on a specific examination technique and component application.  The authors also 
find that MAPOD concepts may have a more immediate contribution to the nuclear power industry 
through their use in extending personnel and procedure qualifications beyond established limits.  Finally, 
another basis was identified that may be used to adjust POD curves generated in previous reliability 
studies and performance demonstrations.  Many of the previous studies calculated POD as the average of 
performance data which may be inappropriate for many applications, as the calculation may be non-
conservative.  A more conservative approach to estimating POD would include basing the calculation on 
a lower statistical quantile of the data set. 
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AFRL Air Force Research Laboratory  

AMSE American Society of Mechanical Engineers 

AP application parameters 

CDF cumulative distribution function  

FAA Federal Aviation Administration 
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HF human factors 

IC intrinsic capability 

ISI inservice inspection 

MAPOD Model Assisted Probability of Detection 

MLE maximum likelihood estimation 

MRR Mini Round Robin 

NASA National Aeronautics and Space Administration  

NDE nondestructive evaluation 

NDT nondestructive testing 

POD probability of detection 

UT ultrasonic testing 

XFM transfer function 

 

 





 

vii 

Contents 

Abstract ........................................................................................................................................................ iii 

Acronyms and Abbreviations ....................................................................................................................... v 

1.0 Introduction .......................................................................................................................................... 1 

2.0 Parametric Probability of Detection Models ........................................................................................ 2 

2.1 POD Model for Binary (Hit/Miss) Representation of NDE Response ......................................... 3 

2.2 POD Model for Continuous NDE Response (â vs. a Models) ..................................................... 3 

3.0 Model Assisted Probability of Detection .............................................................................................. 5 

3.1 Non-Bayesian Demonstrations ..................................................................................................... 6 

3.2 Bayesian Approaches ................................................................................................................... 7 

3.3 Use of Field Inspection Data for POD Estimation ....................................................................... 9 

3.4 POD Based on Lower Quantiles ................................................................................................ 10 

3.5 Data Pooling ............................................................................................................................... 10 

4.0 Summary Human Factors Literature .................................................................................................. 11 

5.0 Discussion and Analysis ..................................................................................................................... 13 

5.1 MAPOD Discussion and Analysis ............................................................................................. 13 

5.2 Discussion and Analysis of Human Factors and Integration with MAPOD .............................. 14 

5.3 Other Considerations .................................................................................................................. 15 

6.0 Conclusions and Looking Forward ..................................................................................................... 15 

7.0 References .......................................................................................................................................... 16 
 

 



 

viii 

Figures 

1 Illustration of a POD Curve .................................................................................................................. 3 

2 Linear Relationship between Natural Log of Response, â and Defect Size, a ..................................... 4 

 
 
 

Tables 

1 Summary of MAPOD Demonstrations Using Non-Bayesian Techniques for POD Parameter 
Estimation ............................................................................................................................................. 6 

2 Summary of MAPOD Demonstrations Using Bayesian Techniques for POD Estimation................... 8 

 
 



 

1 

1.0 Introduction 

This report documents a literature survey of so-called “Model Assisted Probability of Detection” 
(MAPOD) approaches to assist in determination of probability of detection (POD), which is the de-facto 
metric for quantifying the performance of nondestructive evaluation (NDE).  This literature survey is an 
effort to summarize the MAPOD concepts that have been proposed to date so that an understanding may 
be gained as to what approaches may or may not be appropriate for the application of improving the 
estimates of POD for the field inspection of nuclear power plant components.  MAPOD is vaguely 
defined in the literature and has been described as an (Thompson 2008),  

“…approach in which either experiment or physics-based theoretical models 
(previously validated by experiment) are used to extend the information gained in 
empirical measurements to new situations.” 

In the Department of Defense Handbook for reliability assessment of nondestructive evaluation 
systems (DoD 2009, MIL-HDBK-1823A), MAPOD is defined as…, 

“methods for improving the effectiveness of POD models that need little or no 
further specimen testing” 

Elsewhere, it is defined through its motivation for (Aldrin et al. 2012), 

“…reducing POD sample number by better managing experimental variation 
using more accurate statistical models and appropriately designing experiments 
based on prior experience and data.” 

Parts of all of these definitions reflect the goal of this effort, which is to maximize the efficiency of 
POD determination for the field inspection of nuclear power plant components by leveraging the most 
appropriate statistical models and existing knowledge and information. 

The limitations of laboratory-based studies to replicate actual field conditions is well recognized and 
not limited to the nuclear power industry.  Examples of field conditions that may be difficult or 
impossible to replicate in a laboratory study include stresses due to organizational pressures (e.g., 
influence of deadlines, revenue goals, etc.) or the environment (e.g., uncomfortable temperatures, anxiety 
over radiation exposure).  In this context, laboratory studies provide a rather ideal setting for performing 
an inspection compared to the field setting, which could result in a non-conservative estimation of POD 
for field applications. 

POD is usually presented as a function of a single variable representing flaw size, a, and depicted as 
an “S-shaped” curve that is monotonically increasing with a.  This variable is denoted as POD(a).  
Typically, the POD(a) for a particular application is determined through the collection of a large amount 
of empirical data.  Guidelines for performing an NDE reliability assessment study based on POD are 
described in MIL-HDBK-1823K (DoD 2009).  Beginning around 1980, several studies were conducted to 
determine the POD for NDE of nuclear power plant components in an effort to quantify its reliability and 
effectiveness and understand how it could be improved.  Such studies are typically performed by 
fabricating representative test blocks and having them inspected by several teams.  The number of blocks 
and inspections required is dictated by the amount needed to achieve statistically relevant results.  Many 
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publications allude to the “a90/95” criteria for reliability, which is the flaw size at which POD is 90% with 
a confidence of 95% or greater [although the a90/95 has been criticized for its arbitrariness (ENIQ 2010)].  
In order to achieve a small 95% confidence interval, a significant number of inspections can be required. 

