
FOX: A Fault-Oblivious Extreme-Scale Execution Environment

Final Report

FOX team

LLNL, Sandia CA, PNNL, Boston U., Ohio State U., IBM, Bell Labs

Executive Summary
The FOX project, funded under the ASCR Xstack I program, developed systems software and runtime

libraries for a new approach to the data and work distribution for massively parallel, fault oblivious appli­

cation execution. Our work was motivated by the premise that exascale computing systems will provide a

thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines.

To deliver the capability of exascale hardware, the systems software must provide the infrastructure to sup­

port existing applications while simultaneously enabling efficient execution of new programming models that

naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis

in a highly unreliable hardware environment with billions of threads of execution.

Our OS research has prototyped new methods to provide efficient resource sharing, synchronization, and

protection in a many-core compute node. We have experimented with alternative task/dataflow programming

models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in

active development through open source projects. Concepts from FOX are being pursued in next generation

exascale operating systems.

Our OS work focused on adaptive, application tailored OS services optimized for multi ^ many core

processors. We developed a new operating system NIX that supports role-based allocation of cores to

processes which was released to open source. We contributed to the IBM FusedOS project, which promoted

the concept of latency-optimized and throughput-optimized cores. We built a task queue library based on

distributed, fault tolerant key-value store and identified scaling issues. A second fault tolerant task parallel

library was developed, based on the Linda tuple space model, that used low level interconnect primitives for

optimized communication. We designed fault tolerance mechanisms for task parallel computations employing

work stealing for load balancing that scaled to the largest existing supercomputers. Finally, we implemented

the Elastic Building Blocks runtime, a library to manage object-oriented distributed software components.

To support the research, we won two INCITE awards for time on Intrepid (BG/P) and Mira (BG/Q).

Much of our work has had impact in the OS and runtime community through the ASCR Exascale OS/R

workshop and report, leading to the research agenda of the Exascale OS/R program. Our project was,

however, also affected by attrition of multiple PIs. While the PIs continued to participate and offer guidance

as time permitted, losing these key individuals was unfortunate both for the project and for the DOE HPC

community.

1

FOX PIs The FOX team encompassed seven institutions (three National Labs, two universities, and two

industrial partners. PIs were Ronald Minnich, Curt Janssen, Jeremiah J. Wilke and John Floren (Sandia

CA), Maya Gokhale, Roger Pearce, Scott Lloyd (Lawrence Livermore National Laboratory), Sriram Krish-

namoorthy (Pacific Northwest National Laboratory), Jonathan Appavoo (Boston University), P. Sadayappan

(Ohio State University), Eric Van Hensbergen, Evan Speight, Jimi Xenedis (IBM Research), Jim McKie and

Noah Evans (Bell Labs). In the course of the project, Ron Minnich and Curt Janssen went to Google, and

Eric Van Hensbergen went to ARM.

2

1 Introduction
As the High Performance Computing community prepares for the extreme scale of execution to be provided

by exascale computing systems, many HPC experts [1] believe that far reaching changes in hardware required

for the exascale will require corresponding innovation in system software, runtime libraries, and applications.

Each new generation of HPC systems has presented difficult but manageable challenges. Power for tera-

and petascale systems was managed by adding more money to the power budget; scalable performance

involved using an existing tool set to measure and modify existing libraries so that existing applications

could directly drive the network. The envisioned reliability problems1 were resolved with careful design and

fabrication, such that even petascale systems stay up for many days. Even the perceived need for a custom

kernel turned out to be wrong, as Linux can be used off-the-shelf, when built with enough configuration

tweaks.

However, exascale systems will be hitting several walls at the same time. Nodes will have many cores,

and each node will run many different processes in support of a single application. These processes will

compete for memory, network, and power resources, and must be kept from interfering with one another by

running in an unprivileged mode. Power management will be highly dynamic, no longer simply powering

up all the nodes at full clock rate. It is expected that due to scale, failure will be more the norm than

the exception. As a consequence, the operating system will have a much larger role to play in memory

protection, resource allocation, power management, and resilience. For applications to actually benefit from

the hundred-fold increase in parallelism relative to today’s multi-petaflop machines the community must

create new capabilities in system software infrastructure, supporting the evolution from single process per

node “MPI+X” to new programming models that naturally express the application’s dynamic, adaptive,

irregular execution patterns (e.g. Figure 1) in an unreliable hardware environment with billions of threads

of execution.

In this project, we have developed system software and runtime support for the massively parallel, dynamic

application execution that we expect at the exascale. Figure 2 illustrates a many-core node and our system

software stack. The hybrid runtime consists of a general purpose Service OS along with a light-weight library

OS (if needed). A variety of runtime libraries support a wide granularity of parallel tasks within a node and

within collections of nodes. We report on our experience in prototyping and evaluating performance and

resilience of these advanced operating systems and runtime mechanisms from single node level experiments

up to petaflop systems. Most of the software discussed is available as open source, and some components

are being incorporated into next generation experimental OS projects.

2 Operating systems
Our operating system design targets a node architecture comprising many, possibly heterogenous cores.

We optimize for a hardware environment in which cores have different roles, as exemplified by (perhaps)

different instruction set architectures, different clock frequencies, and differing ability to run supervisor level

code.

An implication of this change of node architecture is that exascale systems are expected to run multiple

processes, not just at the whole machine level, but at the node or socket level. Some of the processes might

perform different parts of the computation, while others might monitor and steer it. The effects of this

1 The LANL Q, a 30T machine, was projected to have a failure every 20 minutes. The projections were off by a factor of at
least 100.

3

p

||OiV.VV)\.' -l«\| >*0 *i .Vl.'ll.lh- I'MK IJ..VVVM :!u| X..yJO :✓ |

• :»i I i:*i *i 111.1: • i ^:»iq .*i |.i i [<!'!. i ;• i m /ii.i m:s iXq • • i i iV<

O O O O O O

change are hard to overstate. Most production HPC applications run in SPMD mode. Instances of the same

program run as single processes, one per node, and each user process has direct access to memory and I/O

devices. Many lightweight kernels for HPC systems cannot support multiple processes or enforce standard

memory protections. Network interface code is managed in libraries, not in the kernel, to achieve optimum

performance.

Our work on HPC operating systems anticipates the change to multiple, heterogeneous processes that

need OS services. We consider the operating system an important component of the exascale software stack,

rather than something to be shunted out of the way once the application has started. Application I/O is

managed by the operating system rather than by OS bypass. The decision to keep the operating system

involved in I/O has performance impact, and we describe below some of the ways we overcome those issues.

In the course of our research, we developed two OS variants based on the Plan 9 kernel [2], HARE and NIX.

In the HARE OS [3] on the Blue Gene/P (Section 2.1), we developed novel OS techniques to optimize OS

servicing of user process communication. In the NIX kernel [4], prototyped on x86 nodes (Section 2.2), we

designed and implemented core specialization in the OS.

2.1 Improving operating system efficiency
Our goal was to replace OS bypass (in which an application interacts directly with a device such as

network interface) with kernel-based mechanisms. OS bypass was implemented to provide a way to avoid

the performance impact of OS involvement in I/O, especially the latency the OS adds for small messages.

Small message performance is crucial to the global performance of applications, since small messages are

used in synchronization, barriers, and other time-critical operations.

We focused on small message performance first. The first problem was to be able to send them with very

low latency; the second was how to respond to them with very low overhead.

Reducing Send Overhead with Customized, Per-Process System Calls. For the small messages

used in barriers and reductions, we found that in practice only a small number of different parameter values

are used. We provided a mechanism for the application to optimize device I/O by creating a new system

call in which constant parameters are eliminated (a form of currying): Given a system call with constant

parameters, a process can create its own private system call, with the parameters pre-computed. The kernel

has a fast path for recognizing these private system calls, which connects to a fast path in the driver. The

new system call is private to the process and its children. Validation of system call parameters is done when

the call is created, instead of each time. On Blue Gene/P, we were able to get the data to the wire in 700

nanoseconds, or roughly 600 instructions. Comparison with existing software is tricky, but this was at most

one half the time it took with existing high performance user-mode libraries on that platform. One study [5]

shows around 2000 cycles of overhead just to enter and leave the message I/O functions. We feel it is safe

to say we are no worse than MPI for short message sends.

Sending packets quickly is not useful if the receiving end adds large latency. Since we are involving the

operating system in I/O, the remote process is no longer spinlooping on a network interface register, but is

rather blocked on a read system call. Even a process private system call may not be fast enough in this case.

What is required is operating system involvement in the implementation of the message operation, not

just moving data to the process.

Active Message Support in the Interrupt Handler. Active Messages [6] are Remote Procedure Call

(RPC)-like messages that are processed asynchronously to the destination process. In the original design,

5

Active Messages were tightly coupled to use of the SPMD model and contained the address of a function to

run in the process. In some later systems, in which not all processes on all nodes have an identical address

space, the function address changed to an integer defining the operation to run. In many applications the

set of message types is limited to a small number of simple operations, such as fetch and add, compare

and swap, and so on. The key different between Active Messages and RPC is that with an active message,

the Active Message Handler receives the message and executes the function call rather than the application

process.

