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1 Sum m ary

In this project, we carried out many studies on adaptive and parallel multi­
level methods for numerical modeling for various applications, including Magne- 
tohydrodynamics (MHD) and complex fluids. We have made significant efforts 
and advances in adaptive multilevel methods of the multiphysics problems.
1.1 M ultigrid  M eth ods Discretization of mathematical models described 
by partial differential equations (PDEs) often leads to linear algebraic equa­
tions with sparse matrices of huge dimension. How to solve such algebraic 
linear systems efficiently is a fundamental question in scientific and engineer­
ing computing and numerical PDEs. Multigrid (MG) methods are among the 
most efficient methods for accomplishing such task, especially in applications 
governed by elliptic PDEs.

As part of this project we have developed multilevel/multigrid solvers for 
scalar PDEs as well as coupled systems of PDEs discretized on unstructured 
grids. We devised a novel multilevel algorithm for Poisson equation discretized 
on unstructured shape-regular grids using the auxiliary space preconditioning 
framework [31]. The auxiliary grids and spaces are constructed with the help of 
a cluster tree. In this work we showed tha t the multilevel method have nearly- 
optimal convergence rate and the computational work is of order O (N lo g N )  for 
a problem with N  unknowns on a general unstructured grid. We also used such a 
technique to  develop a parallel auxiliary grid algebraic multigrid (AMG) method 
to  leverage the power of graphics processing units (GPUs). Numerical experi­
ments achieved an average relative speedup of over 15 on quasi-uniform grids 
and 6 on shape-regular grids when compared to the state of the art AMG im­
plementation on CPUs. When compared with AMG implementations in CUSP 
(a GPU software program developed by NVIDIA), our new algorithm achieved 
an average speedup of over 4 on quasi-uniform grids and 2 on shape-regular 
grids. A purely AMG method has also been developed for isotropic graph Lapla- 
cian problems on GPUs based on an unsmoothed aggregation framework [22]. 
In [13], we developed a hybrid preconditioning framework tha t combines an iter­
ative method and a preconditioner in a complementary fashion. We proved that 
the combined preconditioner is positive definite and derived sharp estimates on 
the condition number of the preconditioned system. Numerical results from 
reservoir simulations showed the efficiency of the solver based on this hybrid 
preconditioner. In [5], local MG method on adaptive finite element grids ob­
tained via the bisection refinement was developed. We have theoretically shown 
its robustness as a preconditioner in Krylov iterative method for the symmetric 
elliptic problems with large jum p coefficients in both two and three dimensions. 
In [16], we developed an efficient multigrid method for finite element discretiza­
tions of the Stokes equations on both structured grids and unstructured grids 
based on a novel distributive Gauss-Seidel smoother and least squares commu­
tator. Our method was shown to be very efficient and outperforms the popular 
block preconditioned Krylov subspace methods. The multigrid solver we de­
veloped for the Stokes equations was the fastest when compared with many of 
the existing Stokes solvers. Such MG solver is successfully generalized to a first
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order unwinding MAC discretization Oseen problem in [16]. Defect-correction 
techniques are applied to further improve the performance. Numerical results 
are presented to demonstrate the proposed solver is robust to the Reynolds 
number.

Regarding the theoretical analysis of multilevel solvers, we studied the con­
vergence of two-grid and multigrid methods for linear systems discretized by the 
conforming linear finite element method for the second-order elliptic equations 
with anisotropic diffusion [18]. W ith a specially designed block smoother, we 
showed tha t both aligned and non-aligned grids have uniform convergence with 
respect to the anisotropy ratio and the mesh size in the energy norm. In [12], 
we provided the first comprehensive convergence analysis of a nonlinear Alge­
braic MultiLevel Iteration (AMLI)-cycle method for symmetric positive definite 
problems and showed that the nonlinear AMLI-cycle MG is at least as good and 
usually better than the n-fold V-cycle MG method in terms of convergence rate 
and computational cost. In [27], we develop and analyze multilevel methods for 
the so-called alpha-harmonic extension to localize fractional powers of elliptic 
operators. We present a multilevel method with line smoothers and obtain a 
nearly uniform convergence result on anisotropic meshes.
1.2 A d ap tive F in ite  E lem ent M eth ods Adaptive methods are now widely 
used in scientific and engineering computation to optimize the relation between 
accuracy and computational labor (degrees of freedoms). Understanding the 
convergence, as well as the rate of convergence, of adaptive finite element meth­
ods (AFEM) has been an active research topic in recent years. The key behind 
this technique is to design a good a posteriori error estimator tha t provides a 
guidance on how and where grids should be refined.