Thus, there has been motivation in recent years to leverage more relevant and appropriate statistical 
techniques to optimize the efficiency and/or accuracy of POD(a) determination, particularly in the 
aerospace and defense industries.  The MAPOD Working Group was established in 2004 by the Air Force 
Research Laboratory (AFRL) in collaboration with the Federal Aviation Administration (FAA) and the 
National Aeronautics and Space Administration (NASA) (Thompson et al. 2009).  Since then, similarly 
themed efforts have emerged, including efforts in France (SISTAE) and Europe (PICASSO) (Dominguez 
et al. 2012).  Although there have been efforts to standardize the MAPOD concept, numerous 
demonstrations of MAPOD in the literature indicate that applications often have unique considerations or 
constraints.  

The rest of this paper is organized such that an introduction to parametric POD models follows in 
Section 2.0 and an overview of literature presenting demonstrations of MAPOD is provided in Section 
3.0, divided into non-Bayesian demonstrations and Bayesian demonstrations.  Section 4.0 is a summary 
of human factors literature considered relevant to NDE of nuclear power plant components, and Section 
5.0 provides a discussion and analysis of MAPOD approaches, and the potential integration of human 
factor effects with MAPOD.  Section 6.0 includes conclusions based on the literature analyzed and 
possible next steps.  References are contained in Section 7.0. 

 

2.0 Parametric Probability of Detection Models 

Probability of detection is a widely established method for measuring the performance of NDE 
systems.  Because POD is dependent of flaw size, a, it is represented as a monotonic curve versus a that 
can range from 0% for flaws below the detection threshold up to 100% for larger flaws.  The POD curve 
generally has an S-shaped appearance as illustrated in Figure 1.  The POD curve can be created from 
curve fitting to NDE data, which can either be reported as binary responses (hit/miss) or as continuous 
responses in which the response intensity, â, has an assumed relationship to the flaw size, a (Berens 1989; 
Schneider and Rudlin 2004; Guo et al. 2011).  The statistical bases for POD curve fits is dependent on the 
nature of the NDE data responses, resulting in different formulations for POD curves for binary NDE 
responses in comparison to â vs. a models (Guo et al. 2011). 
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Figure 1.  Illustration of a POD Curve 
 

2.1 POD Model for Binary (Hit/Miss) Representation of NDE 
Response 

POD curves resulting from binary NDE responses can be represented mathematically by a logistic 
function (Berens 1989), 
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This model also includes two parameters, β1, and β2, to be determined from curve fitting with 
empirical data.  This model has been used to curve fit binary NDE data to estimate POD for NDE 
performance studies involving nuclear power plant components (Heasler and Doctor 1996).  In this 
equation, the parameters β1 and β2 are determined using maximum likelihood estimation (MLE) (Forsyth 
and Fahr 1998).  The basis for this model is discussed in ENIQ (2010) and it is noted that the parameters 
β1, and β2 do not have a physical interpretation.  This is opposed to POD models from the continuous 
signal responses (â vs. a) in which the model parameters relate the NDE response, â, to flaw size, a.  In 
addition to the logistic function, the two parameter probit model has also been used to fit POD to binary 
NDE response data (Spencer 2001; Bode et al. 2012),  

   1 2POD( ) loga a    . (2) 

2.2 POD Model for Continuous NDE Response (â vs. a Models) 

In the case of continuous NDE responses (â vs. a models), proportional relationships between â and a 
models are often assumed (see Figure 2), to be of the form (Berens 1989), 

 0 1â a     , or, (3) 

 0 1ˆln lna a     . (4) 
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where ε represents measurement variability with normal distribution, N(0,δ2) where δ2 is the variance.  
The type of relationship depends on the specific type of measurement.  If the scenario in Eq. (4) is 
assumed, the POD curve can be constructed from 

    
0

ˆ ˆ ˆ ˆ ˆ ˆPOD( ) P | P ln ln | (ln | )th tha a a a a a a f a a da


      , (5) 

where P(y|x) is the probability of y given x, âth is a threshold signal response, and ˆ(ln | )f a a  is a log-

normal probability distribution of ln â given a.  Thus, the POD is given by the cumulative normal 
distribution function (Berens 1989), 

 

Figure 2.  Linear Relationship between Natural Log of Response, â and Defect Size, a 
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Explicit representation of POD as a function of multiple influencing parameters has been explored in 
works by Pavlović et al. (2012) and Aldrin et al. (2012).  Instead of simply representing POD as a 
function of a single defect size parameter, it is suggested that POD can also be represented as a function 
of other relevant parameters such as flaw orientation, surface roughness, etc.  In this case, the relationship 
between the NDE response and multiple influencing parameters, a1, a2, a3, … ai can be represented as, 

  0 1 1 2 3ˆ , , ,... ia f a a a a     . (8) 

The function,  1 2 3, , ,... if a a a a , in Eq. (8) can represent a complex physics-based relationship 

between the NDE response and relevant inspection parameters, in contrast to the linear relationship 
assumed previously. 

