
LA-UR-14-28831
Approved for public release; distribution is unlimited.

Title: On the local non-conforming virtual element spaces

Author(s): Manzini, Gianmarco
Gyrya, Vitaliy

Intended for: Report

Issued: 2014-11-13



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy.  Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



On the local non-conforming virtual element spaces
V. Gyrya and G. Manzini a

a Los Alamos National Laboratory, Theoretical Division, Group T-5, MS B284, Los Alamos, NM-87545, USA

Abstract

The construction of the local non-conforming virtual element spaces is discussed and the isomorphism between their
functions and the polynomial moments of such functions is established by a formal argument and two different
constructive proofs.
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1. Introduction

The local non-conforming Virtual Element (VE) spaces have a formal definition in terms of a Poisson
problem with pure Neumann conditions and their functions are uniquely determined by their moments
with respect to some suitable set of polynomials [1]. These moments are usually addressed as the degrees
of freedom. The connection between the definition of the VE space and the degrees of freedom has been
established through the unisolvence property but it may be not immediately evident. The goal of this note
is to present a construction of the shape functions of the virtual element spaces from their formal definition
(Section 2), and discuss why the polynomial moments can be chosen as degrees of freedom (Section 3).
Conclusions are offered in Section 4.

2. Shape functions

Let P denote a d-dimensional closed subset of Rd for d = 2, 3 with boundary ∂P. We assume that P is
a polygon in 2D and or polyhedron in 3D. The boundary ∂P is formed by a finite number nP of straight
segments (edges) or flat polygons (faces), both denoted by e. The unit normal vector to e is denoted by ne;
the generic unit normal vector to the boundary ∂P is denoted by nP. For convenience of exposition, we will
normally address e as an edge as for d = 2, but almost everything in this note with few exceptions that will
be explicitly indicated also holds for d = 3.

According to [1], the non-conforming VE space of order k is defined as follows:

V kh (P) =

{
v ∈ H1(P) | ∂v

∂ne
∈ Pk−1(e)∀e ∈ ∂P, ∆v ∈ Pk−2(P)

}
∀k ≥ 1, (1)

with the usual convention that P−1(P) = {0} (which occurs for k = 1).
For the construction of the shape functions on P we find it convenient to consider the decomposition:

V kh (P) = span{1} ⊕ Ṽ kh (P), (2)



where

Ṽ kh (P) = V kh (P)/R =

{
v ∈ H1(P) | ∂v

∂ne
∈ Pk−1(e)∀e ∈ ∂P, ∆v ∈ Pk−2(P), v = 0

}
, (3)

where

v =
1

|P|

∫
P

v dV (4)

is the elemental average of v over P.

Each function v of Ṽ kh (P) is the solution of the pure Neumann problem:

∆v = qv ∈ Pk−2(P), (5)

∂v

∂ne
= rv,e ∈ Pk−1(e) ∀e ∈ ∂P, (6)

(with the additional condition that v = 0 on P) for some polynomial qv defined on P and some set of
polynomials {rv,e}e∈∂P, each one of which is defined on a given e ∈ ∂P. The polynomials qv and {rv,e}e∈∂P
are required to satisfy the (necessary) compatibility condition∫

P

qv dV =
∑
e∈∂P

∫
e

rv,e dS (7)

in order for (5)-(6) to be solvable. Indeed, by using (5), the divergence theorem and, then, (6) we obtain:∫
P

qv dV =

∫
P

∆v dV =

∫
P

div∇v dV =

∫
∂P

∂v

∂nP
dS =

∑
e∈∂P

∫
e

∂v

∂ne
dS =

∑
e∈∂P

∫
e

rv,e dS. (8)

Therefore, the solution of problem (5)-(6) exists and is unique up to an additive constant for any choice of
the polynomials qv ∈ Pk−2(P) and rv,e ∈ Pk−1(e) for all e ∈ Pk−1(P) satisfying (7).