To support low-latency OS involvement in message receiving, we implemented active messages in the

interrupt handler. In order for this to work, the interrupt handler has to be able to access memory in the

process. In standard systems, such access is not possible because an interrupt context operates outside the

context of any process. In order to allow interrupt handlers to access process memory, the kernel must

support a common address space between processes, the kernel, and the interrupt handler. We implemented

such support via Single Address Space segments.

Single Address Space Segment. In the Single Address Space Segment (SAS) pointers are unique across

all processes, the kernel, and the interrupt handler. In other words, in this address space, a pointer referenced

in a process, kernel, or interrupt handler maps to the same physical address. Therefore, when two processes

share memory in the SAS, they use the same pointer values. Sharing pointers is not related to any particular

programming model, so that different processes running different code can share memory through the SAS.

Access control rules apply in SAS just as they do for any other part of the process address space, allowing

processes to control who sees data in the shared segment. The availability of the SAS does not imply any

diminution of standard OS memory protection mechanisms.

Since an address in the SAS has the same meaning in all modes, including interrupt mode, higher level

operations can now be processed in a very low level part of the network stack. We can implement very low

latency message handling.

We combined the process private system calls, SAS, and Active Message Support to provide processes on

Blue Gene with a high performance synchronization primitive. A basic ping-pong using this mechanism took

about 2.5 microseconds on Blue Gene, or about 1/2 the time of MPI. We also implemented ’active rings’,

in which the packets are dequeued directly into a ring buffer in user space. Active rings are equivalent in

function to the Infiniband queue pairs, but do not require the significant offload processing that Infiniband

requires.

Transparent large page size. Translation Lookaside Buffer (TLB) overheads can have a significant impact

on performance [7]. The TLB hides the cost of virtual to physical address translation by caching the most

recently used page table entries. With small (4KiB) page size, TLB misses are more likely, requiring a costly

walk of a multi-level page table. To reduce the number of pages and thereby increase the likelihood of a

TLB hit, modern CPUs support large page TLBs, making it possible for the OS to provide multiple page

sizes. We implemented large page support to reduce TLB overhead. On the Blue Gene, all heap pages were

mapped to 1 MiB pages rather than the more standard 4KiB pages. On x86, our minimum page size is 2

MiB; in heaps larger than 1 GiB all pages above the 1 GiB boundary are 1 GiB. On x86, using 2 MiB pages

makes the page table walk 33% faster and reduces the number of page table pages by a factor of 512.

6

1Q63

3: (i<uxj>#.i jti.ive pei \':>\ ir.#..H> a." J'TCj nu l.iu.x, NIX ■.inwhL’Inj; fore, am I NIX Aj;pl>Al in.x coie. *"nf
ihile.i \ixa line. i.he!>.vei \he'..v.*ileifi.r*.

2.2 Cun; fc|M)i;ializalum
Wc implement'd :u.i>Iaw.1 cx-xv.tv.i: :u N.X i:xv J;oiiiv;:vtiu;L> <a:d j:c:av;vey:iir.-x; * xvli'v. uq idct ir.vdvotv.1

:*.Y :•>i k> vriUi C.r%T v; i ;t:*n il In. mi ilrix:i.iwii> ii rnmy ^:i*i*: :t iu;i Ii.ix>. Fir .;r «f|

lcmct.-. m<ta- fu::xe* umiiy-ccic CFU* r.iisfct r.uw & : hc: ot* -vo;^ July :ur. nscr-incK.e lr.rthoi,
i. |:i** «:!•• i.li.il *vi I li.ivi* <1 \ :*inl. mi:ii :«ry rO'K'it — mi ; I :*irit n*f: minx* *iv >i •■i«s misii :«iy. Tii

v.ip w.r. vo.v.-hf.=f.v. cxccuiiou. MX v.iticr.r.tk:^ hcr.w.r. cvic? r-lxAt xr.:x t'nJ. OV! r-r-ices ar.d those rh?.r. run
il< ili^';:iz il ;:|:|ili/'i:l.h^i :*iv.i Ci: ir. .iiv i!<•!.*i;ri.ili::1 .is 11 n»* i.'wiii i1,. vii»:l ; u* I pi.i’p'rr i/w*! l.li.i.

craj r.ui ur.dtri pxcofftsc* r«s veil a? OS b.v.ucl ApvJicntio.x. ftr.r. cor. mr. ^uly appJicafiKt vod:. or
<i:ii i*l. hzil .i-isHiH’i.uH 11 "in i.Ih: ij»> . (ii!*i£• **.:ri In: |i; *Mlii:i*:‘i. -il. 11'y«l li eK*. \vhii:l i.*, n,t *n*. J

.nr *..*r*ile.A"..ii«* wii.h **".»io4»ne.<>ij* <v ilvnA*iior«ll:.. lo a£ft?ttn.;»hl* iKin-.^.^.i* o.nif*
I/ll Vr-v |iv.%ili,;ev;,| u- \>*:rfr;.iTivi••/.' I'yrli Viif|rt ;iri h^dwixr C'JpAOili.y i? i ViXlrl if iX

,'mI tiii/hh ;i:h im:. n./ta ».•■■■ lm.miiI 8>iie./5Kf <::»l<i :n OS. Dciilii'ilii i£ s- :t. i::»ivr. •h,ii liiriivvyiiiH.-iiiy

*.^ucJ c ^ uq <v^r;J:v<x:':ou dnunxovv OV iuterfrrau.c. whiu: Lay xxci a muunuiu# iyyuv :u llx'fj »yA>v:ej» When

;x:/|il :*ix :*n :*ii*.; k'<*iy Ivi :t sysU* ii <": I. <eiri.eu s *i:iihl»!nyil ■•:•!:• :■*■ :l :*irr.

vu 111 B<- y.xke xr.C6«:V.rv:ej<:u7,s k-LX <Lcw«. vxry ipvc. pcrt>.ni:v.iK.,v. u# c..u»veaK/:d :u . We «.iw :cbV..xs> ic:

PTQ [] ri F y,iiM8 FTU i> '>:irl •/! Il i* Skiiiii >:* *:*lirisiil s: . :iii«: mifiM.-it Ii :• v;."i*ili«: • in u ■!•/!.*i n

wo:>. !v7ldcvvd evx-v ::uac: ^hc .jvx i :„i- vY.:s.8iticT.. :Le setter. In tk> c^^-. cL<- Lir.T.?: peilonr.^v.LVC. btwa in

*i/\ \t *k* w:'iv.l. el1h,KTX i-ii •:!••!.nil |i««rf:'m s*’K*: !j8."!e,n*i lnill'T. lnl *:ir:l v e:l»i:il. 'l1i«: .ijolu.il in i /•:iir

ifl^r VT.ry.Je .Lnei f.cr.icv.if r4ieMCRbf..hf peitcct p-.r;l*oiinf.:v.e. rlicixx i>. ixe nicwr.:e#.tic OS ixc.i’-.c. ^'.xich u.?.k>.

M:ii*:i* as i :i Ul i/':l«!. ziinl mi *ri mii.|:.!.% YYY .u:liv«!%'ii *:iii '"'ix'*:. Sii iil;x* nxjyin m Ir. |i«!rl>«iii \.*'l1i

Fii5erJOH aI*.a>->i| iI>axi^ ^\.f •. iv;i. vf-.ivk .in^ esu i.hal R:.-*mr.z.v'AX e.vili. hoin-.^.xen :<*\m

•izixii••$•/!<• : 11 rijiiili: *ri m *:ivv* .i|ipl'i .il'in :*vi i i.kmi Iiv ■ :li "iii«il.ii y. 06 n«>i'.i:.

Linux Sv.il Am i^all SUJ>pon.. ."| Iih HP< ivi: null il;.. Minx i\/i: |:.tl \AYly ir. im; Iviilhi- n.,iii:, mI. Ah

sV <w “env VV/iifpli;. i;v-v• U v h iK.e 0* K. v l:i:. i w;,:s:.h I*Vs"-V . iruvMi:,, ^.ei fiw; l.!rrjv „>w."ri OjH

.- 111 :>i T. ii*!:*: m; !:<• ■ a*|as: nn .*:<• CN7C. iwl ;tl assIvii i”illr uv: > i|i./:iil/.il. .nil •: i k^h! lliix ssi*:

supported not all possible permutations will work. Nevertheless, the set of system calls that has to be

supported has grown over time.

While it is also possible to provide compatibility at the library level, experience shows that it is much

easier to support Linux apps at the system call interface than to write compatible libraries.

NIX supports a limited number of Linux system calls on both Blue Gene and x86 systems. Linux processes

are run by a manager process which reads the ELF binary into its address space, sets up context, and jumps

to the entry point. The manager manages the process in the same way that the lguest hypervisor manages

its guest OS [10].

Supporting the entire Linux system call set in the NIX kernel would be a massive undertaking. NIX

provides support in one of two ways. For system calls requiring high performance, we support them directly

in the kernel. System calls which are infrequent or very complex are ‘bounced’ out to the manager process

via a signal. Because the process is mapped into the manager’s address space, it can examine the process to

see what it is doing; hence, passing pointers in system calls is not a problem.