 

3.0 Model Assisted Probability of Detection 

As noted in the Introduction, the MAPOD Working Group formed in 2004 and began to formalize 
MAPOD approaches.  MAPOD approaches were initially categorized as “Transfer Function (XFM)” 
approaches and “Full Model Assisted (FMA)” approaches (Thompson et al. 2009).  In the XFM 
approach, an empirically derived baseline POD curve is leveraged in the estimation of POD for a similar 
inspection scenario, which differs by one significant controlling factor from the scenario for which the 
baseline curve was derived.  In this case, the baseline curve is leveraged by augmenting the curve with 
information about how the significant controlling factor affects the POD.  This information could be 
obtained through careful laboratory experiments or through physics-based computer modeling.  This 
approach is most feasible when the controlling factor represents a well-understood physical phenomenon 
and is particularly applicable to extending qualifications beyond established limits.  

In the FMA approach, factors that control variability of the inspection are systematically identified.  
Physics-based models can be used to estimate the signal response and variability due to factors that are 
represented by well-understood physical phenomena while the variability of other factors are determined 
empirically.  These approaches have been merged into what has been called the “unified approach” to 
MAPOD in that the factors that control the variability of a scenario are divided into two groups:  (1) those 
that must be assessed empirically and (2) those that are governed by well-understood physical 
phenomena. 

The following two subsections (Subsections 3.1 and 3.2) are organized according to how information 
is combined for estimation of POD using MAPOD concepts.  In this case, the classification is 
“Non-Bayesian” and “Bayesian” because many of the references cited in the former category do not 
explicitly identify how the information is combined, although it is assumed that the information is not 
combined using Bayesian techniques.  However, some of the cited references in this category do describe 
in detail the combination of POD model parameters through the use of linear regression techniques.  
Subsection 3.3 discusses POD estimation for data collected by field inspections and some of the 
challenges associated with this approach.  Subsections 3.4 and 3.5 reference documents that describe 
constructing POD curves from the lower quantiles of data and that describe some of the requirements for 
pooling different data sets, respectively. 
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3.1 Non-Bayesian Demonstrations 

The MAPOD approach, as described above (either XFM, FMA, or unified), has been illustrated 
through numerous demonstrations, particularly on aircraft components, using either eddy current or 
ultrasonic techniques.  Nearly all of these demonstrations reviewed in this effort were performed with â 
vs. a data with the exception of Bode et al. (2012).  A summary of the non-Bayesian demonstrations 
reviewed in this effort is provided in Table 1.  Thompson et al. (2009) provide a MAPOD demonstration 
applied to eddy current for detection of fatigue cracks in a complex engine component.  In this 
demonstration, due to the difficulty of artificially growing fatigue cracks in this complex geometry, the 
POD for electro-discharge machined notches in the complex engine components is determined and used 
as the “baseline” POD curve.  Physics-based modeling is then used to determine the influence of fatigue 
cracks versus notches on this baseline curve.  Thompson et al. (2009) also describe the application of 
MAPOD to assess the effect of microstructural variability on POD in different alloys for engine disks.  In 
this case, the effects of material grain size on NDE noise level were evaluated using computer simulations 
while the effects of system variability were evaluated empirically.  Thompson et al. (2009) and Smith et 
al. (2007) also discuss the application of MAPOD to estimate POD for fatigue cracks growing from 
fastener holes for aircraft wings using ET.  In this case, computer modeling was used to estimate the 
influence of fatigue cracks growing outward from holes on eddy current response while the influence of 
hole geometry variability on eddy current response was determined empirically. 

Table 1. Summary of MAPOD Demonstrations Using Non-Bayesian Techniques for POD Parameter 
Estimation 

MAPOD 
Approach 

NDE 
Response 

NDE 
Method Applied for… Ref. 

XFM â vs. a ET Fatigue cracks in complex 
engine components 

Thompson et al. (2009) 

FMA â vs. a ET Fatigue cracks in wing lap joints Thompson et al. (2009) 
FMA â vs. a UT Defects in engine disk alloys 

with microstructural variability 
Thompson et al. (2009) 
Smith et al. (2007) 

XFM â vs. a UT Fatigue cracks around fastener 
holes for aircraft 

Harding et al. (2009) 

XFM â vs. a UT Fatigue cracks in aluminum 
components 

Demeyer et al. (2012) 

XFM; FMA â vs. a ET Fatigue cracks in titanium plates Rosell and Persson (2013) 
FMA â vs. a ET Cracks at fastener sites Aldrin et al. (2009) 
XFM; FMA â vs. a UT Defects in railway axles Carboni and Cantini (2012) 
XFM hit/miss UT Airplane lap joint specimen sets 

with multiple site fatigue 
damage 

Bode et al. (2012) 

 

Rosell and Persson (2013) demonstrate estimation of POD for fatigue cracks in titanium alloy plates 
using eddy current testing by both XFM and FMA approaches.  The model is applied to an automated EC 
procedure in which the probe is raster scanned over the defect.  This work noted three kinds of 
influencing parameters as 1) those associated with the handling and characteristics of the probe and 
equipment, 2) the sample and component features, and 3) the defect characteristics.  However, variables 
associated with human factors and interpretations of signals were not considered.  This work illustrated 
degradation of POD as the scan index of a raster scan is increased, and it is also noted that further work is 
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needed for modeling of natural cracks.  Aldrin et al. (2009) also demonstrate an FMA approach for 
estimating POD of an eddy current inspection of cracks at fastener sites. 

