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On the local non-conforming virtual element spaces

V. Gyrya and G. Manzini?®
2 Los Alamos National Laboratory, Theoretical Division, Group T-5, MS B284, Los Alamos, NM-875/5, USA

Abstract

The construction of the local non-conforming virtual element spaces is discussed and the isomorphism between their
functions and the polynomial moments of such functions is established by a formal argument and two different
constructive proofs.
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1. Introduction

The local non-conforming Virtual Element (VE) spaces have a formal definition in terms of a Poisson
problem with pure Neumann conditions and their functions are uniquely determined by their moments
with respect to some suitable set of polynomials [1]. These moments are usually addressed as the degrees
of freedom. The connection between the definition of the VE space and the degrees of freedom has been
established through the unisolvence property but it may be not immediately evident. The goal of this note
is to present a construction of the shape functions of the virtual element spaces from their formal definition
(Section 2), and discuss why the polynomial moments can be chosen as degrees of freedom (Section 3).
Conclusions are offered in Section 4.

2. Shape functions

Let P denote a d-dimensional closed subset of R? for d = 2,3 with boundary OP. We assume that P is
a polygon in 2D and or polyhedron in 3D. The boundary 0P is formed by a finite number np of straight
segments (edges) or flat polygons (faces), both denoted by e. The unit normal vector to e is denoted by ne;
the generic unit normal vector to the boundary 0P is denoted by np. For convenience of exposition, we will
normally address e as an edge as for d = 2, but almost everything in this note with few exceptions that will
be explicitly indicated also holds for d = 3.

According to [1], the non-conforming VE space of order k is defined as follows:

ov
one
with the usual convention that P_;(P) = {0} (which occurs for k = 1).

For the construction of the shape functions on P we find it convenient to consider the decomposition:

Vi (P) = span{1} ® V¥ (P), (2)

VE(P) = {v € H'(P)| — € Py_1(e)Ve € 9P, Av € ]Pk_g(P)} k> 1, (1)



where
ov
one

VE(P) = VF(P)/R = {v € H'(P) _1(e)Ve € OP, Av € P,_o(P),v = o}, (3)

where

__ 1 v
U_|P|/P av 4)

is the elemental average of v over P.

Each function v of V}f(P) is the solution of the pure Neumann problem:

Av =g, € Py_»(P), (5)
)
611 =1y €Pr_1(e) Vee€ P, (6)

(with the additional condition that © = 0 on P) for some polynomial ¢, defined on P and some set of
polynomials {r, ¢ }ecop, each one of which is defined on a given e € 9P. The polynomials ¢, and {7, e}ecopr
are required to satisfy the (necessary) compatibility condition

/quv Z/rvedS (7)

ecoP
in order for (5)-(6) to be solvable. Indeed, by using (5) the divergence theorem and, then, (6) we obtain:

quV:/AvdV:/diVVvdV: ds = /
/P P P opP anP Z

ecoP

rv dS. (8)

ecoP

Therefore, the solution of problem (5)-(6) exists and is unique up to an additive constant for any choice of
the polynomials ¢, € Py_2(P) and 7, € Py_1(e) for all e € P;_1(P) satisfying (7).

For an “explicit” construction of the space v}f(P) let us consider the following sets of polynomial functions,
which are a (possible) basis of Py_o(P) and Pj_1(e):

(i) QY 5 ={qga}a>1, where, for k > 2,
- each q, is a polynomial of degree < k — 2 defined on P;
- Py_2(P) = span{q,} and all g, are linearly independent;
- ¢1 = 1 and every g, for a > 2 is L?(P) orthogonal to qi, i.e., its average on P is zero.
For the construction of OF , with k > 2 we can choose any basis set of Pj_2(P)/{1}. We include the
case for k = 1 in the definition above by conventionally taking Q7 ; = ().

(17) R%_q = {Te,a}ecop,a>1, Where, for k > 1,
- each 7 is a polynomial of degree < k; — 1 defined on e;
- Py_1(e) = span{re o } and all re o are linearly independent;
- Te1 = 1 and re o for o > 2 are LQ(P) orthogonal to 7¢ 1, i.e., their average on e is zero.
For the construction of R§_, with k > 1 we can choose any basis set of Py_1(e)/{1}.

Example 1

In 2D, let (z,y) be the usual cartesian coordinates for P and € € [—|e| /2, |e| /2] a generic local coordinate
defined on e. Then,
(i) for k=1, we have R§ = {1} and QP = 0;
(ii) for k =2, we have R§ = {1,£/2} and QF = {1};
(iii) for k = 3, we have RS = {1,£,62 — |e|* /12}, and QF = {1,z — zp,y — yp}, where (zp,yp) are the
coordinates of the barycenter of P;
(iv) etc. ..