2.3 FusedOS: core specialization with Linux and Blue Gene
The ultimate way to provide Linux support, of course, is to provide Linux. As part of an IBM Research

team, we also participated in development of FusedOS [11], which follows the same basic principles as NIX,

but uses Linux and the BG/Q compute node kernel as the foundation instead of Plan 9. The FusedOS

prototype leverages Linux with small modifications on the Kernel Cores and implements a user-level light

weight kernel called Compute Library (CL) by leveraging CNK on the Application Cores.

Table 1: LAAMPS Results

Environment 1 Thread 16 Threads 64 Threads
Linux 361.968 364.457 773.900
Standalone CNK 357.278 361.740 566.436
FusedOS Application Core 357.490 362.059 544.566

Table 1 shows the performance results from running LAMMPS benchmarks in the three operating envi­

ronments. The results are the run-time for a single thread in seconds on the Bluegene/Q. As the table shows,

all three examples have similar performance with a single thread (with CNK and Application Cores having a

slight advantage over Linux), but as the number of threads grows, both native CNK and Application Cores

demonstrate a significant performance advantage over Linux.

FusedOS is now available as open source on github.

Discussion: NIX vs. FusedOS approaches. Both NIX and FusedOS support the concept of application

cores (ACs). Probably the most significant difference is in the way that ACs are managed. In NIX, while

processes own an AC, the NIX kernel still manages the resources that the process uses, including memory

and I/O; and, when a process performs a system call, it is a NIX or Linux system call. A NIX process is

always a NIX process, whether running on a timesharing core or application core.

FusedOS implements a so-called cohabitation model, in which two kernels exist on the same hardware.

FusedOS removes resources (including memory) from the domain of Linux completely: Linux can not even

see most of the other kernel’s memory. FusedOS sets up cores and starts applications running the CL on

them. Those applications use Linux system call support only indirectly, via a control process which maps

8

application system calls to Linux requests, interpreting or mapping them if need be. FusedOS provides more

flexibility in the application environment at the cost of having to write an OS environment for non-native

applications.

2.4 Related OS research
One of the earliest examples of core roles was in the implementation of Sandia’s Puma operating system

[12]. The authors point out that “Usability is provided by creating node partitions specialized for user access,

networking, and I/O.“ More recent work in this vein can be found in Kitten [13], which allows Linux binaries

to run in a VM partition. However, the overhead in this environment is inverted from our systems; Linux

binaries need a Linux kernel and VM under which to run, increasing the overhead and possible interference;

whereas on our application cores, the overhead is greatly reduced.

Our early thinking was also informed by the Barrelfish work [14], which each socket runs a separate kernel.

This work swims against the tide of ever-increasing core counts running under a separate image. Barrelfish

does not differentiate core roles, however, and all sockets have at least one core dedicated to the OS.

Tesselation [15] advocates spatial partitioning as well, although each core does run a kernel.

Cray has recently added support for core specialization [16], and reports an improvement in performance

where it is used. Their approach is very different from ours, however; they have observed that not all

applications scale to use all cores, and they allow the application to assign MPI progress threads, running

under the Linux kernel, to unused cores. Cray Core Specialization is the obverse of NIX and Fused-OS.

Lange [17] makes a case for a partitioned model much like FusedOS, though it is not clear how much has

been implemented.

3 Task management with a reliable, distributed metadata store
The hybrid runtime (Figure 2) provides basic OS services such as protection, memory management, and

safe access to low level communication hardware and external resources. To support fine grained, adaptive,

dynamic, and massively parallel computational tasks, we designed and prototyped task management libraries

that manage work distribution and the flow of data in extreme-scale systems. In prior work ([18-20]), we

have demonstrated a data-driven computational model: a computation is organized as a collection of tasks

with each task described by the data it requires from a global address space and a sequential function to

evaluate the tasks. The scheduling of the tasks together with the communication is automatically handled

by the runtime system. The data-driven model (Figure 1) combined with the global address space make it

possible for task schedulers to migrate tasks during execution, which is required for both reliability and load

balancing. There are many different ways to approach both global address space and task management. We

now report on experiments with a variety of libraries. All these libraries are user mode and run as part of

the application, where the application can run under an OS or, in some cases, as “bare metal.” Several of

the libraries additionally support “fault oblivious” execution, in which the application runs normally despite

node failure or slowdown, with failure management handled purely within the library.

3.1 Task queues in a reliable distributed hash table with libFOX
Our first experiment built the libFOX API that uses an efficient, scalable, distributed hash table to store

global task metadata. We adapted an existing distributed key-value store from the commercial sector to

the HPC environment. Memcached [21] from the Couchbase project [22] is one candidate of many NoSQL

systems [23] in active development based on key-value pairs. Memcached has demonstrated scalability to

tens of thousands of nodes on enterprise servers. A useful feature of the Couchbase version of Memcached is a

9

Work Queue in K-v store

set CQ_

task = get("Q

1", task);

li^vrv 4: IV.;/. - iituc Lm-li.mcLt/.d ’LcL kvy-v^iv uv.ir» Lu

:>li.KKi: itJ'h: i.liii, -i i.li*; n :: 11 T< .P/TP r-trvv. Ti i* l-u i-tiimii; i

~.d:.i va.loui ,-:u:v.ii: ar.d i'livLU::!' ie:pJcc:;":t<»fcu:te witiuu: artVixir.i. cbc ir.i.Lu iuty-.;- A'.di::uLwJ.y.

^ •!iiii,.ivln<l n :• k it iv iilli il< .vwii > i:li •*: I'li:::■•!• .11 il iv :•• 111 • 11 < 1 1: r n-|. . .1 ivhli.ioii

:o f‘»t yct(t;oir.e ot a wrk ir.fiua^cir.cLt API. r.'c ’var.tcd 0 laic' vUitLti >1 vidcly v.hoc.. r.yt.y rrtiixi:

mil.:*"iriM: <■ vi:1 :1 •:|.iilnl',:l key/vi' n>: *•••:)(<' we r.ii'l.-ilili- «•: 'nii.i- •iivliii ■; mi -ii. 1 .11 If*: TPf" s.tv":-i

Fir If.'. l.Pl rxviiourjfUT. hf.tr. ta.*.; qr.r.r.r* r.;vr. data tar. be xrp:c#eu:n\ ir n Ja*y-vj'..iic rtcrc ;-:rc fc'Le-

:i«‘ I!v:-r i.lii:i."tli k-; id ic'r .i-;va 1: \mIi h. .in: tin il.u iv 1I.1I v *ri'*i-|»:iiU* il. •i',y imii .n:-ry.i 11 /1:1

oiemoliicilli- >.• it?. ftiJwi kax-va.ne i‘a./.-t. Kv.i ex*mole. 1 .a-.-. ni>i> i.-i v.c,if.l f..r.A'. >!ih

'■111 -uni 'wl: -»ii:hi.:*-•- :-li:-i>d i ■ <!••, v-ili 1- |:.»i1,11 rv niv'iiv:- '.v'-ik 'iii’i.*. •u.tiivil :n “I I i-i Ivy v.il !'• |.

Ofimi.in?. namfn>hor*;i for fail. sviidiiniiiy.ai.lon. A ii.iniii.iiHin.nl h.'I u > '.ii.il \ .iIhm I '■■■.h vImi

lyi.vhi.v.i:; lit l.V-il’ly li; ;y\hii;ii/o i;lf I iitully UvlMV.-i ',»r;nl hi /.- ,im| y;iriy;nn:i- 'i-'i i.s/:- L ti-i:* %.|rid'f''l

' iniiivivlnil ii ltii,ln:,i,1 ;; :* -i-r it;: ■ I-1 .i> |»i ir :i Misk I•: :■ 11 :«ii' in :i Milk eii"iii' i.l 11%: 1.y,l 1 i*.'.,iuli':l xv ■

uivtiuLL, vu a vwiih, key A vuUriou tc :. Jc p:ol:Jvir. i t v uitioltwc -.I:n-ribated cjm:ti:m ^vLLUiplii.itv. WLtb

•xonliV, <:• 'fnnwi'i vil wi'ili" •lul'i ;i ~y i.n > v,ml |i-: ■!*•«:•> tv.ii "iiy U*r :li.ii .1 kvy.

L'ictii flitix. efiir.ti.15 Hir.uip.vJK-- a.c Lrr.iJcrr.cr.tcd vitb tr.c u Iditio.i of a vourt del-1 tc- k-'-val.i - ;f!iirc.

S> ■ivli'irii-ii' 1:. i -id ki-l • ::>|.i‘.tl uni |u < il.n ;nr.inv i-i . "il ■ -:*i-i :• *li n- il-*i i-;ii i*i U- 11 :• m-i ;i|:i

rant. A 'I'T.f.uviO'.iA cot 01>;.:'fi'iii vrdt- nr.li. Ikr. cr.r.ut ir >.<■ Jr/irt .qr.r.. tc rbc rrx;nfs'cd dv/A ar.-.l rbcu

•1 :li iiis 11: <li v ic..;ii«:i.il.,:l ai11 v (if»v*i<1 1 -ii liviilf liii-iif ■ r .liy ; I'nv; -1 i:':'li'iil",i1 .vvm l>: r.n'>|i>:i.