Carboni and Cantini (2012) apply MAPOD to ultrasonic inspection of defects in railway axles.  
CIVA, an ultrasonic inspection program developed by the French national laboratory Centre d’Etudes 
Atomique, is used to simulate ultrasonic inspections performed by the first leg and second leg methods, 
referring to the direct interaction of ultrasonic energy with a defect and the reflection of ultrasonic energy 
from the inside bore of the axle prior to defect interaction.  Both XFM and FMA approaches were 
employed with the FMA approach employed to simulate experimental variability such as the impact of 
the probe location relative to the defect, etc.  The XFM approach was applied to relate experimental data 
from a second leg inspection to a first leg inspection with the aid of computer modeling. 

Harding et al. (2009) applied an XFM approach to estimate the POD for fatigue cracks around 
fastener holes in aircraft wings for an ultrasonic testing (UT) inspection.  The model used data obtained 
from field trials and laboratory experiments taking into account effects of structural geometry, natural 
variability in fatigue cracks, and human factors in the inspection process.  The XFM approach was 
applied such that the POD for real flaws in a real structure is determined from 1) a set of data for 
fabricated flaws in a real structure, 2) a set of real flaws in a simplified structure, and 3) fabricated flaws 
in a simplified structure.  The estimation of POD for the target scenario from the other scenarios is based 
on a linear regression model of POD parameters from the other scenarios.  This approach to POD 
estimation has been referred to as the “quadrant” approach.  To incorporate the influence of human 
factors, the threshold for observation of a defect signal is also a random variable with a distribution that 
can be characterized.  It’s noted that this applies to procedures in which the influence of human factors is 
primarily on the interpretation of acquired data.  

Demeyer et al. (2012) apply the XFM approach to estimate the POD for fatigue cracks in aluminum 
plates based on an empirically derived POD for fatigue cracks in titanium plates.  CIVA is used to 
generate NDE response data for notches in both aluminum and titanium plates.  The information from 
these computer simulations and the empirically derived data for fatigue cracks in titanium plates is 
extrapolated to estimate the POD for fatigue cracks in aluminum plates using a similar quadrant approach 
as applied by Harding et al. (2009).  

Bode et al. (2012) apply the XFM approach to explore estimation of POD for airplane lap joint 
specimen sets with multiple site fatigue damage.  In this case, a quadrant XFM approach is also applied 
for inspections using an ultrasonic linear array.  In this case, POD parameter estimations for actual in-
service cracks in real airplane structures are extrapolated from POD parameters generated for more ideal 
conditions.  Unlike all of the MAPOD demonstrations described previously, this demonstration is based 
on using binary data (“hit/miss”) fit to two parameter “probit” models.  POD parameter estimates for the 
target scenario are constructed from linear regression models of POD parameters determined for the more 
ideal scenarios.  

3.2 Bayesian Approaches 

Bayes theorem has also been applied in the literature for the purposes of POD estimation.  As simply 
stated in Leemans and Forsyth (2004), Bayes theorem states that, 
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“posterior information equals prior information plus new evidence.” 

The mathematical formulation of Bayes theorem for POD estimation is presented in numerous papers, 
including Leemans and Forsyth (2004) and other works cited in this section. A summary of Bayesian 
demonstrations reviewed in this effort is provided in Table 2. 

Leemans and Forsyth (2004) present a Bayesian framework for utilizing field data to estimate POD.  
The framework is demonstrated on a collection of 30 “hit/miss” visual inspection outcomes and an 
assumed distribution of POD model parameters (for binary data) with varying levels of uncertainty 
assumed for the model parameter distributions ranging from narrow to wide and “ignorant.”  In this case, 
a bivariate normal distribution is assumed for prior information of model parameters and the outcomes of 
the 30 visual inspections are utilized in the likelihood function.  The demonstration shows that when prior 
information is highly uncertain (“ignorant”), the prior information has little influence and the posterior 
estimation is mostly based on the new evidence.  Conversely, when there is high confidence in the prior 
information, the influence of the prior information dominates the influence of new evidence. 

Jenson et al. (2013) present a Bayesian approach for determination of POD of high frequency eddy 
current inspections on fatigue cracks.  In this case, Bayes theorem is used to supplement experimental 
data with computer model generated data to reduce expenses and time associated with test block 
fabrication and inspections.  Computer modeling is used to estimate the variability of several controlling 
factors that can be physically modeled.  This modeling was used to generate prior information that was 
combined with some experimental data to obtain posterior estimates of model parameters.  In this 
example, the computer-generated data and experimental data are both presented as binary responses and 
the logistics function is used for fitting the POD curve.  

Table 2.  Summary of MAPOD Demonstrations Using Bayesian Techniques for POD Estimation 

NDE Response NDE Method Description Reference 
Hit/miss Visual testing Demonstrate Bayesian approach to determination 

of field POD based on limited field data 
Leemans and Forsyth 
(2004) 

Hit/miss Eddy current 
testing 

Demonstrate Bayesian approach for POD 
determination using computer models to generate 
additional information to supplement limited data 
from experiment. 

Jenson et al. (2013) 

â vs. a Radiographic 
testing 

Demonstrate Bayesian approach to POD 
determination using information from artificial 
flaws to supplement information from a limited 
set of real flaws. 

Kanzler et al. (2013) 

â vs. a Eddy current 
testing 

Demonstrate Bayesian approach for POD 
determination using computer model generated 
information. 

Aldrin et al. (2012) 

â vs. a Not specified Demonstrate method for determination of both 
POD and crack size distribution from inservice 
inspection data. 