In 3D, let x, y, and z denote the usual cartesian coordinates for P and £ and n two cartesian coordinates
with respect to an orthogonal reference system that is locally defined on each face e. Then,

2



(i) for k=1, we have R§ = {1};

(i1) for k = 2, we have R§ = {1, — &, — ne}, where (&, Me) are the coordinates of the barycenter of e,
and QF = {1};

(iii) for k = 3, we have RS = {1, — &, — Me, €2 — <§2>e En — (e n? — <772>e}, where (f), denotes
the average of the function f on e, and QF = {1,x — xp,y — yp,2 — 2p}, where (zp,yp, 2p) are the
coordinates of the barycenter of P;

(iv) ete. ..

Since QF , and RS _, are basis in Py_5(P) and Pj_1(e) respectively, the cardinality of QF , and RS _,
coincides with the dimensions of the polynomial spaces IP;_o(P) and Py_1(e).

Lemma 2.1 The cardinality of QY , for k > 2 is given by

o bl in 2D,
card(Qp_o) =1 . (9)
T

(1) in 3D.

Proof 2.1 The cardinality of Q% , for k > 2 coincides with the dimension of Py_o(P), the space of bi-
variate polynomials in 2D and tri-variate polynomials in 3D. Let m > 2 be an integer number. The dimension
of P, (P) is given by

dimpaP) = 0D (10)
im = 10
m (m;ﬂ) (m;—2) (m;—S) in 8D.
The assertion of the lemma follows by taking m = k — 2 in the previous formulas.
Lemma 2.2 The cardinality of R5,_,(e) for k > 1 is given by
dRE ) k in 2D, )
card(Ry,_1) = 11
EEEL in 3D.

Proof 2.2 The cardinality of RS,_, coincides with the dimension of Pj_1(e), the space of uni-variate poly-
nomials in 2D and bi-variate polynomials in 3D (e is (d — 1)-dimensional if P is d-dimensional). Let m > 1
be an integer number. The dimension of IP,,(e) is given by

(1) in 2D

() (m42) 4y 3D

dim(P,,(e)) = (12)

The assertion of the lemma follows by taking m =k — 1 in the previous formulas.

We define the set of shape functions generating V;*(P) by solving directly problem (5)-(6). We have two
different kinds of shape functions: those associated with the polynomials in Q,';z when k > 2 and those
associated with the polynomials in Rj,_; when k& > 1. In both cases, the lowest value of k£ deserves a special
care to satisfy the compatibility condition. Let us start with the latter case. A possible construction of the
shape functions associated with Rj,_; is as follows.

e For k =1 and every edge e € OP but the last one, the shape functions 1), ; associated with the polynomials
1 =171 € R{ are the solutions of the harmonic problem
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1
+— ife=e
o le]
ve' € 9P . =l = LSV 14
e € ~ 7m if e/l = et ( )
0 ife! #£eet

where et is the edge consecutive to e (in 3D we may take two faces that are consecutive in a local
enumeration). The compatibility condition is satisfied because

OZ/AlﬁeJ dV = Otfe1 dS = Z e,1 ds = /5%,1 as + Ote 1 ds
P e

op Onp S e Ooneg: one ot Ongyt

1 1y, .
:E|e|+<—ﬁ)\e | =0. (15)

Remark 2.1 We skip the last edge in the previous construction because the function that solves (13)-(14)
associated with this edge is a linear combination of all the functions associated with the other edges. Indeed,
if = ) ecop Ve, it is easy to see that Ay = 0 and 0y /0On. = 0, from which it follows that ¢ = 0 in
VE(P)/R (see final Appendiz A). For this reason, the dimension of V¥ /R is reduced by one.

e For k > 2, the shape functions 1. ; are the same as for k¥ = 1, while the shape functions %, for
a=2,...,card(Rf_,) are the solutions of the following harmonic problem

Atheo =0 inP

: A
ve/ c BP . a¢€,a — {re,a lfe - e?

Ong 0 ife! #e.