..ii ‘eir.i./.I.c. t opiiaiiv.i. i.i 'lie i.iha.r. ol I'rili.i*.

tyv i.:'vi:l,/|n-l 11 "‘I OX ii ->i ■■. i'- :■ Vlri'K i*i in I 11" :*ils- will .1 l-i;-k i|i.:'i.:' ,il|.:i.r.i: "mi -iinl ii.Iit vn-il il

iv. n.mni'.ira'.i.fn i'ir>i 1.- oc.ni.ion 10 IIP< . oil lei n-. ii.'l. rle ; r-.e htcf.ilof.ii, ol oilaii.f.eif 1.0 -.vot.-.eif.

v. 'u " •' •ll'i iliuliif'i. Uni i<:'■;ill(.'; :;in ;if 'i; »'. (;>• I.n •ini.'ii 1. Ml-vn'."); i-.'il iiiivV'/.' 1; :>V.V|f‘.'i lU'ioulv'.i

counting semaphores made libFOX more efficient for task distribution and management by reducing the

need to poll.

MCphoton. A simple Monte Carlo radiative heat transfer simulation called mcphoton was chosen to

study how an HPC application might interact with a distributed data store through a task model with

the potential for resilience. A highly parallel version was developed that distributes tasks through the task

queues provided by the libFOX interface. An implementation that uses Memcached for all communication

has shown near linear performance scaling on a cluster up to 256 nodes and 2KiB cores. The current

implementation of Memcached uses sockets for communication and encounters scaling problems beyond 2KiB

cores, highlighting the differences in latency requirements for enterprise vs. HPC. To improve efficiency, we

developed a distributed key-value store EbbRT using native HPC communication primitives on the Blue

Gene/Q.

3.2 Elastic Building Blocks (Ebb)
The libFOX library targets a global task queue using a key/value store based on a distributed hash table

to store task metadata. To more generally support future HPC applications that need a combination of

customized distributed runtimes and general purpose commodity operating systems, we have constructed a

prototype runtime, the Elastic Building Block Runtime (EbbRT). EbbRT provides the Elastic Build Block

(Ebb) object model which enables developers to encapsulate distributed components of software and exploit

distributed data structures and associated communication optimizations in the face of dynamic changes

to the set of nodes. We used the EbbRT infrastructure to implement the libFOX API. Additionally we

prototyped a fault tolerant, data flow driven implementation of the mcphoton application with EbbRT.

Given a system wide identifier for an instance of an Ebb called an EbbId, a client can invoke an Ebb

through a well defined interface. For example, a hash table Ebb may provide get(key) and put(key, value)
functions. Hidden from the client and based on programmer defined behavior, an Ebb internally constructs

representatives of itself on nodes and cores on which it is accessed. The Ebb programmer must then have

representatives communicate with each other as necessary to satisfy client requests. This model enables Ebb

programmers to design highly tuned implementations of common interfaces and allows application developers

to select appropriate implementations.

EbbRT is a thin portable library which provides the basic interfaces and language bindings to allow de­

velopers to instantiate and manage Ebb instances. We have developed an implementation that can be linked

with Linux applications as well as an implementation that can run bare metal on x86-64 and PowerPC64

machines (including Blue Gene). EbbRT is open-source, written in C++11, and is under active development

at https://github.com/SESA/EbbRT.

All instances of EbbRT form a distributed structure that allows Ebb instances to cross the boundaries

between the bare metal nodes and the Linux nodes. To concretely understand this, consider an Ebb that

implements a file system interface (eg. open, fstat, mkdir, etc.) that can be used directly by application

code or behind a libc wrapping. When invoked by an application process on a Linux node the Ebb will

use a local representation of itself that utilizes the underlying Linux interfaces. On bare metal nodes,

however, the Ebb employs a specialized bare metal representative that serializes the operation and data as

necessary and sends them to a Linux representative. The distributed bare metal representative and Linux

representative structure and relationships are hidden from the callers. Furthermore, the representatives can

optimize various interactions for the sake of improving performance and or fault-tolerance. This can be done

11

8 w*."1 m\ 1 ji v*. ;v fl11 sJLaH' l:il I j. Kr. . :j.r i lv

Figure 5: Performance of Ebb-based libFOX compatible version of mcphoton on BG/Q 1-16 Racks.

via any appropriate methods as needed (eg. partitioning and replicating data, exploiting hardware features,

optimizing read vs write access ratios, etc.).

In addition to the object model EbbRT provides a non-blocking event-driven execution model. External

events due to machine failures, network traffic, timers, etc. execute programmer-specified event handlers to

completion before further events are processed. In the context of bare metal execution, these events execute

at supervisor level and therefore allow for software to react efficiently and with low latency to asynchronous

behavior.

A critical aspect of the EbbRT approach is to allow for the easy elimination of overheads by exploiting

the dedicated nature of HPC applications while tailoring the solution to existing application code. Our

work has focused on exploring how EbbRT could be leveraged in implementing the mcphoton simulation

code. We explored two approaches: 1) porting the FOX memcached data store version to use an Ebb-

based implementation of the data store with minimal application changes and 2) the construction of an Ebb

runtime that permits a re-implementation of mcphoton to exploit both a task model and a data-store that

achieves application-level fault oblivious execution. Both these approaches are discussed below.

mcphoton in EbbRT. The libFOX library was developed to act as a generic HPC centric application

interface to a distributed data store. As such, it provides a natural separation between application code and

the software implementing the underlying data store. LibFOX based applications provide an ideal setting

to explore and contrast the EbbRT model for HPC programs compared to how one might naturally develop

a libFOX program using a commodity distributed data-store and associated OS infrastructure.

Our first approach focused on preserving the application code and injecting calls to Ebbs behind the

libFOX API. The existing mcphoton application used libFOX implemented on top of memcached. We re­

implemented libFOX on top of an Ebb distributed hash table developed for and tuned to use the network

of a supercomputer. This allowed the mcphoton application to run on the Bluegene/Q Mira without any

application modifications.

12

fV* NrH*

|fjHHi$35:!
iiiWiiihiii:.

o k)<
n-hiy I fr-.-l [p-.ri-v-j

-Uk*!>L

M=1

" ■:■■■«• li: r'ii il i'- Ti :il.:iiij! Tilu-k Tfn il ii" l"l:FlfX I:.v-ii'■■ ■ •:I iiii.|i,i-i|.:i

W' r.vfi,iiahv| :.ii- vciacr. oil ;.m- :Vo:u MCi lack* -.vt Mix*. Itr. Aifpur.-. Dlviji v :r. .,X? i>:.c t iyirc ."i.
Til*i'll snilii " v>*.i-.• »11-:; ivisl ii S i‘-i:*!• -• i *\1!#Z nu'-isi, i-i. s-""ii* 1 |::*i11 11: iiv: i < riul-.<•! 11 flits ,-xt :il:li: |ni* "iois

i-." i ho iiliK>X ii-.uvlf.re '.‘•■4- i.ni/45Mir.f.i,ivin «,T•Y/llev.i.i-.ti i.poi <I m:« ..n.ni.vd^ i.<■ p»iiVuir.f.*.>.
(,)iii I ii* 11 i.-i i"-il-* tVyii. Hi .iii'i. .»■ .i.ipl'i w"ill m"iii "i,iI .i|:.ili'Ml.iisi 'lii i}?\ /ii il il',"ii<: ••ili/iln ri<
>v»k i'.* iio.-.'n.-iitoMP a-rl aralo. »esi „ii‘ r-.:.‘oi iv.e lv.i..iv. i lw.\ ll> KWi ip:-ii>v'h i'v-IiIi <l'.n'.‘l1 ■■ '< '*
’U'.v v vii':. ■•u riMu i'"i ,lc»i-;i: y»:mil <ti-t<ip«ik- W lWli’i.niii.'.l ly-rwi ra.-l i/*irr>-.wn;»n,; l mi ojii
.it- :li 'Kil-lv Iii i>-i. r:h: I l.h i<|:yliti<lit.n. S:ii sbl Ily i(i'Ni. •- i11 ti* I i •'.•!.• . 'id I-: 11i;-. nr. |'i:il-/l;. |»* ./ii I :l
Muuiii iLt-Lui.'uv.i'd. bit cucjuy.ttrvd ¥uaJ<tMli:y JLiuLcuticc- cut :u the lix'OX i:uv.v:*-icu:;,.ek«i
•i tii'liir. v|..,|i,;vii|.i.,i < -ril n-i'il ill" |i>:i'il !•> |iuii I ;i:*:ii. i.-iii:i|i>:i.
limit-roInyiir impbofoii. "A'i- .mix u tV.aJ: u .\lincn cuvpx'.ti'L ;v.ip.U,;:::jd i:i v.ticJ: ~.v: ;v.p.ivi,xi-,.i
•ioil.il ii-i:l k-iiio-r.ili: "O'li::IV, n iv |i-i;-!ii-x- <•! i.ti.llt. w'l-li l-lii: "ii•::••••• iiy F:l:::o,f.i< 'iiy iii'il u i.ii.i/.-i
rji u: "!<•• »h> ':r,1, wc •. .cvi hipi d. a viu-tcri ii bl 111' :»v-v.: :jjcirr.c and u&ic-v:'.iv:d c tki:o :r.u>vx-ii.'.t
ii ill l' 1 no ill liiiliit" iii. .u :1 vi *1 ii ll< :•<■.' ms i.ii ••ifiily 'ii:>l'"ii>iii. Il: '■■•ilia i-koi i|::<li-'ili-:i. W- iri|i: i k i I • ,:1
a new ••v.'.-siou c.t moliftcr. -.uyr-g ?.u liblv iv.xi'.uc con-wiv.ctcd ppwLlicslly t'x rsflz-diiwu p:ot:i.ujrjir." 'Ua:
.i 1'iv.iiil :*• i<i i'viI.iii: i-ki-x.i olhsi iif ill.I .■! :‘*.i *: ■:/ii il ii'i|i"iiviil ijiiloli' ily .ii-1 -|i'Ti.i'*o o-: il m.l-.i iv in
iigll'O Ii.