For an “explicit” construction of the space Ṽ kh (P) let us consider the following sets of polynomial functions,
which are a (possible) basis of Pk−2(P) and Pk−1(e):

(i) QP
k−2 = {qα}α≥1, where, for k ≥ 2,

- each qα is a polynomial of degree ≤ k − 2 defined on P;
- Pk−2(P) = span{qα} and all qα are linearly independent;
- q1 = 1 and every qα for α ≥ 2 is L2(P) orthogonal to q1, i.e., its average on P is zero.
For the construction of QP

k−2 with k > 2 we can choose any basis set of Pk−2(P)/{1}. We include the

case for k = 1 in the definition above by conventionally taking QP
−1 = ∅.

(ii) Re
k−1 = {re,α}e∈∂P,α≥1, where, for k ≥ 1,

- each re,α is a polynomial of degree ≤ k − 1 defined on e;
- Pk−1(e) = span{re,α} and all re,α are linearly independent;
- re,1 = 1 and re,α for α ≥ 2 are L2(P) orthogonal to re,1, i.e., their average on e is zero.
For the construction of Re

k−1 with k > 1 we can choose any basis set of Pk−1(e)/{1}.

Example 1

In 2D, let (x, y) be the usual cartesian coordinates for P and ξ ∈ [− |e| /2, |e| /2] a generic local coordinate
defined on e. Then,

(i) for k = 1, we have Re
0 = {1} and QP

−1 = ∅;
(ii) for k = 2, we have Re

0 = {1, ξ/2} and QP
0 = {1};

(iii) for k = 3, we have Re
1 = {1, ξ, ξ2 − |e|2 /12}, and QP

1 = {1, x − xP, y − yP}, where (xP, yP) are the
coordinates of the barycenter of P;

(iv) etc. . .

In 3D, let x, y, and z denote the usual cartesian coordinates for P and ξ and η two cartesian coordinates
with respect to an orthogonal reference system that is locally defined on each face e. Then,
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(i) for k = 1, we have Re
0 = {1};

(ii) for k = 2, we have Re
0 = {1, ξ − ξe, η − ηe}, where (ξe, ηe) are the coordinates of the barycenter of e,

and QP
0 = {1};

(iii) for k = 3, we have Re
1 = {1, ξ − ξe, η − ηe, ξ2 −

〈
ξ2
〉
e
, ξη − 〈ξη〉e , η2 −

〈
η2
〉
e
}, where 〈f〉e denotes

the average of the function f on e, and QP
1 = {1, x − xP, y − yP, z − zP}, where (xP, yP, zP) are the

coordinates of the barycenter of P;
(iv) etc. . .

Since QP
k−2 and Re

k−1 are basis in Pk−2(P) and Pk−1(e) respectively, the cardinality of QP
k−2 and Re

k−1
coincides with the dimensions of the polynomial spaces Pk−2(P) and Pk−1(e).

Lemma 2.1 The cardinality of QP
k−2 for k ≥ 2 is given by

card(QP
k−2) =


k−1
1

k
2 in 2D,

k−1
1

k
2
(k+1)

3 in 3D.
(9)

Proof 2.1 The cardinality of QP
k−2 for k ≥ 2 coincides with the dimension of Pk−2(P), the space of bi-

variate polynomials in 2D and tri-variate polynomials in 3D. Let m ≥ 2 be an integer number. The dimension
of Pm(P) is given by

dim
(
Pm(P)

)
=


(m+1)

1
(m+2)

2 in 2D,

(m+1)
1

(m+2)
2

(m+3)
3 in 3D.

(10)

The assertion of the lemma follows by taking m = k − 2 in the previous formulas.

Lemma 2.2 The cardinality of Re
k−1(e) for k ≥ 1 is given by

card(Re
k−1) =


k
1 in 2D,

k
1
k+1
2 in 3D.