The average of 7. o, with & > 2 on e is zero by construction (see the definition of Rf,_,) and the compati-
bility condition is satisfied as follows:

_ _ 3%,@ . 81/%,04 . awe,a 7/ o
0_/PA¢Q7Q_/0P o ds = Z / o dS_/e e ds = ere,ads_o. (16)

e’€oP

A possible construction of the shape functions associated with QF _, is as follows.

e For k = 2, the shape function v associated with the polynomial g; € QS is the solution of the problem:

np .
Awl = 5q% m P>
|P|

a1

= —7Te1 on every e € 0P
One e

(recall that np is the number of edges of OP). The compatibility condition is satisfied because:

np 0Py /8¢1 1
= [ pndV= [ ApdV = | ——dS= ds = —radS=Y 1= 17
P /p |P|q1 /p & op Onp eg;P . On, Z le] Tel Z np  (17)

ecopP € ecoP

(recall that g1 =1 on P and re1 = 1 on e).

e For k > 3, the shape function 7 is the same as for & = 2, while the shape functions ¥, for a =
2,...,card(Q}_,) are the solution of the following problem
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Ay =¢qo inP
O,
ong

The average of ¢, € QF , with a > 2 on P is zero by construction (see the definition of QF ,) and the
compatibility condition is satisfied because

=0 on every e € OP.

Mg 0
Oz/qadVZ/A@/JadV: L ds = E / v ds = 0. (18)
P P op Onp ecoP
For k = 1, the virtual space Vhl(P) is generated by the set of shape functions {1, {wevl}eegp} where 9P is

the boundary of P without the last edge. When k > 2, the virtual space V¥(P) is generated by the linear
combinations of the basis functions 1, 1), and e o. More precisely,

th(P) = Span{ 1, {lba}a:l,.“card(gzi,z)) {¢e,1}eea~P, {'(/)e,oc}eeaP,a:2,.‘.card(Riil) }
Assuming conventionally that card(QF ;) = 0 when k = 1, for k > 1 we find that
dim(V;F(P)) = 1 + card(Q},_,) Z card( —1 = card(Q},_,) + np card(R§_,). (19)
ecoP
From Lemmas 2.1 and 2.2, the dimension of the local virtual element space V;*(P) in terms of k and np is

given by the formulas:

+np1 in 2D

dim(V;F(P)) = (20)

,—\

R“ k
—_
w\?r w\a—

2-1) —|—np§i in 3D

To ease the notation, in the next section we will use the symbols Nj_o = card(Q,'z_2) with the convention
that N_1 =0, My_1 = card(RZ_l), Py, = Ni_o+np My_1.

3. Polynomial moments

The main result of this section is the existence and uniqueness of a function v with an assigned set of
moments with respect to the polynomials in QF , and R¢_,. The uniqueness is stated in Proposition 3.1
and Corollary 3.1. The proof of the uniqueness is based on the same argument that is used to prove the
unisolvency property in [1]. The existence is stated in Proposition 3.2.

3.1. Uniqueness

Let v" and v” be two functions of V;¥(P) that have the same moments against the polynomials in Py_o(P)
and Py_;(e). From the construction of the previous section, we know that there exists a polynomial ¢’ and
a set of polynomials {r.}ecop satisfying the compatibility condition and such that

Av' =¢ in P,
o'
Oone

The same characterization is true for v” by using the polynomials ¢ and {r!}ecop. Let v =o' — v”. Using
the integration by parts we obtain:

/|Vv’\2dV:/Vv-VvdV=—/
P P ecIP

Now, Av € Py_5(P), Ov/0v € Pj_1(e) and the integrals in the last right-hand side are zero as v’ and v”
have the same moments on P and on each edge e, and, thus, all the moments of v = v/ — v" are zero.

=7, oneedP.
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Therefore, Vv = 0 which implies that v = constant and this constant is zero because it must coincide which
any of its moments. From v — v” = 0 it (obviously) follows that

A(U/ _ 11”) — 0= q/ _ q//

a(v/ _ U//)

Ve € OP : an.

o r_n
=0=r,=71,.

We have, thus, proved the following proposition.

Proposition 3.1 (Uniqueness) If v’ and v"” have the same polynomial moments against Pr_o(P) and
Pr_1(e) for each edge e, then ¢' = q", vl =rl for each edge e, and, ultimately, v’ =v".

As all the functions of space V}f(P) are uniquely characterized by the sets of polynomials Q272 and R _4,
we have the following corollary (whose proof repeats the same argument above and is omitted).

Corollary 3.1 (Uniqueness) If v’ and v” have the same moments against the polynomials in Q,'z_2 and
RS_y, then ¢’ =q¢", rl =1l for each edge e, and, ultimately, v' = v".

3.2. Existence

Proposition 3.2 (Existence) Let us consider the real numbers

b {Ma}azl,card(9272) fO?” kE>2;

i {Me,a}eeé)P,a:l,card(’Riil) for k> 1.