In [21], we revealed tha t the equidistribution principle can be severely vio­
lated but asymptoticly optimal error estimates can still be maintained, which 
led to the following practical statement: linear adaptive finite element approxi­
mation of second order elliptic equations in two dimensions will achieve optimal 
rate of convergence. In [8], a cell conservative flux recovery technique was 
developed for vertex-centered finite volume methods of second order elliptic 
equations. The recovery-based and residual-based a posteriori error estimators 
obtained in this article are apparently the first results on a posteriori error es­
tim ators for high order finite volume methods. The recovered flux was found in 
the broken H(div) elements. In [7], a residual type a posteriori error estimator 
was presented and analyzed for Weak Galerkin (WG) finite element methods 
for second order elliptic problems. The error estimator was proved to  be effi­
cient and reliable through estimates from below and from above, in terms of an 
Hl-equivalent norm for the exact error. Since WG solution is related to mixed 
finite element approximation, our a posteriori error estimates are combinations 
of techniques used for continuous elements and ones used for H(div)-conforming 
elements. In [17], adaptive mesh refinement and the Borgers algorithm were 
combined to generate a body-fitted mesh which can resolve the interface with 
fine geometric details. Standard linear finite element method based on such 
body-fitted meshes was applied to the elliptic interface problem and proven to
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be superclose to the linear interpolant of the exact solution. An efficient solver 
for solving the resulting linear algebraic systems was also developed and shown 
be robust with respect to both the problem size and the jum p of the diffusion 
coefficients.

Comparing with the uniform refinement of the computational grid, adaptive 
finite element methods through mesh adaptation are more preferred to locally 
increase mesh densities in the regions of interest, thus saving the computer 
resources. The a posteriori error estimator we have developed for several equa­
tions will expand the application range of AFEM. The adaptive mesh generator 
and the corresponding finite element method for the interface problem will have 
impact on numerical simulation of free surface problem in fluid dynamics and 
material science, fluid-structure interaction, multiphase material and so on.
1.3 A pplications We have also made significant advance in the structure- 
preserving discretizations for PDEs, and the efficient solution of the resulting 
systems. We developed an adaptive Eulerian-Lagrangian method in [11] where 
a new a posteriori error estimate for time dependent problem was proposed and 
we derived the an a posteriori error bound. In [36], we designed and analyzed 
some structure-preserving finite element schemes for the MHD system. The 
main feature of the method is tha t it naturally preserves the im portant Gauss’s 
law, namely V • B =  0. For this new finite element method, an energy stability 
estimate can be naturally established in an analogous way as on the continuous 
level. Furthermore, well-posedness was rigorously established for both the Pi­
card and Newton linearization of the fully nonlinear systems by using Brezzi’s 
theory for both the continuous and discrete cases. This well-posedness naturally 
led to robust preconditioners for the linearized systems. In [17,20], we devel­
oped two-grid algorithms to the Maxwell’s eigenvalue problem and Cahn-Hillard 
equation, respectively. We also presented a detailed and rigorous proof for the 
two-grid algorithm for solving Maxwell’s eigenvalue problem. The analysis was 
technical and highly non-trivial. The two-grid method we have developed for 
solving the Maxwell’s eigenvalue problem will result in significant savings in 
computational time and resources.

Stokes equations play a central role in the Computational Fluid Dynam­
ics (CFD). In [9], we generalized the classical marker-and-Cell (MAC) scheme 
on the rectangular grids to the triangular grids and retains all the desirable 
properties of the MAC scheme: exact divergence-free, solver-friendly, and local 
conservation of physical quantities. The triangular MAC scheme we have de­
veloped and the multigrid solver is expect to have a large impact to the CFD 
community.

In [38], the minimal speeds (c*) of the Kolmogorov-Petrovsky-Piskunov 
(KPP) fronts at small diffusion (e <  1) in a class of time-periodic cellular flows 
with chaotic streamlines is investigated. The variational principal of c* reduces 
the computation to tha t of a principal eigenvalue problem on a periodic domain 
of a linear advection-diffusion operator with space-time periodic coefficients and 
small diffusion. To solve the advection dominated time-dependent eigenvalue 
problem efficiently over large time, a combination of finite element and spectral
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methods, as well as the associated fast solvers, are utilized to accelerate com­
putation. In contrast to the scaling c* = 0 (e l/ A) in steady cellular flows, a new 
relation c* = 0 (1 )  as e -C 1 is revealed in the time-periodic cellular flows due to 
the presence of chaotic streamlines. Residual propagation speed emerges from 
the Lagrangian chaos which is quantified as a sub-diffusion process.