(11)

Proof 2.2 The cardinality of Re
k−1 coincides with the dimension of Pk−1(e), the space of uni-variate poly-

nomials in 2D and bi-variate polynomials in 3D (e is (d− 1)-dimensional if P is d-dimensional). Let m ≥ 1
be an integer number. The dimension of Pm(e) is given by

dim
(
Pm(e)

)
=


(m+1)

1 in 2D

(m+1)
1

(m+2)
2 in 3D

(12)

The assertion of the lemma follows by taking m = k − 1 in the previous formulas.

We define the set of shape functions generating V kh (P) by solving directly problem (5)-(6). We have two
different kinds of shape functions: those associated with the polynomials in QP

k−2 when k ≥ 2 and those
associated with the polynomials in Re

k−1 when k ≥ 1. In both cases, the lowest value of k deserves a special
care to satisfy the compatibility condition. Let us start with the latter case. A possible construction of the
shape functions associated with Re

k−1 is as follows.

• For k = 1 and every edge e ∈ ∂P but the last one, the shape functions ψe,1 associated with the polynomials
1 = re,1 ∈ Re

0 are the solutions of the harmonic problem
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∆ψe,1 = 0 in P (13)

∀e′ ∈ ∂P :
∂ψe,1

ne′
=


+

1

|e|
if e′ = e

− 1

|e+|
if e′ = e+

0 if e′ 6= e, e+

(14)

where e+ is the edge consecutive to e (in 3D we may take two faces that are consecutive in a local
enumeration). The compatibility condition is satisfied because

0 =

∫
P

∆ψe,1 dV =

∫
∂P

∂ψe,1

∂nP
dS =

∑
e′∈∂P

∫
e′

∂ψe,1

∂ne′
dS =

∫
e

∂ψe,1

∂ne
dS +

∫
e+

∂ψe,1

∂ne+
dS

=
1

|e|
|e|+

(
− 1

|e+|

)
|e+| = 0. (15)

Remark 2.1 We skip the last edge in the previous construction because the function that solves (13)-(14)
associated with this edge is a linear combination of all the functions associated with the other edges. Indeed,
if ψ =

∑
e∈∂P ψe,1, it is easy to see that ∆ψ = 0 and ∂ψ/∂ne = 0, from which it follows that ψ = 0 in

V kh (P)/R (see final Appendix A). For this reason, the dimension of V kh /R is reduced by one.

• For k ≥ 2, the shape functions ψe,1 are the same as for k = 1, while the shape functions ψe,α for
α = 2, . . . , card(Re

k−1) are the solutions of the following harmonic problem

∆ψe,α = 0 in P

∀e′ ∈ ∂P :
∂ψe,α

∂ne′
=

{
re,α if e′ = e,

0 if e′ 6= e.

The average of re,α with α ≥ 2 on e is zero by construction (see the definition of Re
k−1) and the compati-

bility condition is satisfied as follows:

0 =

∫
P

∆ψe,α =

∫
∂P

∂ψe,α

∂nP
dS =

∑
e′∈∂P

∫
e′

∂ψe,α

∂ne′
dS =

∫
e

∂ψe,α

∂ne
dS =

∫
e

re,α dS = 0. (16)

A possible construction of the shape functions associated with QP
k−2 is as follows.

• For k = 2, the shape function ψ1 associated with the polynomial q1 ∈ QP
0 is the solution of the problem:

∆ψ1 =
nP
|P|

q1 in P,

∂ψ1

∂ne
=

1

|e|
re,1 on every e ∈ ∂P

(recall that nP is the number of edges of ∂P). The compatibility condition is satisfied because:

nP =

∫
P

nP
|P|

q1 dV =

∫
P

∆ψ1 dV =

∫
∂P

∂ψ1

∂nP
dS =

∑
e∈∂P

∫
e

∂ψ1

∂ne
dS =

∑
e∈∂P

∫
e

1

|e|
re1 dS =

∑
e∈∂P

1 = nP (17)

(recall that q1 = 1 on P and re,1 = 1 on e).