There exists a function v € th(P) such that these numbers are the polynomial moments with respect to the
polynomials in OF _, and RS _,:

1
k>2: ] / Vo = fo  fora=1,... card(Q}_,) (21)
P

1
E>1: el /m‘e,a = le,n for everye € OP, fora=1,... card(R}_;) (22)

A formal argument. An easy counting shows that the total number of moments in (21) and (22) is equal
to the dimension of V;*(P) in (20).* We can thus establish a linear mapping between V;*(P) and RF* (recall
that P is the dimension of V}¥(P)). This mapping is one-to-one because if all the moments of a function v
of th(P) are zero, then v = 0. Indeed, by repeating the uniqueness argument we find v = 0. Therefore, this
mapping is an isomorphism and each function in th(P) is uniquely identified by its moments with respect
to the polynomial sets QZ_Q and R§_;. This formal argument is used to prove the unisolvency in [1].

A quasi-constructive proof. We consider a function v of V;¥(P) and the polynomials g, and {r, e }ecoe

that are related to v by (5)-(6). We decompose the polynomial ¢, € Pj_2(P) into the basis set OF ,:

Ni_2

Qv = Z aa(v)qav (23)

a=1
and each polynomial r{ for e € P into the corresponding basis set Rj,_:

My, -1

Tve = Z bE,a(U)Te,a- (24)
a=1
The coefficients a,(v) and be o (v) are bounded linear functionals of v, an they must satisfy

arlPl = 3" beslel, (25)

ecOP

I Note that the indices “a” and “e,a” are running throughout the same range.
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which comes from imposing the compatibility condition (7). Consider the bounded linear functional on
Vi (P)
Ni—2 M1

L(v) = vp1 — [P Z aa (V) pta + Z le| Z be,a (V) he,as (26)

ecoP a=1

and equip V}¥(P) with the inner product:
(u, v)th(p) = Tuv+ / Vu-VovdV (27)
' P

(recall that ¥ and @ are the elemental averages of u and v, respectively; see also (4)). The Ritz Theorem
implies the existence and uniqueness of a function @ in V;*(P) such that

L(v) = (E,v)v}k(P) for every v € Vi¥(P). (28)
We will show that u satisfies (21)-(22) by using equation (28) and selecting some particular functions v of
VE(P) in (26) and (27),
e Using v = 1, we immediately have that the average of u over P is p;. Therefore, u satisfies (21) with

a=1.

— Let v be such that a, = 1 for some given o > 1 and a, = 0 for o’ # « in (23) and all the coefficients
be,o in (24) are zero. Equation (26) gives

L(v) = 11? — pa [P (29)
After an integration by parts, and using @ = p; equation (27) returns
- ~ _0 ~
(U v)yrpy = 10 — / ulAvdV + E 22 4s = T — / Ugq dV. (30)
h 8Ile
P ecop € P

Comparing (29) and (30) shows that u satisfies (21) with o > 1.

e Let v be such that be; = 1 for a given edge e and be o = 0 for &’ # e and o > 1. We take all the coefficients
aq = 0 for a > 1, while a; is given by relation (25) as a; = be 1 |€| /|P|. Equation (26) gives

L(U) = 10 — 1 |P| + e, |e| . (31)
After an integration by parts, and using @ = u; equation (27) gives
~ _ ~ . Ov _
(U, v)ykpy = 110 — / uAvdV + Z U dS = p1T — p1 |P| + fte1 ]€| - (32)
" P ccap e Ome

Comparing (31) and (32) shows that @ satisfies (22) with a = 1.

o Let v be such that be o, = 1 for some edge e and o > 1, berov = 0 for €' # e or o # « in (24), and all the
coefficients a,, = 0 in (23). Then, Equation (26) returns

L(v) = 17 — fteale] (33)
After an integration by parts, and using @ = (1 equation (27) returns
~ ~ 0 -
(U, v)ykpy = 10 — / uAvdV + Z a2 48 = T — /ureﬂ ds. (34)
h p ccoP e al’le e

Comparing (33) and (34) shows that @ satisfies (22) with « > 1.