2 R esearch R esu lts

2.1 P en n  S ta te  Team  The team  led by the PI at Penn State mainly fo­
cuses on adaptive method, fast and parallel multilevel methods for numerical 
models including magnetohydrodynamics and complex fluids. The results are 
summarized as follows:

1. In [11], we considered the adaptive Eulerian-Lagrangian method (ELM) 
for linear convection-diffusion problems and derived a new a posteriori 
error estimator. Unlike the classical a posteriori error estimation, which 
might overestimate the temporal error, we estimate the temporal error 
along with the characteristics and derive a new a posteriori error bound 
for ELM semi-discretization. W ith the help of this proposed error bound, 
we are able to show the optimal convergence rate of ELM for solutions 
with minimal regularity. Furthermore, by combining this error bound 
with a standard residual-type estimator for the spatial error, we obtained 
a posteriori error estimators for a fully discrete scheme. Numerical tests 
showed tha t the new temporal error estimator gives a better estimate of 
the temporal error, and also demonstrates the efficiency and robustness of 
our adaptive algorithm.

2. In [13], we developed a simple algorithmic framework to solve large-scale 
linear systems arising from various applications. The framework assumes 
tha t two components are present: (1) a norm-convergent iterative method 
and (2) a preconditioner, which is not necessarily efficient as a stand alone 
solver. The resulting preconditioner, which we refer to as a combined (hy­
brid) preconditioner, is more robust and efficient than the iterative method 
and preconditioner when used in Krylov subspace methods. We proved 
tha t the combined preconditioner is positive definite and showed estimates 
on the condition number of the preconditioned system. As an example, 
we combined an algebraic multigrid method and an incomplete factoriza­
tion preconditioner to test the proposed framework on multiphase flow 
problems in petroleum reservoir simulations. The numerical experiments 
demonstrated noticeable speed up when we compare the combined method 
with the standalone algebraic multigrid method or with the incomplete 
factorization preconditioner.

3. In [18], we derived convergence analysis for two-grid and multigrid meth­
ods for linear systems arising from conforming linear finite element dis­
cretization of the second-order elliptic equations with anisotropic diffu­
sion. The multigrid algorithm with a line smoother is known to behave 
well when the discretization grid is aligned with the anisotropic direction;
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however, this is not the case with a non-aligned grid. The analysis in 
this paper was mainly focused on two-level algorithms. For aligned grids, 
a lower bound was given for the point-wise smoother, and this bound 
showed a deterioration in the convergence rate. For maximally non-aligned 
grids (with no edges in the triangulation parallel to the direction of the 
anisotropy), though, the point-wise smoother results in a robust conver­
gence. W ith a specially designed block smoother, we showed th a t for both 
aligned and non-aligned grids the convergence is uniform with respect to 
the anisotropy ratio and the mesh size.

4. In [12], we provided a comprehensive convergence analysis of a nonlin­
ear AMLI-cycle multigrid method for symmetric positive definite prob­
lems. Based on classical assumptions for approximation and smoothing 
properties, we showed tha t the nonlinear AMLI-cycle MG is uniformly 
convergent. In addition, we provided a comparison analysis in terms of 
convergence bounds between the nonlinear AMLI-cycle and the n-fold V- 
cycle MG method and showed tha t the nonlinear AMLI-cycle is always at 
least as good as and usually better than the n-fold V-cycle MG method 
in terms of the bound of the convergence rate as well as numerically.

5. In [15], we developed a new parallel auxiliary grid algebraic multigrid 
(AMG) method to leverage the power of graphic processing units (GPUs). 
In the construction of the hierarchical coarse grid, we used a simple and 
fixed coarsening procedure based on a region quadtree generated from 
an auxiliary grid. This allows us to explicitly control the sparsity pat­
terns and operator complexities. This feature provides (nearly) optimal 
load balancing and predictable communication patterns, which makes our 
new algorithm suitable for parallel computing, especially on GPU clusters. 
We also designed a parallel smoother using special coloring based on the 
quadtree to accelerate the convergence rate and improve the parallel per­
formance of this solver. Based on the CUBA toolkit, we implemented our 
new parallel auxiliary grid AMG method on GPU, and the numerical re­
sults of this implementation demonstrate the efficiency of our new method. 
The results showed an average speedup of over 4 on quasi-uniform grids 
and 2 on shape-regular grids when compared to the AMG implementation 
in CUSP (a GPU software program developed by NVIDIA).

6. In [2], we constructed Discontinuous Galerkin approximations of the Stokes 
problem where the velocity field is H(div)-conforming, which implies that 
the velocity approximation is divergence-free. We used this property to 
design a simple and effective preconditioner for the final linear system 
based on the auxiliary space (or fictitious space) framework. The pro­
posed preconditioner was the solution of several elliptic problems: a vector 
Laplacian discretized with DG-H(div)-conforming methods, and another 
elliptic problem discretized with an Hl-conforming method. The solution 
of such systems can then be effectively computed with a classical method,
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for instance, the multigrid method. Numerical results were presented to 
support the theoretical results.