VV* flnli ':"i. . ii i .itioliil .i->|:l: .i "iin i.ii jii:li|:l/ili: •> il.i ; fil'.v fl.i.lh r:"*|vi.:io I in. . < ii'li.inl.i.'iiri i.ii ,i
Dl*lslliv«"^ i:t/ii. iin.ii ■ Eli./. T.i* l£i*i|i": di;il?::.is .'ii* iIi!,>!•■::I"iiiiins IIRl-'.VKhi In s l n-:l '.li.'kr iviliil. l"il;iiib
■*"i: i'Mi'Jlv u V lid' Uii>l.*;l. I‘i;rerv 7 ..ln»W¥ lIn: yi:i;($!T!fl«"/: i»!<• I«icu.**".»lic» of lit viawi. 11; 11/iU'f v'.v-
l.<:,.oi. ii.ihi* E./li sil ii. iliii iii'livii. ril l/iiilii v» i<«i up ilr 1 ln*i"i |:n:i. ioi.. nil v ili,nsk> •:nu
: jii)u v.u’' :'z>d'.' ii: the ->•«:«:» m:d :.v: ;«::ic:f.pvd cr.tpv.xo <nc vTui ei. Icvi.Jv If a ;i- >dc ii dwvctdd to tv.vv
ix id. .Iiiiii i.ii1! r>n Mi ill ;vX.«oi. ii.ihi* <•!•. i "i til ii. iln iv:.v .iv>it vi !• *»!•.;! I;i i: ml: !•/ >: iv.,.»i‘/ili.ii!:l ini-: I-::
c'flni'r.Ci'.xion cun ■i:KC'':d vixlczt *bc lidlc-1 r.od-: W: ::upl-:iia»«. a u::ftU2i<. Ua'idio’.TCoc: dirncov tLa:
t iiit nil Ln.-Jc .nil il-il.i i-r.il iin iili/iriiil i'ii |:oil ilm i tii.i.l •;:i|.si I in me iin>:i-i.» not i. ' "ol iiioiliil
.'.riili ixh.e it / :o f.tf.ic :.v.: x-.i-ivxl 'la:?.. Wc v.::<vr. ial.iuc’ z-unt an mnoiab.'. f&Uv.iv. -jclcelcr i’.vliic>'. cmi
C v; ii'iiiiiiivi-,i ■ i-illixl l.li«• T‘l i Ai•'inii i.ii iii»-F)nl*'i Iii* j. 'ISr.lnivir ii i|i io if il.i ’:in ■vi:-iioi'i.ii ml
swipl'.ai.an wiili lii> 2i»in 1-v-kA ;«.i *.lw crc'*: ofen* Mrv.i-.il On: iiip>iM.iie:J meii.iit- v<f#

!' P.+.1 ' j I.* i u ,vili t!.-: ■ 11 UJ4 L i< S.J Vi i*.'.-
>S- i j*> pa: L D.^J Kp..'

Figure 7: Performance results of fault tolerant dataflow implementation of mcphoton on BG/Q 1-4 Racks.

able to run the mcphoton computation with perfect weak scaling up to 4096 nodes with no failures. The

computation tolerates multiple failures to nodes which do not store the task and data location information

(i.e., the dedicated DataflowCoordinator node.)

Our goal was to demonstrate the ability to build higher level run-times using EbbRT by building reusable

system software components. Our construction of the libFOX key/value store, task library, dataflow co­

ordinator, and failure detectors, all within the Ebb framework, gives us confidence that this is a fruitful

approach.

For future work, there are a number of potential improvements to our data dependent runtime to improve

both fault tolerance and scalability. One could design a DataflowCoordinator that replicates the task and

data location information to multiple nodes in order to provide additional fault tolerance. Additionally the

information could be partitioned (having portions of the data flow graph managed by separate nodes or

groups of nodes) to provide better scalability.

3.3 Tuple space task library
Another aspect of our research into fault oblivious task management shifted from imperative to declarative

programming interface. Traditional imperative frameworks give more control to the application programmer,

potentially allowing tighter optimizations to be applied. As fault-tolerance becomes a greater concern for

HPC, declarative styles become more appealing. Using a declarative interface, the programmer merely

prescribes the work to be done, and responsibility for scheduling and doing the work is handled by a runtime

library.

Our work is inspired by the tuple-based frameworks Linda [25] and Concurrent Collections (CnC) [26],

examples of “coordination languages.” Rather than using explicit message passing, processes coordinate

through a globally visible key-value store. Workers are decoupled in space and time. MPI may seem more

intuitive for certain tightly-coupled physics problems. However, the model of decoupled workers not only

provides obvious advantages for resilience, it gives the runtime a chance to optimize performance in ways that

14

RcadfX'.O. ?..?•
IT .0,1-2!

Fij- :i«- i*: ri/i'.i-: ■.<i|i!<‘ • %|iiviI ii 1 v. *:h>:wi 1:* 11 *.vi1il: u*il :>|:<• •: ir-:.

r-ii~r.t be- "'ay dirti’uJ: :c cod- ">y -mnd toe ouch application. ir. :ap. :-spi:cc <vs:or.-i r. ■-.ual. -a of i'-xi:ui::v;

: in |i>m:I. "‘ii I. |i ill .»•! :imi -ill i*. s -n:>lily ii 1, i.li." mi iItIvIii;:. • inl.ii *:•. Fn- i-V/iii | :!■ii T."ri:i:. p ii'i w

n "hi;-" data. vtiell 1- evc:i:".inU-' “pnJ.«." I.” pi' w*? 1 I'FLfliuc Si. L'.ic 'iipl-.:-: f:;t. ar utrarily ryped. A
•iii.w 'll f'vi.1111: :n l.ii ■ Li .ii«‘ v.'ilikvil iv>;-■ |.. ;.| :i.vii 11 y .ii-iin.lii:r -n.v <. -il 1 i'.vi 11,.. .11 y ri/ili:l :n/ 11 pin !/•

1.1 lie;!. I.iivh Mi in im.i ii.«•.;£! I;, :.ipa;ii ihl.vllnw e.s<vnl io.i. opui suv.c 01. dsia Mia-. are iwwiii.

FOX-tupIc Ulv.il- liu; or. ttc v.w.s:.yj:ig <.i,.m-d:w id-:'.- ot _iu1.11. v-v JisPo oDi:;uiv;d y tai.'-tasc-1 ci-ir- li-
••ilici .1 •i,wi'il. T ii :l.i li.c. 11-!•:<■ ir. :if s i,-iiii -I funli. 11: ii,:i: i;m»iiv*1i. »vi. • n.nii:i>>i •: i-i-- h-vk

a.icac.y wfabltfhfx.. Ija'ha ttc.i ■Jcwjr. >. -'-tun torn -.aatch. -t. m.v.iU: :o cdrip: Lkvla-Jizr. i.iic
.1 ■ •: hii:i:iii. l.c.< lr.irin:v,iii<. 11 nii,l:y ;•!•. ii i1. ;• xvi-,il. * 11 l.ii ll 1/«l'T-iin::- 1 ■/'»:> :tri ‘.vhiiif 11 .ni il.