A constructive proof. We consider the expansion of the function v in 17hk(P) on the shape functions 3
and v g defined in the previous section:

Ni—2 My _1
v=Y calpt D Y Cepties (35)
B=1 ecoP pg=1
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so that to determine v we have to determine the coefficients ¢, and ce o. From this expansion it follows that:

Nk 2 MA 1
/Vv Vipe dV = Zcﬁ/wg VipadV + > Y ceﬁ/weg VibadV — a=1,...,Ny_a,
ecoP pB=1
(36)
Ni—2 My —1
/Vv Vipeo dV = Z cﬁ/wﬁ VieadV + > > ce,ﬁ/weﬁ Vibe.o dV
ecoP pB=1

Vee P, a=1,...,My_1. (37)

We consider the matrix

M = (/Pwﬁ.v(;sadv) -

where each term | ... ] represents a block sub-matrix, and the vector ¢¥ = ((ca)?, (ce,o)”), which follows the
same row partitioning. The right-hand side of (36) and (37) are the vector components (Mc), and (Mc)e 4.

We consider the vector
T T
T ((/VU~V¢adV) , (/W-We,adv) ) (39)
p P

The components of this vector are computable by integration by parts and imposing that the moments of v
are given by (21) and (22). For a = 1,..., Nx_o we have

/PVu~quadV:—/vAwadV+ Z/ 9o dS:—/quadV:—|P|ua. (40)

on
ecoP €

[/P Vg - Vihg dV} [/P Vipeg - Vipa dV} | )

[ /P Vibs - Vebe dV} { /P Ve s - Vi dv]

Forec 9P and a =1

/va.wel :-/vmpel av+ > / %‘ff: ; /v+/vd$ le| (—pto + fte1)- (41)

e'€opP
For e € OP and a = 2,..., My_, we have
O
/va Vo dV = — / VAPe 0 dV + Y / Y3 ds = /eww dS = le] pte.a- (42)

e’ coP

The linear system of equations (36) and (37) can be rewritten as Mc = b, whose solution gives the coefficients
c of expansion (35).

Remark 3.1 Note that M is non-singular because th(P) does not contain the constants.
4. Conclusion

We discussed a possible construction of the shape functions for the local virtual element spaces of any order
k and their relation with moments with respect to polynomials up to the same order. These moments are
unisolvent in the virtual element space and are considered as degrees of freedom in practical implementations.
The shape functions are the solution of a set of Poisson problems with pure Neumann boundary conditions,
where the right-hand side and the boundary data are taken in given basis for polynomials of degree (up to)
k — 2 on the element and k£ — 1 on each edge of the element’s boundary. Special care is deserved to ensure
that the compatibility condition (necessary to solve a Poisson problem with only Neumann conditions) be
satisfied.
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Appendix A. Proof of the linear independence of {wevl}eeé\ﬁ

We represent the constant data associated with the np edges of OP in (14) through the vectors w; in R™.
We also conveniently number these edges by introducing the index “¢”, which runs from 1 to np — 1; e.g.,
e; for i = 1,...,np — 1 is the i-th edge of OP (which we recall that denotes the boundary of P without the
last edge). A one-to-one and onto correspondence is just established between these vectors and the shape
functions e, 1:

11 3
wy, = (a L 07 Oa 03 R O) <—>w31;17 (Al)
lei]” e
11 g
Wy = (()7 Ty T 0) 0) ey O) HQZ)E? 1 (A2)
|62| |63| 7
until
0,0,0 ! ! ' (A-3)
= s, Uy Uy oosy 7, — — '
o el Tenn] Voo
Since the vectors wi, wy, ws, ..., Wn,—1 are linearly independent, so are the corresponding functions ve, 1,
we2717 ¢63717 e 7¢enpf1,1' However, vector
( L 00,0, ...+ )T (A-4)
W — - U, 0,0, ..., T ’ '
e e ] [ene |

which would correspond to e, 1, is such that

iwi = 0, (A5)
i=1

so the last function wenp,l cannot be linearly independent of the other 9, for ¢ =1,...,np — 1. As noted
in Remark 2.1, function ¢ = Y"1, 9, 1 corresponding to > ", w; is such that Ay = 0 and d¢/dne = 0 for
every e € OP, from which it follows that 1 = 0 in V}*(P)/RR.

Note that all vector w; are such that the sum of their elements is zero. The completion of the vectors

w1y, Wa, ..., Wne—1}+ to a basis of R™ requires an np-th vector the sum of whose elements is not zero, as for
P
example: 2
1 1 1 1 1
Wy = ( ) (A.6)
lex]” lea| " fes] ™ lenp—1| [ens|

but such a vector cannot be representative of the normal derivative of a function of V¥(P) on OP because it
violates the compatibility condition.

2 Otherwise all vectors in R™ would be such that the sum of their elements is zero and this fact is obviously false.
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