• For k ≥ 3, the shape function ψ1 is the same as for k = 2, while the shape functions ψα for α =
2, . . . , card(QP

k−2) are the solution of the following problem
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∆ψα = qα in P

∂ψα
∂ne

= 0 on every e ∈ ∂P.

The average of qα ∈ QP
k−2 with α > 2 on P is zero by construction (see the definition of QP

k−2) and the
compatibility condition is satisfied because

0 =

∫
P

qα dV =

∫
P

∆ψα dV =

∫
∂P

∂ψα
∂nP

dS =
∑
e∈∂P

∫
e

∂ψα
∂ne

dS = 0. (18)

For k = 1, the virtual space V 1
h (P) is generated by the set of shape functions

{
1, {ψe,1}e∈∂̃P

}
where ∂̃P is

the boundary of P without the last edge. When k ≥ 2, the virtual space V kh (P) is generated by the linear
combinations of the basis functions 1, ψα and ψe,α. More precisely,

V kh (P) = span
{

1, {ψα}α=1,...card(QP
k−2

), {ψe,1}e∈∂̃P, {ψe,α}e∈∂P,α=2,...card(Re
k−1

)

}
.

Assuming conventionally that card(QP
−1) = 0 when k = 1, for k ≥ 1 we find that

dim
(
V kh (P)

)
= 1 + card(QP

k−2) +
∑
e∈∂P

card(Re
k−1)− 1 = card(QP

k−2) + nP card(Re
k−1). (19)

From Lemmas 2.1 and 2.2, the dimension of the local virtual element space V kh (P) in terms of k and nP is
given by the formulas:

dim(V kh (P)) =


k−1
1

k
2 + nP

k
1 in 2D

k−1
1

k
2
(k+1)

3 + nP
k
1
k+1
2 in 3D

(20)

To ease the notation, in the next section we will use the symbols Nk−2 = card(QP
k−2) with the convention

that N−1 = 0, Mk−1 = card(Re
k−1), Pk = Nk−2 + nPMk−1.

3. Polynomial moments

The main result of this section is the existence and uniqueness of a function v with an assigned set of
moments with respect to the polynomials in QP

k−2 and Re
k−1. The uniqueness is stated in Proposition 3.1

and Corollary 3.1. The proof of the uniqueness is based on the same argument that is used to prove the
unisolvency property in [1]. The existence is stated in Proposition 3.2.

3.1. Uniqueness

Let v′ and v′′ be two functions of V kh (P) that have the same moments against the polynomials in Pk−2(P)
and Pk−1(e). From the construction of the previous section, we know that there exists a polynomial q′ and
a set of polynomials {r′e}e∈∂P satisfying the compatibility condition and such that

∆v′ = q′ in P,

∂v′

∂ne
= r′e on e ∈ ∂P.

The same characterization is true for v′′ by using the polynomials q′′ and {r′′e }e∈∂P. Let v = v′ − v′′. Using
the integration by parts we obtain:∫

P

|∇v′|2 dV =

∫
P

∇v · ∇v dV = −
∫
P

v∆v dV +
∑
e∈∂P

∫
e

v
∂v

∂ne
dS.

Now, ∆v ∈ Pk−2(P), ∂v/∂v ∈ Pk−1(e) and the integrals in the last right-hand side are zero as v′ and v′′

have the same moments on P and on each edge e, and, thus, all the moments of v = v′ − v′′ are zero.
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Therefore, ∇v = 0 which implies that v = constant and this constant is zero because it must coincide which
any of its moments. From v′ − v′′ = 0 it (obviously) follows that

∆(v′ − v′′) = 0⇒ q′ = q′′

∀e ∈ ∂P :
∂(v′ − v′′)

∂ne
= 0⇒ r′e = r′′e .

We have, thus, proved the following proposition.