Hovey (2009) 

Hit/miss Magnetic 
leakage 

Apply a hierarchical Bayes approach to 
incorporate influence of spatial distributed 
uncertainties on in-line inspections of pipelines 

Dann and Maes 
(2011) 
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Kanzler et al. (2013) apply a Bayesian approach for estimating the reliability of NDE for long-term 
storage of high-level radioactive waste.  In this case, measurement data obtained from artificial flaws is 
combined with measurements obtained on a small amount of real flaws to estimate POD.  The results 
from measurements on artificial flaws are considered the prior information that is updated based on 
limited real flaw data, through the likelihood function. 

Aldrin et al. (2012) introduce a Bayesian method for estimating the POD model parameters for a 
high-frequency eddy current application based on â vs. a responses.  A Bayesian method is used to 
estimate the model parameters for different types of â vs. a models including linear single parameter, 
linear multi-parameter, and physics-based models using data generated by computer simulation.  In this 
case, the linear single parameter model relates the NDE response to a single controlling factor, such as the 
crack length.  In the linear multi-parameter model, the NDE response is related to crack length and crack 
width.  A separate calibration parameter is added to the linear models with each controlling factor that is 
included.  The authors conclude that there is a natural advantage to using Bayes method (as opposed to 
MLE) for estimating model parameters for increasingly complex models (i.e., physics-based versus 
linear).  The authors also introduced a hierarchical Bayesian method to estimate both the calibration 
parameters for a physics-based model and the distributions of a few model input parameters (in this case, 
probe lift-off and crack aspect ratios).  

In addition, several documents explore the application of Bayesian techniques beyond the estimation 
of parameters for simple POD models.  Hovey (2009) explored a Bayesian approach for simultaneously 
estimating the parameters of both the POD model and the crack size distribution from field inspection 
data for fatigue cracks in aging aircraft.  A simulation sensitivity analysis is performed to observe the 
sensitivity of the posterior distributions to different prior information scenarios including informed prior 
distributions and incorrect prior distributions.  Dann and Maes (2011) introduce a spatial hierarchical 
Bayes model for magnetic leakage in-line inspection data.  The goal of this work is to develop POD 
estimates with spatial reference as typical POD models often ignore spatially distributed uncertainties.  

The latter documents (Hovey 2009; Dann and Maes 2011; Aldrin et al. 2012) make reference to 
“hierarchical” Bayes methods.  These are not formally defined but it may be inferred that hierarchical 
Bayes methods provide a framework for applying Bayesian approaches to POD models of almost 
arbitrary complexity.  In the references cited, hierarchical Bayes methods are used to increase the 
descriptiveness of POD models and explicitly represent the variability of certain controlling factors.  The 
development of hierarchical Bayes methods requires a systematic identification of parameters of interest 
along with models of their relationships to each other and to POD.  

3.3 Use of Field Inspection Data for POD Estimation 

POD can, in theory, be determined from field test data, based on an assumed flaw growth model 
(Leemans and Forsyth 2004).  In this case, for each flaw detected in an inspection, one can estimate the 
size of the flaw in previous inspections for which the flaw was “missed.”  This data can be used as 
“missed” data points for constructing a POD curve.  The difficulty arises in that this technique has a non-
conservative bias in that tested components could contain flaws that have yet to reach a detectable size 
and these flaws are never included in the data set.  In addition, there are several practical challenges such 
as 1) a component may not have historical test data for estimating misses, 2) the flaw may not have been 
sized, 3) the testing procedure may change between tests, 4) sizing may be inaccurate, 5) crack growth 
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data may be unavailable, and 6) there may be too few large flaws in the detected population because large 
flaws would be detected in previous inspections and not allowed to grow further creating a bias in field 
inspection data.  A report by the North Atlantic Treaty Organization (NATO 2005) echoes these 
challenges also noting that unknown misses of detectable cracks result in a non-conservative bias in 
estimated POD and that inspection records can vary significantly in fidelity and quality. 

The bias introduced in field data by unknown misses can be corrected for using truncated regression 
models to fit the field data.  The application of truncated regression models to correct for unknown misses 
in inspection data has been demonstrated for both â vs. a NDE responses (Meeker and Thompson 2007) 
and binary NDE responses (Guo et al. 2011).  However, the use of truncated regression models cannot 
help overcome the other practical challenges noted above. 

The NATO report (2005) also describes the estimation of POD from field data from the cumulative 
distribution function (CDF) of the sizes of detected cracks.  The report emphasis is that the crack size 
CDF is not the same as the POD but can be used as a first estimate of POD for situations in which 
information is not available for POD estimation.  For the example cited in the report, the crack size CDF 
provided a conservative estimate of POD.  

Khan and Liao (2013) apply an iterative procedure for estimating POD based on inspection data.  In 
this method, the CDF of detected cracks is expressed as an integral over the probability density function 
of total crack size distribution and POD.  The parameters of the CDF and POD are iteratively updated 
until the observed CDF matches the analytical CDF.  

3.4 POD Based on Lower Quantiles 

Li et al. (2012) illustrate the difference between the influence of uncertainty that results from limited 
sampling and the influence of the actual variability of data used to determine POD.  A significant point of 
this work is that POD curves derived by averaging the performance results of many inspection teams may 
not be appropriate because such averaging is actually non-conservative.  Depending on the variability of 
the inspection teams, several teams may perform worse than the average.  Thus, Li et al. (2012) propose 
that it is more appropriate to compute POD based on the 0.05 quantile, instead of average or median (the 
0.5 quantile).  A curve based on the 0.05 quantile indicates the performance that would be achieved by 
95% of the teams, and, thus, is more conservative than POD curves based on the median or average.  In 
this report, a POD model is presented that includes an “operator random effect,” which is represented as a 
random variable. 