7. In [31], we developed a multigrid method on unstructured shape-regular 
grids. For a general shape-regular unstructured grid with N  elements, we 
presented a construction of an auxiliary coarse grid hierarchy on which a 
geometric multigrid method can be applied together with a smoothing on 
the original grid by using the auxiliary space preconditioning technique. 
Such a construction is realized by a cluster tree which can be obtained in 
0 ( N  log N )  operations. This tree structure in turn  is used for the defi­
nition of the grid hierarchy from coarse to fine. For the constructed grid 
hierarchy we prove tha t the convergence rate of the multigrid precondi­
tioned CG for an elliptic PD F is 1 — 0 (  1/log N ). Numerical experiments 
confirmed the theoretical bounds and show tha t the total complexity is in 
0 ( N  log N ).

8. In [37], we discussed the linear element methods for interface boundary 
value problems of the diffusion equation and the incompressible Stokes 
equation. The schemes were proved to be of optimal accuracy, provided 
the underlying grid is interface-fitted and maximal-angle-bounded. We 
also presented an optimal multigrid method solver of the generated linear 
system.

9. In [26], we developed a unified framework using energetic variational ap­
proaches for generalized complex fluids, including viscoelastic materials, 
free interface motion in mixtures of fluids and magnetohydrodynamics. 
The paradigm revealed the competition and couplings between different 
parts of the energy and dissipation functionals. It also focused on the 
coupling between the kinematic transport of the internal variables and 
the induced stress in the momentum equations.

10. In [14] we derived a three-term  recurrence relation for computing the poly­
nomial of best approximation in the uniform norm to l / i  on a finite in­
terval with positive endpoints. In terms of applications, we considered 
two-level methods for scalar elliptic partial differential equations (PDE), 
where the relaxation on the fine grid uses the aforementioned polynomial 
of best approximation. Based on a new smoothing property of the matrix 
polynomial, combined with a proper choice of the coarse space, allowed us 
to show tha t the convergence rate of the resulting two-level method was 
uniform with respect to the mesh parameters, the coarsening ratio, and 
the variations in the PDE coefficient.

11. In [1], we considered the approximation of incoming solutions to Maxwell’s 
equations with dissipative boundary conditions whose energy decays expo­
nentially with time. Such solutions are called asymptotically disappearing 
(ADS), and they play an im portant role in inverse back-scattering prob­
lems. For the exterior of a sphere, such solutions have been constructed 
analytically in earlier works by specifying appropriate initial conditions.
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However, for more general domains of practical interest (such as Lips- 
chitz polyhedra), the existence of such solutions is not evident. We con­
sidered a finite-element approximation of Maxwell’s equations in the ex­
terior of a polyhedron, whose boundary approximates the sphere. We 
used structure preserving discretization with Nedelec-Raviart-Thomas 
elements were used with a Crank-Nicholson scheme to approximate the 
electric and magnetic fields. We show numerically tha t the finite-element 
approximations of the ADS also decay exponentially with time.

12. In [22], we designed and implemented a parallel algebraic multigrid method 
for isotropic graph Laplacian problems on multicore Graphical Processing 
Units (GPUs). The proposed AMG method is based on the unsmoothed 
aggregation framework. The coarse space construction is based on a par­
allel maximal independent set algorithm in forming aggregates and the re­
sulting coarse-level hierarchy is then used in a K-cycle iteration solve phase 
with an f 1-Jacobi smoother. Numerical tests of a parallel implementation 
of the method for graphics processors were presented to demonstrate its 
effectiveness.

13. In [23], we introduced the concept of a visible point of a convex set relative 
to a given point and we prove a number of basic properties of such visible 
point sets. In particular, we showed tha t this concept is useful in the 
study of best approximation from polyhedral sets, and it also has potential 
applications in robotics.

14. In [24], we constructed a two-grid method for mimetic finite difference 
approximation of scalar elliptic partial differential equation. We proved 
the uniform convergence of the method using graph analogues of the 
Poincare/Cheeger inequalities. The method has application in solving sys­
tems coming from discretizations based on partitioning of the domain with 
arbitrary polygons/polyhedra such as Virtual Element Methods (VEM) or 
mimetic Finite Difference methods.