Iss-La ar» ne»i»l. •.v'.i.li im.*mas.-, ilfipadunwe e.v.iA-i'Sil a* 111:,It* i.i >. AjHX'i.'io l i.pl® s.w>. In ix-i.-

•!'.| !•> I I I'Ll. I.I ll: I OX l.n.lk' fl-.lll H'.i;. < 1 IIMi: I* “il I’il ll I. V.,i:ll 'll "I •li.’/l" I lll.VX'Vi:!. :l. | ir: ivi.’li;. ll

■ im shl -.A ;m: ml. :r 11.1l ih-ii.-v In-:;-. :iiih. Tnr j*ii*- ■ -hyi-i.iki.ii: ?: uti • ■ hi:l-i 1 n: I - s h .nyki AV. :-n l». Imr*-

IX* w.iIiwa ■. iji.** si..ai he dec.i 1 ‘d snd 1 lv> ti,'i..wni.*l:n 11> l as .-.aochied. Ai 1 i.xim*. OpPiiil-u-x**

if'■> .I'0r!'."i-Ji>'i «■ U"0 f V 'A'Myh ii -rr>'.' l~i .ypv V ll"! ''or-V. unly . >'• ll"'.' p*1-riivivv; ;i[>""|'.i/i<'ii¥ fr;- Mv-xL

H-.c.vhv--. ’.Imv ii-i- •m.*|i.,h. iisiiIt* -li^l m l>-v<il API ri: U 111•> u;_ 11 : 1 sh- .11 .-. iii./ly :l“:’ hi? ••h.>i-|iiki.ii:v

Tyxi - K-tt;l. :jI" ato :;yctcliv ixecy/:. ii.-c^t licdixcl. I'lic r<u:ti:uc r.utc>:iuticcilJy ual-aiib ttc k.ijl v.I

ri<|ii!it:- .-I pi 1111. w •/|nii-il ii;-:n.

1 l.f k-y pai-aiiuuc'V c > itu.-v.vi vie r;kc:t. :o u'.'c:unii:U,;'.::-.vi hi Ml '1 dvtn if fjswLttiiSVj -..irvctly bi-

wi-n piX'i1 T».ii Vt.Ill l l:i.i,;.i ,1 "v.il iv ir:. :>K>i>mc* ’■ '-il ii ili i,v > i:x:--i.ii i;i-<1; 1. viii . ■<■ ? in-.

i:i:'i':o¥iu5••oiur.iv.uicyticr. fcs:. Ir.; rox-mpl- iir.'.uc'.*ork if ir.pJcc".;r.tcd a: a -..i-ftri iu:c I r.nyli :>i »lc. vixl

111 : s ■*: 11:* 1 i.i|i:m-: !<• .1 ■»"il• :-i ri,< -i:|ni -:li i:*m.I:smI. T-ii'i- l:lii‘-k-i <•! •:i:l,:i ,ui' iii,v<— ii-.n i-i n:l

cit-r-id-.i. All IlUIvLX cv.:r.dMy liar.die k plaf'.id inr.l :.ic .ccy-’.Y.’ic =r.w. ir.F'Cf.d. Lo xcuir v. Ja;cc da;a

•>l<*: I.-.. -i'1 •i',i.;::l.i..i f--il. -:-.u. •irn ll i - :l*-:i.i'ilnl*a:l li.i-: 1 i.-il 11 -. ,11 il I.I in 1L1I.1 Ii :■■.< ix III :i. -\v ;:n IJM fvl A

c»l di.'KM l, .Vn.n ils ltiiifci;iun. All l I#, sir* l.iddsc .’.•<*.« 11>

WI il‘‘ 111:"•iH'r:,i:l■■: • 1 •• i'Iil.n .1! i■ :iv*i-i/m-miiiii i: 1 v-n 1 •*..■■ r:- vi.ivv !/■ Ivll M. Ir:- i-xli-,11"v.I .-.ii i:ll.

Fiir Ih:lh i.hi.n |i .xfPI i.si: a 1— -i:lH<fii ix yix»ll>:'i:l. A sh-::l-i ru.si- lesi. hsi.ii. s 11 h.ndsli I k»-i:

'VI i'll ill'.- 'i>'.'i:ivi;l I;. ffl HI i-l A Rnl. I l"V iV'il.'V.'V p,ii" iv lili,»ln>| •y'Hl ,11 M 'I ,i:;|r VI I* . •|i-,|l fV

FOX-T-
MPi-e-

FOX w/Degraded Node
MPI w/Degraded Node -A-

Figure 9: Performance of FOX-tuple framework and MPI for matrix-matrix multiplication.

being direct communication, therefore requires multiple message exchanges. FOX therefore directly transfers

large blocks with only minimal extra latency to negotiate the transfer.

For the case of matrix-matrix multiplication (Figure 9), we compared the performance of FOX to MPI on

the Cray XE6 Hopper [27]. Despite being “declared” rather than explicitly written step-by-step, the FOX

framework is very competitive with MPI. When certain nodes are degraded, running at half speed, MPI has

no ability to rebalance around the faults. In contrast, the FOX-tuple performance remains stable.

4 TASCEL work-stealing task library
Our final task library considered the design of a more traditional task-parallel runtime system, pushed to

extreme scale. Specification of parallel tasks exposes the computational cost and data-access relationships

to the runtime and system software. We considered runtime approaches to automatically load balance a

task-parallel computation, track the actions of the scheduler, and recover from faults in a scalable fashion.

In order to expedite our investigation, these were built on top of an active message library implemented

using MPI. MPI allowed us to evaluate these ideas on today's systems at full-machine scales without requiring

permissions to deploy a new software stack. The active message library allowed us to decouple our algorithms

from the specifics of MPI. The task-parallel runtime system can be ported to the new software components

described thus far in this paper by porting the active message library.

The application begins execution as a multi-threaded MPI program and enters a task-parallel phase (e.g.

the loop body of an iteration) with one or more tasks. We support processing a fixed list of tasks or

allowing tasks to spawn additional tasks. The task-parallel phase terminates when all initial tasks and any

tasks transitively spawned by them have been processed. Upon termination of a task-parallel phase, the

computation returns to the multi-threaded MPI mode. In this work, we used the MPI mode to set up the

task-parallel phase, and focused on scalable fault-tolerant task execution within each phase.

4.1 Dynamically Load Balancing Iterative Computations
Applications often involve repeated execution of calculations with identical or slowly evolving execution

characteristics. Such iterative applications often exhibit sufficient variation across iterations to preclude

efficient static load balancing. This necessitates the use of dynamic load balancing approaches that incre­

16

mentally rebalance the computation over successive iterations.

We studied the design of load balancers for task-based iterative programs. We exploited the fact that the

execution characteristics of iterative applications evolve over time, with significant persistence of such char­

acteristics between successive iterations. Persistence-based load balancers measure task execution profiles

in a given iteration and use that to improve load balance in the next iteration. We designed a hierarchical

persistence-based load balancing algorithm that attempts to localize the rebalance operations and migration

of tasks. The greedy algorithm rebalances “excess” load offered by a processor rather than attempt an opti­

mal partition. This allows efficient implementation of the load balancing algorithm at the cost of potentially

increased load imbalance. In addition, the greedy approach can potentially better retain data locality and

topology-awareness from previous iterations.

Work stealing is an alternative dynamic load balancing approach to fix load imbalance within an iteration

or a phase. In particular, under work stealing, a processor without work attempts to steal excess work from

other processors until all execution terminates. This approach is especially beneficial when a phase can

incur significant load imbalance and cannot be fixed through static or profile-guided schemes. Work stealing

algorithms employ random stealing to efficiently redistribute work. While shown to be effective in theory

and practice, such stealing interferes with data locality and topology-aware optimizations by dispersing work

as the iterations progress. We developed a work stealing algorithm for distributed memory systems based

on active messages. The algorithm acknowledges the costs incurred on distributed memory systems by

minimizing round trip latencies, and the duration of locked operations. We designed retentive work stealing

so as to reuse the task mappings resulting from work stealing in iterations. This implicitly retains data

locality optimizations from prior iterations.

We demonstrated consistently high efficiencies on ALCF Intrepid, NERSC Hopper, and OLCF Titan

for the Self Consistent Field (see Figure 10) and Tensor Contraction benchmarks on over 100K processor

cores [28]. We observed that the hierarchical persistence-based load balancer achieves load balance compara­

ble to the optimal centralized scheme in practice while incurring low overheads. We demonstrated scalability

of work stealing at over an order of magnitude higher scale than prior published work. Retentive work steal­

ing is also shown to further improve load balance while reducing stealing overheads, as the execution becomes

increasingly balanced. Retentive stealing thus combines the benefits of persistence-based load balancing with

work stealing's ability to quickly react to load imbalance.

Based on the demonstration of scalable load balancing, we ported a homology detection framework on

TASCEL [29]. The implementation employed distributed memory work stealing to effectively parallelize

optimal pairwise alignment computation tasks. This implementation was evaluated on up to 131,072 cores

of the Intrepid IBM BlueGene/P system.

Related work Persistence-based load balancers have been extensively studied and employed in the context

of Charm++ [30-32,32,33]. Unlike these efforts, we focus on the design of a greedy rebalancing algorithm.

Work-stealing based load balancers have been extensively studied in Cilk [34,35] and subsequent efforts [19,

36,37]. Unlike these efforts, we reuse the scheduling information across iterations to demonstrate scaling at

much larger core counts than in prior work.

4.2 Characterizing Work Stealing Schedulers
The flexibility inherent in work stealing when dealing with load imbalance results in seemingly irregular

computation structures, complicating the study of its runtime behavior. We developed an approach to

17

</)

"O
c
oo
CD

CD

c
o
CS
q5 Steal

StealRetB...
PLB©....