3.5 Data Pooling 

The NATO report (2005) also discusses “data pooling” which, in this context, refers to the combining 
of multiple separate NDE data sets to obtain a larger pool of data sufficient to make statistical inferences.  
The report emphasizes that the pooling of data is valid only if sufficient information is reported in 
sufficient fidelity and that the datasets to be combined should be based on the same or similar inspection 
procedures with similar fidelity in the data sets.   
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4.0 Summary Human Factors Literature 

The importance of quantifying the role of human factors in NDE performance has been recognized 
for several decades.  This section summarizes literature discussing human factors and their effects on 
NDE reliability.  Many of the papers cited have been presented at the World Conference on 
Nondestructive Testing and the American-European Workshop on Non-Destructive Inspection 
Reliability.  An analysis of the literature in this section is provided in Section 5.0. 

Spanner et al. (1986) discuss a feasibility study to evaluate the human reliability of an inservice 
inspection (ISI).  They defined five classes of variables that affect human performance:  1) task, 
2) procedural, 3) training, 4) environmental, and 5) individual variables and concluded that no single 
variable is responsible for the wide performance variations noted.   

Taylor et al. (1989) presents the findings of a human factors study performed during the mini-round 
robin (MRR) pipe inspection study.  The study found that previous training and experience influenced 
performance in a positive manner and that coworkers may influence ISI decisions.  Overall, it was found 
that organizational factors, the quality of supervision, the support of organization, and trust in teams all 
influenced the quality of UT/ISI.  The general perception among technicians was that supervisors and 
utilities were concerned with false calls more than missed calls.  In additions, other findings of the study 
included: 

 Better written procedures would improve UT/ISI performance 

 Practice on specimens with actual cracks and comparing techniques with other technicians was most 
valuable for training, whereas classroom lectures were least valuable 

 Different technicians often reported different UT/ISI results. 

Conclusions were that no single performance-shaping factor is responsible for the wide performance 
variations observed.   

Pond et al. (1998) reviewed human factors research for consideration of upgrading the American 
Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section XI requirements or 
the techniques in ASME Section V.  The review included studies of the effects of heat, audible noise, task 
duration, fatigue, and social environment (co-workers, management, and organizational policies).  The 
review concluded that audible noise had minimal impact on human performance and that the social 
environment had significant influence on inspector performance.  Although it was believed that fatigue 
has a significant impact on inspection performance, the review was unable to draw any firm conclusions.  

Harris and McCloskey (1990) performed a study that provided conclusive evidence that cognitive 
processes are important to the success of UT.  Four cognitive elements were found to be “strongly 
associated with successful inspections.”  These four cognitive elements include:  1) to develop and test 
explicit hypotheses as a part of the inspection; 2) avoid forming conclusions early in the inspection, 
before all information has been considered; 3) use if-then logic; and 4) avoid arbitrarily eliminating 
information while forming conclusions.   

Stephens Jr. (2000) presents human factors in the context of an NDE reliability model with three 
elements referred to as intrinsic capability (IC), application parameters (AP), and human factors (HF).  IC 
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is considered to represent the upper bound of an NDE system performance, which is then degraded by AP 
and HF.  AP include those non-human factors related parameters that can influence inspection 
performance such as material conditions, and equipment.  Wall et al. (2010) provided an overview of 
human factors analysis in NDE and noted that former NDE trials have shown that human factors lower 
nondestructive testing (NDT) reliability.  One study showed a drop in reliability from 80% for an 
automated system to 50% for a manual procedure for weld inspection.  They also noted that human 
factors can be accounted for using general models, such as that proposed by Stephens Jr. (2000), and also 
through multi-parameter POD analysis as discussed in Section 2.2.  Wall et al. (2010) suggest that POD 
can be adjusted for human factors effects through multiplication by a constant multiplier less than 1.  
Mueller et al. (2012) note that the model elements introduced by Stephens Jr. (2000) are influence by a 
higher level organizational context. 

Bertovic et al. (2010) present a reliability model built according to principles in the Socio-Technical 
Systems Approach, which assumes that a system is composed of technical as well as social or human 
elements.  This model interprets organizational context as having overarching influence on all other 
essential parameters.  This paper also presents a study of the effects of time pressure (stress resistance) on 
the performance of ten manual ultrasonic operators.  The operators were evaluated under three conditions:  
1) no time pressure, 2) middle time pressure, and 3) highest time pressure.  The testing showed that time 
pressure (and in particular a perceived time pressure) decreased the quality of the performance as 
measured by more scatter in the data.  Higher demands of the task created mental workload, also 
decreasing the performance, but experienced operators better compensated for this load.  Careful 
planning, good preparation with understandable instructions, all part of organizational working 
conditions, showed a positive influence on the performance of the operators.  