15. In [36], we designed and analyzed structure-preserving finite element schemes 
for the MHD system. The main feature of the method is tha t it naturally 
preserves the im portant Gauss law, namely V • B =  0. In contrast to 
most existing approaches tha t eliminate the electrical field variable and 
give a direct discretization of the magnetic field, our new approach dis­
cretizes the electric field by Nedelec type edge elements, and the magnetic 
field by Raviart-Thomas type face elements. As a result, the divergence- 
free condition for the magnetic field holds exactly on the discrete level. 
For this new finite element method, an energy stability estimate can be 
naturally established in an analogous way as in the continuous case. Fur­
thermore, well-posedness was rigorously established in the paper for both 
the Picard and Newton linearization of the fully nonlinear systems by us­
ing the Brezzi theory for both the continuous and discrete cases. This 
well-posedness naturally led to robust (and optimal) preconditioners for 
the linearized systems.
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16. In [37], we discussed linear finite element methods for interface boundary 
value problems of the diffusion equation and the incompressible Stokes 
equation. The schemes were proved to be of optimal accuracy, provided 
the underlying grid is interface-fitted and the maximal-angle of mesh is 
bounded.

17. In [29], we developed a novel domain decomposition method and a scalable 
implementation of the method using the semistructured geometric multi­
grid solver, PFMG, available in Hypre for solving the time dependent and 
nonlinear magnetic Thomas-Fermi model used in studying surface temper­
ature inhomogeneities of neutron stars. The method we developed may 
be seen as a prototype for the general class of problems involving non­
linear charge screening of periodic, quasi-low-dimensionality structures, 
e.g. liquid crystals. Physically, our findings include low density elastic 
instabilities for both bcc and fee lattices, reminiscent of the situation in 
some light actinides, and phonon thermal conductivity three orders of 
magnitude larger than tha t derived from the plasma model. The former 
result suggested there is a symmetry-lowering transition to a tetragonal 
or orthorhombic lattice. The latter indicated transport anisotropy may 
be greatly reduced within 10 meters of the surface, giving the effect of a 
” heat-spreader cladding” which may significantly increase the size of polar 
hot spots and alter pulse profiles.

2.2 U C SD  team  The team at UCSD mainly works on the hp adaptive 
method, theory for finite element exterior calculus, and adaptivity for nonlinear 
problems. The results are summarized as follows:

1. In [3], we show tha t interpolation error and best approximation error or 
finite element error behave in a similar fashion. The three estimates taken 
together show tha t interpolation error is both efficient and reliable as 
an a posteriori error estimate, provided tha t interpolation error can be 
estimated from the finite element approximation Uh. Procedures for doing 
this were developed by Bank, Xu, and Zheng in [40]. This has immediate 
application to adaptive finite element methods.

2. In [25], new a priori and a posteriori error estimates and discrete pointwise 
estimates for critical and subcritical nonlinear problems with no angle con­
ditions on the underlying mesh were established. In [34,35] we developed 
an adaptive finite element method (AFEM) convergence theory for a class 
of goal-oriented adaptive algorithms (GOAFEM). Following Mommer and 
Stevenson (2009) for symmetric problems, in [34] we establish GOAFEM 
contraction for nonsymmetric problems. Our approach uses newer con­
traction frameworks. In [35], we prove convergence of GOAFEM for semi- 
linear problems. We first establish quasi-error contraction of primal prob­
lem, then establish contraction of combined primal-dual quasi-error, giving 
convergence with respect to the quantity of interest. Sequence of numer­
ical experiments presented in both papers; behavior of implementations 
follow predictions of the theory.
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3. We study finite element exterior calculus (FEEC); our interest has been to 
develop adaptive FEEC methods with a corresponding convergence theory. 
AFEM convergence theory for mixed methods (the target of FEEC) is 
not complete; the main difficulty is lack of error (quasi-)orthogonality. In 
earlier work of Chen, Holst, and Xu (2006), we established convergence 
and optimality of AFEM for mixed Poisson on simply connected domains 
in two dimensions. Our argument was based on a quasi-orthogonality 
result tha t exploits error orthogonal to divergence free subspace, with 
non-divergence-free part bounded by data oscillation via discrete stability. 
In another related development, Demlow and Hirani (2012) developed an 
FEEC a posteriori indicator with provably good properties. In [32,33], we 
use the FEEC framework to develop AFEM convergence and complexity 
results for Hodge-Laplace problem (k=n) on domains of arbitrary topology 
and spatial dimension. Our supporting results hold for general B-Hodge- 
Laplace problem (k ^  n).

4. In [30], the theory of finite element exterior calculus was extended to non­
linear problems and evolution problems and to problems on hypersurfaces 
arising in geometric analysis and general relativity.