Proposition 3.1 (Uniqueness) If v′ and v′′ have the same polynomial moments against Pk−2(P) and
Pk−1(e) for each edge e, then q′ = q′′, r′e = r′′e for each edge e, and, ultimately, v′ = v′′.

As all the functions of space V kh (P) are uniquely characterized by the sets of polynomials QP
k−2 and Re

k−1,
we have the following corollary (whose proof repeats the same argument above and is omitted).

Corollary 3.1 (Uniqueness) If v′ and v′′ have the same moments against the polynomials in QP
k−2 and

Re
k−1, then q′ = q′′, r′e = r′′e for each edge e, and, ultimately, v′ = v′′.

3.2. Existence

Proposition 3.2 (Existence) Let us consider the real numbers
• {µα}α=1,card(QP

k−2
) for k ≥ 2;

• {µe,α}e∈∂P,α=1,card(Re
k−1

) for k ≥ 1.

There exists a function v ∈ V kh (P) such that these numbers are the polynomial moments with respect to the
polynomials in QP

k−2 and Re
k−1:

k ≥ 2 :
1

|P|

∫
P

vqα = µα for α = 1, . . . , card(QP
k−2) (21)

k ≥ 1 :
1

|e|

∫
e

vre,α = µe,α for every e ∈ ∂P, for α = 1, . . . , card(Re
k−1) (22)

A formal argument. An easy counting shows that the total number of moments in (21) and (22) is equal
to the dimension of V kh (P) in (20). 1 We can thus establish a linear mapping between V kh (P) and RPk (recall
that Pk is the dimension of V kh (P)). This mapping is one-to-one because if all the moments of a function v
of V kh (P) are zero, then v = 0. Indeed, by repeating the uniqueness argument we find v = 0. Therefore, this
mapping is an isomorphism and each function in V kh (P) is uniquely identified by its moments with respect
to the polynomial sets QP

k−2 and Re
k−1. This formal argument is used to prove the unisolvency in [1].

A quasi-constructive proof. We consider a function v of V kh (P) and the polynomials qv and {rv,e}e∈∂e
that are related to v by (5)-(6). We decompose the polynomial qv ∈ Pk−2(P) into the basis set QP

k−2:

qv =

Nk−2∑
α=1

aα(v)qα, (23)

and each polynomial rve for e ∈ ∂P into the corresponding basis set Re
k−1:

rv,e =

Mk−1∑
α=1

bE,α(v)re,α. (24)

The coefficients aα(v) and be,α(v) are bounded linear functionals of v, an they must satisfy

a1 |P| =
∑
e∈∂P

be,1 |e| , (25)

1 Note that the indices “α” and “e, α” are running throughout the same range.
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which comes from imposing the compatibility condition (7). Consider the bounded linear functional on
V kh (P)

L(v) := vµ1 − |P|
Nk−2∑
α=2

aα(v)µα +
∑
e∈∂P

|e|
Mk−1∑
α=1

be,α(v)µe,α, (26)

and equip V kh (P) with the inner product:

(u, v)V k
h
(P) := u v +

∫
P

∇u · ∇v dV (27)

(recall that v and u are the elemental averages of u and v, respectively; see also (4)). The Ritz Theorem
implies the existence and uniqueness of a function ũ in V kh (P) such that

L(v) = (ũ, v)V k
h
(P) for every v ∈ V kh (P). (28)

We will show that ũ satisfies (21)-(22) by using equation (28) and selecting some particular functions v of
V kh (P) in (26) and (27),

• Using v = 1, we immediately have that the average of ũ over P is µ1. Therefore, ũ satisfies (21) with
α = 1.