Bertovic et al. (2012) presents a review of earlier human factors studies.  The European Programme 
for the Inspection of Steel Components (PISC III) looked at variability between inspectors but was 
criticized for its poor design and statistical background.  The Finnish Centre for Radiation and Nuclear 
Safety in the late 1990s showed no single human or organizational factor was responsible for the NDT 
performance variations and that attitudes of the inspectors significantly influenced their inspections.  The 
Swedish Nuclear Power Inspectorate studies showed that trust in their own performance, motivation, 
optimal work conditions, and feedback influence performance.  Finally, the United Kingdom Health and 
Safety Executive under the Programme for the Assessment of NDT in Industry in 2008 related ability and 
personality with performance in a manual ultrasonic evaluation.  They also showed improvements in 
performance with debriefing, understanding of the geometry, systematic application of a procedure, and 
good preparation.  In addition, in Bertovic et al. (2012), issues related to human redundancy were 
investigated.  It is reported that social loafing occurs when an individual exerts less effort when working 
on a task, knowing their task will be duplicated or reviewed by another operator as opposed to working 
alone and being solely responsible for the outcome.  Conversely, social compensation occurs when an 
individual works harder to compensate for less skilled oversight or lack of redundancy.  The study found 
that participants made more sizing errors when working with redundancy in the system.  Automation bias 
was also discussed in this paper. 

Finally, in Harding et al. (2009), human effects are incorporated into a POD model by representing 
the threshold for observation of a defect signal as a distributed random variable.  It’s noted that this 
applies to procedures in which the influence of human factors is primarily on the interpretation of 
acquired data. 
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5.0 Discussion and Analysis 

This section provides discussion and analysis of the literature review presented in the previous 
sections, in an attempt to identify themes and to identify possible paths forward.  To facilitate, the section 
is organized such that discussion and analysis of MAPOD approaches is provided in Subsection 5.1, 
discussion and analysis of human factors and their integration with MAPOD is provided in Subsection 
5.2. 

5.1 MAPOD Discussion and Analysis 

A review of the literature related to MAPOD to date identified three basic approaches for potentially 
estimating the field POD for nuclear power plant components: 

(1) An XFM approach that leverages empirically derived data from round-robin studies or performance 
demonstrations as a “baseline” curve, which would be augmented to obtain an improved estimation of 
field POD.  In this case, the “baseline” curve could potentially be augmented with a) a small amount 
of field inspection data if it is available or b) information obtained empirically through careful 
laboratory experiments regarding the influence of relevant factors (e.g., human factors). 

(2) A Bayesian approach that leverages empirically derived data from round-robin studies or 
performance demonstrations as the “prior” condition.  The field POD estimation represents the 
“posterior” condition.  In this case, the “prior” condition is updated to the “posterior” condition using 
likelihood information that may consist of a) a small amount of field inspection data or b) information 
obtained empirically through careful laboratory experiments regarding the influence of relevant 
factors (e.g., human factors). 

(3) Build â vs. a models for field inspection implementing the FMA approach.  In this case, computer 
simulation could be leveraged to determine the effects of those factors whose influences on POD are 
physics-based and careful laboratory experimentation would be used to estimate the influence of 
factors that must be determined empirically (e.g., human factors). 

The XFM approach would potentially allow empirical data collected from round-robin studies and/or 
from performance demonstrations to be leveraged toward determination of field POD.  However, the 
demonstrations of the XFM approach are based on â vs. a data.  In the transfer function approach, POD 
model parameters are augmented based on physical interpretation of these parameters (i.e., slope and 
intercept of signal response).  A demonstration of the transfer function approach applied to binary NDE 
response data is provided in Bode et al. (2012).  

A Bayesian approach that relies on sparse field inspection data to update some prior information is 
similar to the approach demonstrated in Leemans and Forsyth (2004).  The availability of any field data 
could pose a challenge to this approach.  In addition, as demonstrated by Leemans and Forsyth (2004), the 
utility of the Bayesian approach depends significantly on the prior information.  If the confidence bounds 
on the prior information are large, then the estimated posterior distribution will predominantly be 
influenced by the field data.  Alternatively, if the confidence is high, then the prior information will 
dominate the posterior estimation and the additional small sample of field data may not have significant 
influence.  
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Alternatively, a FMA approach could be implemented by creating â vs. a models.  Computer 
simulation could be used to estimate a “baseline” POD curve based on those factors whose influence is 
physics-based.  The influence of other factors (such as human factors) could be determined empirically 
and used to augment the “baseline” curve.  This represents the “start-from-scratch” scenario as it does not 
directly leverage data collected through round-robin studies or performance demonstrations.  However, 
this data could be used to benchmark the FMA approach providing some means of validation.  

An important question is how to validate estimations of field POD using MAPOD approaches.  In this 
scenario, field inspection data for comparison to MAPOD estimations may not be available.  A possible 
option for validation in this case may be to compare estimations generated by two different MAPOD 
approaches.  Alternatively, an FMA approach could be applied to estimate POD for round-robin studies 
and/or performance demonstration-generated data.  Comparison of POD estimations from the FMA 
approach to the empirical results obtained from round-robin studies and performance demonstrations 
would provide some validation of the MAPOD estimation.  Validation by both these methods is 
incomplete and, ultimately, availability of some field inspection data for validation would be most 
desirable.  Further, caution must be exercised when attempting to pool data for reliability analysis, as 
emphasized in NATO (2005).  The report emphasizes that the pooling of data is valid only if sufficient 
information is reported in sufficient fidelity and that the datasets to be combined should be based on the 
same or similar inspection procedures with similar fidelity in the data sets.  