2.3 U C I team  The focus of the UCI group is the Laplacian preconditioner 
, centrodial Voronoi tessellation, and design of solver-friendly discretizations for 
Stokes and Navier-Stokes equations based on the finite element exterior calculus 
framework. The results are summarized as follows:

1. In [10], a new and effective graph Laplacian preconditioner and a two-grid 
method were proposed to speed up the computation of Centrodial Voronoi 
Tessellation (CVT), i.e., Voronoi tessellations in which the generators are 
the centroids for each Voronoi region. Numerical tests show tha t the 
preconditioned optimization method converges fast and has nearly linear 
complexity. CVTs have many applications to computer graphics, image 
processing, data compression, mesh generation, and optimal quantization. 
Consequently, our fast methods will be useful in these areas.

2. In [16], a distributive Gauss-Seidel relaxation based on the least squares 
commutator is devised for the saddle-point systems arising from the dis­
cretized Stokes equations. Based on that, an efficient multigrid method 
is developed for finite element discretizations of the Stokes equations on 
both structured grids and unstructured grids. On rectangular grids, an 
auxiliary space multigrid method using one multigrid cycle for the Marker 
and Cell scheme as auxiliary space correction and least squares commu­
tato r distributive Gauss-Seidel relaxation as a smoother is shown to be 
very efficient and outperforms the popular block preconditioned Krylov 
subspace methods.

3. In [6], an efficient multigrid solvers for the Oseen problems discretized by 
Marker and Cell (MAC) scheme on staggered grid is developed in this pa­
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per. Least squares commutator distributive Gauss-Seidel (LSC-DGS) re­
laxation is generalized and developed for Oseen problems and overweight­
ing and defect-correction techniques are applied to further improve the 
performance. Some numerical results are presented to demonstrate the 
efficiency and robustness of the proposed solver.

4. In [17], adaptive mesh refinement and the Borgers algorithm were com­
bined to generate a body-fitted mesh tha t can resolve the interface with 
fine geometric details. The standard linear finite element method based 
on such body-fitted meshes was applied to the elliptic interface problem 
and proven to  be superclose to the linear interpolant of the exact solution. 
An efficient solver for solving the resulting linear algebraic systems was 
also developed and shown to be robust with respect to  both the problem 
size and the jum p of the diffusion coefficients.

5. In [5], a local multigrid methods on adaptive grids was used as a pre­
conditioner and shown to be robust for symmetric elliptic problems with 
possibly large jum p coefficients in both two and three dimensions.

6. In [19,20], we applied two-grid algorithms to  the Maxwell eigenvalue prob­
lem and Cahn-Hillard equation, respectively. We also presented a detailed 
and rigorous proof for the two-grid algorithm for solving Maxwell eigen­
value problem. The analysis was technical and highly non-trivial.

7. In [21], we revealed tha t the equidistribution principle can be severely vi­
olated but asymptoticly optimal error estimates can still be maintained 
and we are led to conclude the following practical statement: linear adap­
tive finite element approximation of second order elliptic equations in two 
dimensions will achieve optimal rate of convergence.

8. In [8], a cell conservative flux recovery technique was developed for vertex- 
centered finite volume methods of second order elliptic equations. The 
recovery-based and residual-based a posteriori error estimators obtained in 
this article was apparently the first results on a posteriori error estimators 
for high order finite volume methods. The recovered flux was found in the 
broken H (div) elements.

9. In [7], a residual type a posteriori error estimator was presented and an­
alyzed for Weak Galerkin (WG) finite element methods for second order 
elliptic problems. The error estimator was proved to be efficient and re­
liable through two estimates, one from below and the other from above, 
in terms of an Hl-equivalent norm for the exact error. Since WG solution 
was more close to mixed finite element approximation, our a posteriori er­
ror estimates was a combination of tha t for conforming element and that 
for H (div) elements.

10. In [4], a Fortin operator is constructed to  verify the discrete inf-sup con­
dition for Pq — P 1 Taylor-Hood element and its variant Pq — (P 1 +  Pq)
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in two dimensions. The constructed Fortin operator for P 2 — P 1 element 
is uniformly bounded in both H 1 and L 2 norm for general shape regular 
triangulations.

11. In [9], we generalize the classical MAC scheme on rectangular grids to  tri­
angular grids and retains all the desirable properties of the MAC scheme: 
exact divergence-free, solver-friendly, and local conservation of physical 
quantities. We address the error estimate of the element pair RTq-P q, 
which is known to be suboptimal, and render the error estimate optimal 
by the symmetry of the grids and by the superconvergence result of La­
grange interpolant. By enlarging RTq such tha t it becomes a modified 
BDM-type element, we develop a new discretization BDM'f’-Po and prove 
tha t the proposed discretization achieves the optimal convergence rate for 
both velocity and pressure on general quasi-uniform unstructured grids, 
and one and half order convergence rate for the vorticity and a recov­
ered pressure. We demonstrate the validity of theories developed here by 
numerical experiments.