– Let v be such that aα = 1 for some given α > 1 and aα′ = 0 for α′ 6= α in (23) and all the coefficients
be,α′ in (24) are zero. Equation (26) gives

L(v) = µ1v − µα |P| . (29)

After an integration by parts, and using ũ = µ1 equation (27) returns

(ũ, v)V k
h
(P) = µ1v −

∫
P

ũ∆v dV +
∑
e∈∂P

∫
e

ũ
∂v

∂ne
dS = µ1v −

∫
P

ũqα dV. (30)

Comparing (29) and (30) shows that ũ satisfies (21) with α > 1.

• Let v be such that be,1 = 1 for a given edge e and be′,α = 0 for e′ 6= e and α > 1. We take all the coefficients
aα = 0 for α > 1, while a1 is given by relation (25) as a1 = be,1 |e| /|P|. Equation (26) gives

L(v) = µ1v − µ1 |P|+ µe,1 |e| . (31)

After an integration by parts, and using ũ = µ1 equation (27) gives

(ũ, v)V k
h
(P) = µ1v −

∫
P

ũ∆v dV +
∑
e∈∂P

∫
e

ũ
∂v

∂ne
dS = µ1v − µ1 |P|+ µe,1 |e| . (32)

Comparing (31) and (32) shows that ũ satisfies (22) with α = 1.

• Let v be such that be,α = 1 for some edge e and α > 1, be′,α′ = 0 for e′ 6= e or α′ 6= α in (24), and all the
coefficients aα′ = 0 in (23). Then, Equation (26) returns

L(v) = µ1v − µe,α |e| . (33)

After an integration by parts, and using ũ = µ1 equation (27) returns

(ũ, v)V k
h
(P) = µ1v −

∫
P

ũ∆v dV +
∑
e∈∂P

∫
e

ũ
∂v

∂ne
dS = µ1v −

∫
e

ũre,α dS. (34)

Comparing (33) and (34) shows that ũ satisfies (22) with α > 1.

A constructive proof. We consider the expansion of the function v in Ṽ kh (P) on the shape functions ψβ
and ψe,β defined in the previous section:

v =

Nk−2∑
β=1

cβψβ +
∑
e∈∂P

Mk−1∑
β=1

ce,βψe,β , (35)
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so that to determine v we have to determine the coefficients cα and ce,α. From this expansion it follows that:∫
P

∇v · ∇ψα dV =

Nk−2∑
β=1

cβ

∫
P

∇ψβ · ∇ψα dV +
∑
e∈∂P

Mk−1∑
β=1

ce,β

∫
P

∇ψe,β · ∇ψα dV α = 1, . . . , Nk−2,

(36)∫
P

∇v · ∇ψe,α dV =

Nk−2∑
β=1

cβ

∫
P

∇ψβ · ∇ψe,α dV +
∑
e∈∂P

Mk−1∑
β=1

ce,β

∫
P

∇ψe,β · ∇ψe,α dV

∀e ∈ ∂P, α = 1, . . . ,Mk−1. (37)

We consider the matrix

M =

( ∫
P

∇φβ · ∇φα dV
)

=


[∫

P

∇ψβ · ∇ψα dV
] [∫

P

∇ψe,β · ∇ψα dV
]

[∫
P

∇ψβ · ∇ψe,α dV

] [∫
P

∇ψe,β · ∇ψe,α dV

]
 , (38)

where each term
[
. . .
]

represents a block sub-matrix, and the vector cT =
(
(cα)T , (ce,α)T

)
, which follows the

same row partitioning. The right-hand side of (36) and (37) are the vector components (Mc)α and (Mc)e,α.
We consider the vector

bT =

((∫
P

∇v · ∇ψα dV
)T
,
(∫

P

∇v · ∇ψe,α dV
)T)

. (39)

The components of this vector are computable by integration by parts and imposing that the moments of v
are given by (21) and (22). For α = 1, . . . , Nk−2 we have∫

P

∇v · ∇ψα dV = −
∫
P

v∆ψα dV +
∑
e∈∂P

∫
e

v
∂ψα
∂ne

dS = −
∫
P

vqα dV = − |P|µα. (40)