5.2 Discussion and Analysis of Human Factors and Integration with 
MAPOD 

The review of human factors literature related to NDE, performed in Section 4.0, indicates that 
studies tend to focus on various human factors effects that can be categorized as related to 1) individual 
inspector competence (e.g., motivation, preparation, experience, etc.); 2) task complexity (e.g., time 
stresses, environmental stresses, component accessibility, etc.); and 3) social complexity (e.g., 
organizational influence, social loafing, social compensation).  Several studies have been able to confirm 
hypotheses that certain human effects can have an influence on NDE performance, such that perceived 
time pressure can degrade performance, or that greater preparation or experience correlates positively 
with performance.  However, the development of mature relationships between NDE performance and 
specific human effects remains elusive.  In studies in which multiple human effects are present, it has not 
been possible to identify a dominant effect (Spanner et al. 1986; Taylor et al. 1989; Bertovic et al. 2012). 

From the literature, there appear to be several ways in which human effects may be incorporated into 
POD models for MAPOD applications:  1) represent human effects as influencing parameters in the NDE 
response model, for instance, using a multi-parameter POD model (Aldrin et al. 2012; Pavlović et al. 
2012), and/or 2) represent human effects explicitly as a random effects term in the POD model (Li et al. 
2012), and/or 3) account for human effects through the definition of the threshold condition for 
observation of defects.  In these scenarios, the challenge is to define the relationship between NDE 
response and the variable representing human effects and/or to quantify the variability contributed to the 
response by human effects.  The model introduced by Bertovic et al. (2012) illustrates the complexity of 
general NDE systems and the numerous channels by which human effects are input into performance.  As 
noted in the previous paragraph, prior studies have failed to identify dominant factors that account for the 
majority of human effects.  In order to proceed with incorporating human effects into POD models, it will 
be necessary to capture human effects in just one or a few terms so that the model is not too cumbersome.  
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To facilitate this, it is recommended to focus narrowly on a specific NDE procedure and system and to 
develop a POD model for that specific system, rather than attempting to apply a general model.  The first 
steps of this effort would include identifying the specific NDE procedure and system and performing a 
detailed analysis to identify and organize all of the human inputs. 

5.3 Other Considerations 

In the course of reviewing the literature summarized here, the authors identified some shortcomings 
with the MAPOD demonstrations in the context of application to nuclear power plant components.  The 
majority of existing literature assumes a single response parameter is used to determine POD, typically 
signal amplitude.  However, many additional features are available for data interpretation for a skilled 
operator.  With eddy current testing, this is most commonly implemented with a multiple frequency 
approach and the evaluation of signal changes as a function of frequency.  In ultrasonic testing, there are 
many signal characteristics besides amplitude, or approaches, which can provide additional information 
(e.g., rise time, persistence, multiple attack angles, or frequencies).  Thus, POD models should be 
developed that not only capture multiple influencing parameters on signal response, but that also treat the 
signal response as a multi-parameter variable.  

In addition, the existing literature does not address the assessment of inspection capability when there 
are prior results for comparison.  This can apply when there is a digital record available for direct 
comparison.  Field experience shows that there is a clear indication of performance improvement when 
such data are available and many of the more difficult inspections have prior data, including baseline 
inspections on replaced components.  

 

6.0 Conclusions and Looking Forward 

In several applications, the MAPOD approach has shown value for both assessing the flaw POD and 
for extending qualifications beyond established limits (e.g., wall thickness); however, none of the prior 
examples are directly applicable to nuclear power plant component inspections.  The robust aerospace 
examples cited in the literature have generally included much larger experimental data sets for POD 
assessment for the inspection technique.  There is scant literature on quantifying the human factors aspect 
on POD, which is considered to be a major contributor to POD degradation in field application.  
Extending qualification ranges beyond established limits does hold promise to simplify additional 
qualification and mockup fabrication.  This approach of using modeling has been identified in ASME V, 
Article 14, as a viable approach and is worth pursuing. 

Using MAPOD approaches to provide better estimates of field POD of nuclear power plant 
components will either require access to field inspection results and/or will require laboratory studies to 
empirically determine the influence of certain parameters for which the influence cannot be represented 
by physical models.  For field inspections, human factors have a significant impact on performance and 
their influence will need to be determined empirically.  The human factors literature reinforces the 
complexity of human effects with several studies unable to isolate human effects to a few dominant 
factors, and general models presented to capture human inputs exhibit complexity, as well.  Performing 
laboratory studies to account for the influence of all of the human factors represented in general models is 
not practical; therefore, a better approach is to narrow focus on a specific NDE procedure and system with 
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the expectation that specificity will lead to simplification.  Performing a detailed analysis of a specific 
NDE procedure and system to identify all sources of human influence and attempting to consolidate them 
into a manageable number of parameters for a POD model would represent a logical next step for this 
effort.   

During the course of this review, the authors identified another basis upon which POD curves 
generated in previous reliability studies and in performance demonstrations should be adjusted.  The 
paper by Li et al. (2012) explains that calculating POD as the average of performance data is 
inappropriate for many applications, as it may be non-conservative.  It is suggested that a better way for 
determining POD is to calculate POD based on a lower quantile of the data.  The consequence of applying 
this to POD curves generated for NDE of nuclear power components could be analyzed by recalculating 
the POD based on a lower quantile for an existing database from previous reliability studies or 
performance demonstrations.  

In addition, in the course of this review, the authors noted some possible shortcomings in the POD 
models that have been used in many of the published demonstrations.  In the literature reviewed, the 
authors have observed that POD models treat the NDE response as a single parameter variable.  In a field 
application, a skilled operator may rely on multiple features of the signal response (i.e., not just the 
amplitude) for interpretation.  Also, for the literature reviewed, POD is estimated based on absolute signal 
responses.  In many applications, baseline data may be available for comparison and the differential 
response with respect to baseline can be used to estimate performance. 
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