12. In [27], we develop and analyze multilevel methods for nonuniformly el­
liptic operators whose ellipticity holds in a weighted Sobolev space with 
an A2-Muckenhoupt weight. Using the so-called Xu-Zikatanov (XZ) iden­
tity, we derive a nearly uniform convergence result, under the assumption 
tha t the underlying mesh is quasi-uniform. We also consider the so-called 
alpha-harmonic extension to localize fractional powers of elliptic opera­
tors. Motivated by the scheme proposed in [R.H. Nochetto, E. Otarola, 
and A.J. Salgado. A PDE approach to fractional diffusion in general do­
mains: a priori error analysis. arXiv: 1302.0698, 2013] we present a multi­
level method with line smoothers and obtain a nearly uniform convergence 
result on anisotropic meshes. Numerical experiments reveal a competitive 
performance of our method.

13. In [28], we derive a computable a posteriori error estimator for the en­
harmonic extension problem, which localizes the fractional powers of el­
liptic operators supplemented with Dirichlet boundary conditions. Our a 
posteriori error estimator relies on the solution of small discrete problems 
on anisotropic cylindrical stars. It exhibits built-in flux equilibration and 
is equivalent to  the energy error up to data oscillation, under suitable as­
sumptions. We design a simple adaptive algorithm and present numerical 
experiments which reveal a competitive performance.

14. In [38], the minimal speeds (c*) of the Kolmogorov-Petrovsky-Piskunov 
(KPP) fronts at small diffusion (e <  1) in a class of time-periodic cellular 
flows with chaotic streamlines is investigated. The variational principal of 
c* reduces the computation to th a t of a principal eigenvalue problem on a 
periodic domain of a linear advection-diffusion operator with space-time 
periodic coefficients and small diffusion. To solve the advection dominated 
time-dependent eigenvalue problem efficiently over large time, a combina­
tion of finite element and spectral methods, as well as the associated fast
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solvers, are utilized to accelerate computation. In contrast to the scaling 
c* = 0 (e l/ A) in steady cellular flows, a new relation c* = 0 (1 ) as e -C 1 is 
revealed in the time-periodic cellular flows due to the presence of chaotic 
streamlines. Residual propagation speed emerges from the Lagrangian 
chaos which is quantified as a sub-diffusion process.

3 A chievem ents o f G oals and O bjectives

The primary goal of this project is to extend the applicability of A F E M  and 
MG methods to various particular problems for which these methods are diffi­
cult to apply, including viscoelastic fluids and magnetohydrodynamics(MHD). 
We plan to pursue an integrated approach, combining mathematical modeling, 
numerical discretization using AFEM , and optimal solvers based on MG meth­
ods. Specially, we aim to:

1. Derive improved mathematical models and numerical discretizations for 
viscoelastic fluids and resistive MHD;

To achieve this goal, we have derived improved mathematical models and 
numerical discretizaitons for viscoelastic fluids and resistive MHD. For 
example, in [26], we developed a unified framework using energetic vari­
ational approaches for generalized complex fluids, including viscoelastic 
materials, free interface motion in mixtures of fluids and magnetohydro- 
dynamics; in [36], we designed and analyzed of some structure-preserving 
finite element schemes for the MHD system. The main feature of the 
method is th a t it naturally preserves the im portant Gauss law, namely 
V • B =  0.

2. Develop (nearly) optimal and practical AFEM  for multiphysics systems;

To achieve this goal, we have developed several new a posteriori error 
estimators and extended the applicability of AFEM to various problems. 
Below is of a list of results achieved in this direction.

• In [11], we considered the adaptive Eulerian-Lagrangian method (ELM) 
for linear convection-diffusion problems and derived a new a posteri­
ori error estimator. We showed the optimal convergence rate of ELM 
for solutions with minimal regularity.

• In [25], new a priori and a posteriori error estimates and discrete 
pointwise estimates for critical and subcritical nonlinear problems 
with no angle conditions on the underlying mesh were established 
and the convergence theory for goal-oriented adaptive methods for 
both linear and nonlinear problems was developed in [34,35].

• In [32, 33], we use the FEEC framework to  develop AFEM conver­
gence and complexity results for Hodge-Laplace problem (k=n) on 
domains of arbitrary topology and spatial dimension. Our supporting 
results hold for general B-Hodge-Laplace problem (k n).
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• In [21], we revealed tha t the equidistribution principle can be severely 
violated but asymptoticly optimal error estimates can still be main­
tained.