Ideal ---------

16000 32000 64000 128000
Number of Processors

Figure 10: Execution time for the Self Consistent Field benchmark under traditional work stealing, retentive
stealing, and persistence-based load balancing after convergence on OLCF Titan.

efficiently trace async-finish parallel programs scheduled using work stealing [38].

We consider two scheduling policies for async-finish [39] task-parallel programs. In the work-first policy,

a processor, upon encountering a task to execute, pushes the currently executing task onto its local deque of

tasks and begins to execute the new task. A thief can steal a partially-executed task pushed onto the deque.

This policy mirrors the sequential execution order. In the help-first policy, the working thread continues

to execute the current task, pushing any encountered concurrent tasks onto the deque. Once the current

task’s execution has finished, the processor extracts the task last enqueued onto its local deque to continue

execution.

We identified key properties of both schedulers that allow us to trace the execution of tasks with low space

and time overheads. These are used to construct a steal tree that tracks the steal operations efficiently. Im­

plementations of these algorithms were evaluated on both shared and distributed memory systems. Figure 11

shows the trace sizes per core for help-first (HF) and work-first (WF) scheduling of SCF and TCE bench­

marks on up to 32,000 cores. We observe that the trace sizes are small enough, amounting to less than 1KB

per core in most cases, allowing effective storage and analysis of complete traces even at large core counts.

We demonstrated the broader applicability of this work, in addition to replay-based performance analysis,

through two very different use cases: the optimization of correctness tools that detect data races in async-

finish programs; the design of load balancing algorithms that exploit past load balance information to

incremental adapt to changes.

Raman et al. [40] perform data race detection by building a dynamic program structure tree (DPST) at

runtime that captures the relationships between the tasks. The DPST is built dynamically at runtime by

inserting nodes into the tree in parallel. To detect races, any two computation steps that access the same

memory location are checked whether they could execute in parallel in any possible schedule. If they do,

18

CD
O
O
m

CDN"to
CD
OCO

h=

scf-hf --■*....
scf-wf
tce-hf
tce-wf

16000 32000
Number of Processors

Figure 11: Size of traces for the SCF and TCE benchmarks scheduling using help-first (HF) and work-first
(WF) scheduling policies on OLCF Titan.

a data-race is reported. A key step in the data race detection process is the determination of the lowest

common ancestor to the two computation steps being considered. We observe that the steal tree that tracks

the steal relationships can be used to speedup this computation. Experimental evaluation demonstrated

that the cost of this operation was reducing by up to 80%.

We also demonstrate that the traces enable retentive stealing for recursive parallel programs. Our prior

work on retentive stealing, discussed above, relied on explicit enumeration of tasks. This increases storage

overheads and becomes infeasible when dealing with tasks with dependences. We exploit the fact that each

node in the steal tree corresponds to a working phase and can be used as the starting schedule for subsequent

execution in an iterative application. We thus extend the replay algorithms to allow further dynamic load

balancing a steal tree. This was shown to further reduce the memory requirements of retentive work stealing.

Related work Series-parallel relationships in fork-join parallel applications have been exploited to optimize

data-race detection [41,42] and conflict detection in transactional memory systems [43]. However, unlike

our scheme, these require global synchronization or locks to track the relationships and only support the

work-first scheduling policy.

4.3 Selective Fault Recovery
Checkpoint-restart approaches to fault tolerance typically roll back all the processes to the previous

checkpoint in the event of a failure, a heavyweight solution that will not scale to exascale. We developed

novel data-driven resilience algorithms for work stealing schedulers that minimize both the overhead in the

absence of faults and the performance penalty incurred by a fault [44]. We tracked the data operations

to construct an idempotent data store. We simulated node failure by making all threads on a node non-

19

c
o
o

"O
CDDC

o
cti

SCF-begin —I—
SCF-middle —-)K....

SCF-endE...
TCE-begin0....

TCE-middle ...A....
TCE-end --v--

19200 38400
Number of Processors

Figure 12: Factor of reduction in the number of re-executed tasks as compared to checkpoint-restart for
SCF and TCE benchmarks when faults occur at the beginning, half-way through, and towards the end of
execution.

responsive to all incoming active messages except termination of the task-parallel phase. This allowed us

to evaluate the behavior of selective fault recovery without worrying about limitations of fault tolerance

support in MPI implementations on today’s parallel computing platforms.

We presented three recovery schemes that present distinct trade-offs: lazy recovery with potentially

increased re-execution cost, immediate collective recovery with associated synchronization overheads, and

non-collective recovery enabled by additional communication. We demonstrated that the overheads (space

and time) of the fault tolerance mechanism are low, the costs incurred due to failures are small, and the

overheads decrease with per-process work at scale. Figure 12 shows the factor of reduction in the number

of tasks to be re-executed for the SCF and TCE benchmarks for various points in execution at which all

threads in a compute node fail. We observe that selective recovery that exploits the characteristics of the

resilient data store and task-parallel scheduler can significantly improve the penalty of a fault as compared

to recovery based on collective rollback.

Related work Checkpoint and collective restart has been extensively studied [45-47]. While broadly

applicable and easy to integrate into existing applications, these approaches typically incur the cost of

coordination or message logging, checkpoint storage costs, and lost work from rollback. Alternatives such as

shadow processes [48] overcome these costs while requiring redundant processes and communication.

Approaches to reduce these overheads employ techniques that target specific layers of the software stack.

Fault tolerant MPI [49, 50] focuses on the development of a resilient communication library. Algorithm-

based fault tolerance approaches target the development of fault tolerant parallel computational libraries

that exploit the algorithmic properties of individual kernels, such as matrix-matrix multiplication and one­

sided factorization [51,52]. Our approach to selective fault recovery exploits the properties of a computational

20

idiom.

Cilk-NOW [53] tolerates faults in recursive applications organized as return transactions with updates

passed as function return values. The recovery mechanism re-executes entire execution sub-trees of a failed

task. Our approach recovers individual tasks while supporting direct updates to data in global address

space.

5 Conclusions
Our work investigates the system software stack for efficient exascale execution. On the OS front, we

implemented new capabilities in novel research Operating Systems. Anticipating the need for OS involvement

in the exascale environment we developed optimizations to make a general purpose OS competitive with

library or lightweight kernel performance. NIX aimed at getting the kernel more, rather than less, involved

in the computation’s I/O activities. NIX explicitly excluded OS bypass as a means of moving network data

and achieved performance competitive with OS bypass for critical operations. We believe that to achieve

power and thermal management goals, the kernel must be included, not bypassed.

Core specialization allows an operating system to assign roles to cores, the most common use being par­

titioning cores to application only or timeshared. We presented two implementations of core specialization.

In each case, core specialization improved application performance. In NIX, cores could have timesharing,

application, or kernel roles. An application core ran as a NIX process. In contrast, FusedOS ran Linux on a

couple of cores to manage at the CPU socket level and supported a traditional HPC OS on the other cores,

allowing CNK programs to run unchanged under FusedOS.

Both systems supported Linux system calls because, in today’s current HPC environment, some level of

support of the Linux system call ABI is required. NIX supported a unique model in which some level of

Linux system call support is done in the kernel, and some in a user-mode handler. FusedOS continued the

Blue Gene tradition of function shipping system calls to a Linux kernel. Of the two, FusedOS provides more

complete support, at cost of having to run a full Linux kernel on each node. The ideas prototyped by these

research OSs are being incorporated into next generation OS projects such as UC Berkeley Akaros [54] and

University of Tokyo IHK [55].

In the runtime area, we studied the use of four distinct frameworks. Building on the substrate of a reliable

data store, we prototyped and evaluated a task management library using enterprise key-value store; an

object-oriented framework for distributed HPC task and fault management services; a declarative tuple space

abstraction adapted to the HPC regime, and a highly scalable and fault tolerant task library used by parallel

phases of traditional iterative computation. Each library provides a different programming abstraction, yet

they all follow common themes of reliable data store, dynamic load balancing, and fault oblivious execution.

While there are now a multitude of task management libraries available in the HPC community, our approach

integrated fault oblivious execution into the library from the outset. We quantitatively evaluated alternative

fault management strategies and implementations, and identified performance overheads and scaling limits.

The TASCEL library scaled to hundreds of thousands of cores and to two very different supercomputing

architectures.

Much of our software is available as open source, and concepts explored and evaluated in FOX are being

pursued in on-going advanced OS/Runtime projects such as Argo [56] and Akaros [54].

References
[1] “The opportunities and challenges of exascale computing.” Retrieved 2013/01/10.

21

[2] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and P. Winterbottom, “Plan

9 from Bell Labs,” Computing Systems, vol. 8, pp. 221-254, Summer 1995.

[3] E. Van Hensbergen, R. Minnich, J. Mckie, and C. Forsyth, “Hare: Final report,” RC25241, IBM Corp,

2011.

[4] F. J. Ballesteros, N. Evans, C. Forsyth, G. Guardiola, J. McKie, R. Minnich, and E. Soriano-Salvador,

“Nix: A case for a manycore system for cloud computing.,” Bell Labs Technical Journal, vol. 17, no. 2,

pp. 41-54, 2012.