For e ∈ ∂P and α = 1∫
P

∇v · ∇ψe1 = −
∫
P

v∆ψe1 dV +
∑
e′∈∂P

∫
e′
v
∂ψe1

∂ne
dS = − |e|

|P|

∫
P

v +

∫
e

v dS = |e| (−µ0 + µe1). (41)

For e ∈ ∂P and α = 2, . . . ,Mk−1 we have∫
P

∇v · ∇ψe,α dV = −
∫
P

v∆ψe,α dV +
∑
e′∈∂P

∫
e′
v
∂ψα
∂ne′

dS =

∫
e

vre,α dS = |e|µe,α. (42)

The linear system of equations (36) and (37) can be rewritten as Mc = b, whose solution gives the coefficients
c of expansion (35).

Remark 3.1 Note that M is non-singular because Ṽ kh (P) does not contain the constants.

4. Conclusion

We discussed a possible construction of the shape functions for the local virtual element spaces of any order
k and their relation with moments with respect to polynomials up to the same order. These moments are
unisolvent in the virtual element space and are considered as degrees of freedom in practical implementations.
The shape functions are the solution of a set of Poisson problems with pure Neumann boundary conditions,
where the right-hand side and the boundary data are taken in given basis for polynomials of degree (up to)
k − 2 on the element and k − 1 on each edge of the element’s boundary. Special care is deserved to ensure
that the compatibility condition (necessary to solve a Poisson problem with only Neumann conditions) be
satisfied.
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Appendix A. Proof of the linear independence of {ψe,1}e∈∂̃P

We represent the constant data associated with the nP edges of ∂P in (14) through the vectors wi in RnP .
We also conveniently number these edges by introducing the index “i”, which runs from 1 to nP − 1; e.g.,

ei for i = 1, . . . , nP − 1 is the i-th edge of ∂̃P (which we recall that denotes the boundary of P without the
last edge). A one-to-one and onto correspondence is just established between these vectors and the shape
functions ψei,1:

w1 =

(
1

|e1|
, − 1

|e2|
, 0, 0, 0, . . . , 0

)T
←→ ψe1,1, (A.1)

w2 =

(
0,

1

|e2|
, − 1

|e3|
, 0, 0, . . . , 0

)T
←→ ψe2,1, (A.2)

until

wnP−1 =

(
0, 0, 0, . . . ,

1

|enP−1|
, − 1

|enP
|

)T
←→ ψenP−1,1 (A.3)

Since the vectors w1, w2, w3, . . . , wnP−1 are linearly independent, so are the corresponding functions ψe1,1,
ψe2,1, ψe3,1, . . . , ψenP−1,1. However, vector

wnP
=

(
− 1

|e1|
, 0, 0, 0, . . . , +

1

|enP
|

)T
, (A.4)

which would correspond to ψenP
,1, is such that

nP∑
i=1

wi = 0, (A.5)

so the last function ψenP
,1 cannot be linearly independent of the other ψei,1 for i = 1, . . . , nP − 1. As noted

in Remark 2.1, function ψ =
∑nP

i=1 ψei,1 corresponding to
∑nP

i=1 wi is such that ∆ψ = 0 and ∂ψ/∂ne = 0 for
every e ∈ ∂P, from which it follows that ψ = 0 in V kh (P)/R.

Note that all vector wi are such that the sum of their elements is zero. The completion of the vectors
{w1, w2, . . . , wnP−1} to a basis of RnP requires an nP-th vector the sum of whose elements is not zero, as for
example: 2

wnP
=

(
1

|e1|
,

1

|e2|
,

1

|e3|
, . . .

1

|enP−1|
,

1

|enP
|
,

)
(A.6)

but such a vector cannot be representative of the normal derivative of a function of V kh (P) on ∂P because it
violates the compatibility condition.

2 Otherwise all vectors in RnP would be such that the sum of their elements is zero and this fact is obviously false.
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