• In [8], a cell conservative flux recovery technique was developed for 
vertex-centered finite volume methods of second order elliptic equa­
tions. The recovery-based and residual-based a posteriori error esti­
mators obtained was apparently the first results on a posteriori error 
estimators for high order finite volume methods.

• In [7], a residual type a posteriori error estimator was presented and 
analyzed for Weak Galerkin (WG) finite element methods for second 
order elliptic problems. The error estimator was proved to be efficient 
and reliable through two estimates, one from below and the other 
from above, in terms of an Hl-equivalent norm for the exact error.

• In [28], we derive a computable a posteriori error estimator for the a- 
harmonic extension problem, which localizes the fractional powers of 
elliptic operators supplemented with Dirichlet boundary conditions. 
Our a posteriori error estimator relies on the solution of small discrete 
problems on anisotropic cylindrical stars.

Develop a class of proven optimal MG methods for their solution; To 
achieve this goal, we have developed multilevel solvers for solving dis­
cretized PDEs, especially on unstructured grids.

• In [31], we designed a multilevel method for solving the Poisson equa­
tion, discretized on unstructured shape-regular grids based on the 
auxiliary space preconditioning framework. We showed the over­
all multilevel method has nearly-optimal convergence rate of 1 — 
0 ( \ / \o g N )  where N  is the number of degrees of freedom.

• In [22], a purely algebraic MG method has also been developed 
for isotropic graph Laplacian problems on GPUs based on an un­
smoothed aggregation framework.

• In [13], we developed a hybrid preconditioning framework th a t com­
bines an iterative method and a preconditioner in a complementary 
fashion. We proved tha t the combined preconditioner is positive def­
inite and derived sharp estimates on the condition number of the 
preconditioned system

• In [18], we conducted convergence analysis for two-grid and multi­
grid methods for linear systems arising from conforming linear finite 
element discretizations of the second-order elliptic equations with 
anisotropic diffusion. W ith a specially designed block smoother, we 
showed tha t both aligned and non-aligned grids have uniform con­
vergence with respect to the anisotropy ratio and the mesh size in 
the energy norm.

• In [12], we provided the first comprehensive convergence analysis 
of a nonlinear AMLI-cycle multigrid method for symmetric positive



definite problems and showed tha t the nonlinear AMLI-cycle is at 
least as good and usually better than the n-fold V-cycle MG method 
in terms of the bound of the convergence rate.

• In [5], a local multigrid methods on adaptive grids was used as a pre­
conditioner and shown to be robust for symmetric elliptic problems 
with possibly large jum p coefficients in both two and three dimen­
sions.

• In [16], a distributive Gauss-Seidel relaxation based on the least 
squares commutator is devised for the saddle-point systems arising 
from the discretized Stokes equations. Based on that, an efficient 
multigrid method is developed for finite element discretizations of the 
Stokes equations on both structured grids and unstructured grids.

• In [6], an efficient multigrid solvers for the Oseen problems discretized 
by Marker and Cell (MAC) scheme on staggered grid is developed 
in this paper. Least squares commutator distributive Gauss-Seidel 
(LSC-DGS) relaxation is generalized and developed for Oseen prob­
lems and overweighting and defect-correction techniques are applied 
to  further improve the performance.

• In [27], we develop and analyze multilevel methods for the so-called 
alpha-harmonic extension to  localize fractional powers of elliptic op­
erators. We present a multilevel method with line smoothers and ob­
tain a nearly uniform convergence result on anisotropic meshes. Nu­
merical experiments reveal a competitive performance of our method.

4. develop and implement integrated AFEM-MG methods (iAFEM-MG) for  
use in DOE application’s codes.

To achieve this goal, we have integrated the study between adaptive 
method and multigrid methods. For example, most of the multilevel 
solvers we developed during the project period were designed for the un­
structured grid, which can be directly applied to adaptive grid obtained 
by different refinement strategies. For example, MG method based on 
auxiliary space preconditioning framework developed in [15, 31]; AMG 
method developed in [22]; and local MG method for the bisection adap­
tive grid [5], On the other hand, we also developed solver-friendly adap­
tive finite element methods which leads to linear systems tha t can be 
efficiently solved by existing robust solvers. The main tool we used is the 
ELM method, which has been used for linear convection dominated prob­
lem [11]. Moreover, as reported in [39], PLTMG software package 11.0 
features two solvers for hp adaptive finite element systems, a sparse block 
ILU preconditioner based on the multigraph method and a two-level (in p) 
hierarchical preconditioner. Both of them achieved effective performance 
empirically.

Overall, we have made significant efforts and advances in adaptive multilevel 
methods of multiphysics problems. Furthermore, we have successfully extended
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the applicability of AFEM and MG methods to various practical problems in­
cluding complex fluids, MHD, and reservoir simulation.
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