[5] P. Balaji, A. Chan, W. Gropp, R. Thakur, and E. Lusk, “The importance of non-data-communication

overheads in mpi,” International Journal of High Performance Computing Applications, vol. 24, no. 1,

pp. 5-15, 2010.

[6] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, Active messages: a mechanism for

integrated communication and computation, vol. 20. ACM, 1992.

[7] C. McCurdy, A. L. Cox, and J. Vetter, “Investigating the tlb behavior of high-end scientific applications

on commodity microprocessors,” in Performance Analysis of Systems and software, 2008. ISPASS 2008.

IEEE International Symposium on, pp. 95-104, IEEE, 2008.

[8] M. Sottile and R. Minnich, “Analysis of microbenchmarks for performance tuning of clusters,” in Cluster­

Computing, 2004 IEEE International Conference on, pp. 371-377, IEEE, 2004.

[9] “Asc sequoia benchmark codes.” Retrieved 2013/12/30.

[10] R. Russell, “Lguest: implementing the little Linux hypervisor,” in Linux Symposium 2007, June 2007.

[11] Y. Park, E. V. Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg, K. D. Ryu, and R. W. Wisniewski,

“FusedOS: Fusing LWK performance with FWK functionality in a heterogeneous environment,” Com­

puter Architecture and High Performance Computing, Symposium on, vol. 0, pp. 211-218, 2012.

[12] D. S. Greenberg, R. Brightwell, L. A. Fisk, A. McCabe, and R. Riesen, “A system software architecture

for high end computing,” in Supercomputing, ACM/IEEE 1997 Conference, pp. 53-53, IEEE, 1997.

[13] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke, S. Jaconette,

M. Levenhagen, et al., “Palacios and kitten: New high performance operating systems for scalable

virtualized and native supercomputing,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE

International Symposium on, pp. 1-12, IEEE, 2010.

[14] A. Schupbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris, and R. Isaacs, “Embracing

diversity in the barrelfish manycore operating system,” in Proceedings of the Workshop on Managed

Many-Core Systems, p. 27, 2008.

[15] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and J. Kubiatowicz, “Tessellation: Space-time

partitioning in a manycore client os,” HotPar09, Berkeley, CA, vol. 3, p. 2009, 2009.

[16] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Leveraging the cray linux environment core

specialization feature to realize mpi asynchronous progress on cray xe systems,” Proceedings of Cray

User Group, 2012.

22

[17] J. Lange, “Partitioned multistack evironments for exascale systems,”

[18] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan,

“Automatic data movement and computation mapping for multi-level parallel architectures with ex­

plicitly managed memories,” in PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and practice of parallel programming, (New York, NY, USA), ACM, 2008.

[19] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha, “Scalable work stealing,”

in SC ’09: Proceedings of the 2009 ACM/IEEE conference on Supercomputing, (Portland, Oregon),

November 2009.

[20] G. Cong, S. B. Kodali, S. Krishnamoorthy, D. Lea, V. A. Saraswat, and T. Wen, “Solving large, irregular

graph problems using adaptive work-stealing,” in ICPP, pp. 536-545, 2008.

[21] “Memcached.” Retrieved 2013/12/13.

[22] “Couchbase server.” Retrieved 2013/12/13.

[23] “Not only sql (nosql) databases.” Retrieved 2013/12/13.

[24] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The p accrual failure detector,” in Reliable

Distributed Systems, 2004. Proceedings of the 23rd IEEE International Symposium on, pp. 66-78, IEEE,

2004.

[25] N. J. Carriero, D. Gelernter, T. G. Mattson, and A. H. Sherman, “The Linda Alternative to Message­

Passing Systems,” Parallel Comput., vol. 20, pp. 633-655, 1994.

[26] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar, “The Concurrent Collections Programming Model,”

Tech. Rep. TR 10 12, Department of Computer Science, Rice University, 2010.

[27] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and N. Wichmann, “A Preliminary Evaluation

of the Hardware Acceleration of the Cray Gemini Interconnect for PGAS Languages and Comparison

with MPI,” in PMBS ’11: 2nd International Workshop on Performance Modeling, Benchmarking and

Simulation of High Performance Computing Systems, 2011.

[28] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Work stealing and persistence-based load balancers

for iterative overdecomposed applications,” in Proceedings of the 21st international symposium on High-

Performance Parallel and Distributed Computing, pp. 137-148, ACM, 2012.

[29] J. Daily, S. Krishnamoorthy, and A. Kalyanaraman, “Towards scalable optimal sequence homology de­

tection,” in Workshop on Parallel Algorithms and Software for Analysis of Massive Graphs (ParGraph),

pp. 1-8, IEEE, 2012.

[30] L. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object Oriented System Based on

C++,” in OOPSLA’93, pp. 91-108, September 1993.

[31] O. S. Lawlor and L. V. Kale, “Supporting dynamic parallel object arrays,” Concurrency and Computa­

tion: Practice and Experience, vol. 15, pp. 371-393, 2003.

23

[32] G. Zheng, A. Bhatele, E. Meneses, and L. V. Kale, “Periodic Hierarchical Load Balancing for Large

Supercomputers,” IJHPCA, 2010.

[33] H. Menon and L. V. Kale, “A distributed dynamic load balancer for iterative applications,” in SC, p. 15,

2013.

[34] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An

Efficient Multithreaded Runtime System,” in PPoPP, pp. 207-216, July 1995.

[35] R. D. Blumofe and P. A. Lisiecki, “Adaptive and reliable parallel computing on networks of worksta­

tions,” in USENIX, pp. 10-10, 1997.

[36] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda, “High performance remote memory access

communication: The ARMCI approach,” Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 233­

253, 2006.

[37] V. A. Saraswat, P. Kambadur, S. B. Kodali, D. Grove, and S. Krishnamoorthy, “Lifeline-based global

load balancing,” in PPoPP, pp. 201-212, 2011.

[38] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Steal tree: low-overhead tracing of work stealing

schedulers,” in ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), pp. 507-518, 2013.

[39] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar,

“X10: an object-oriented approach to non-uniform cluster computing,” in OOPSLA ’05: Proceedings of

the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, (New York, NY, USA), pp. 519-538, ACM, 2005.

[40] R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and E. Yahav, “Scalable and precise dynamic datarace

detection for structured parallelism,” in ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), pp. 531-542, 2012.

[41] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson, “On-the-fly maintenance of series-

parallel relationships in fork-join multithreaded programs,” in Proceedings of the sixteenth annual ACM

symposium on Parallelism in algorithms and architectures, SPAA ’04, pp. 133-144, 2004.

[42] T. Karunaratna, Nondeterminator-3: a provably good data-race detector that runs in parallel. PhD

thesis, Massachusetts Institute of Technology, 2005.

[43] K. Agrawal, J. T. Fineman, and J. Sukha, “Nested parallelism in transactional memory,” in Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, PPoPP

’08, pp. 163-174, 2008.

[44] W. Ma and S. Krishnamoorthy, “Data-driven fault tolerance for work stealing computations,” in Pro­

ceedings of the 26th ACM international conference on Supercomputing, pp. 79-90, ACM, 2012.

[45] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of rollback-recovery protocols in

message-passing systems,” ACM Comput. Surv., vol. 34, no. 3, pp. 375-408, 2002.

24

[46] O. Laadan and J. Nieh, “Transparent checkpoint-restart of multiple processes on commodity operating

systems,” in USENIX Annual Technical Conference, 2007.

[47] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart (BLCR) for Linux clusters,” in

Journal of Physics: Conf. Series (SciDAC), vol. 46, pp. 494-499, June 2006.

[48] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen, P. G.

Bridges, and D. Arnold, “Evaluating the viability of process replication reliability for exascale systems,”

in Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage

and Analysis, SC ’11, pp. 44:1-44:12, 2011.

[49] G. Fagg and J. Dongarra, “FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applications in a Dy­

namic World,” in Recent Advances in Parallel Virtual Machine and Message Passing Interface, vol. 1908,

2000.

[50] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault, P. Lemarinier,

O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov, “MPICH-V: Toward a Scalable Fault Toler­

ant MPI for Volatile Nodes,” in Proceedings of the 2002 ACM/IEEE conference on Supercomputing,

Supercomputing ’02, pp. 1-18, 2002.

[51] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for matrix operations,” Computers,

IEEE Transactions on, vol. C-33, pp. 518 -528, June 1984.

[52] S.-J. Wang and N. Jha, “Algorithm-based fault tolerance for FFT networks,” Computers, IEEE Trans­

actions on, vol. 43, pp. 849 -854, Jul 1994.

[53] R. D. Blumofe and P. A. Lisiecki, “Adaptive and reliable parallel computing on networks of worksta­

tions,” in ATEC ’97: Proceedings of the annual conference on USENIX Annual Technical Conference,

(Berkeley, CA, USA), pp. 10-10, USENIX Association, 1997.

[54] “Akaros.” Retrieved 2014/01/20.

[55] “Interface for heterogeneous kernel.” Retrieved 2014/01/20.

[56] “Argo exascale os/r.” Retrieved 2014/01/20.

25

