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I. MATERIALS AND METHODS

Standard time-domain THz spectroscopy (TDTS) in a transmission geometry was performed with a custom home-built THz
spectrometer. In this technique an approximately single-cycle picosecond pulse of light is transmitted through the sample and
the substrate. The complex transmission is obtained from Fourier transforming the time-domain sample pulse and ratioing it to
a Fourier transformed substrate pulse. The complex conductance can be directly inverted from the transmission equation in the
thin film limit[1, 2]:

T̃ (ω) =
1 + n

1 + n + Z0G(ω)
eiω/c(n−1)∆L (1)

where ∆L is the small difference in thickness between the sample and reference substrates, n is the substrate index of refraction
and Z0 is the vacuum impedance, 376.7Ω. By measuring both the magnitude and phase of the transmission, this inversion
to conductance is done directly and does not require Kramers-Kronig transformation.TDTS is an ideal tool to study the low
frequency response of these materials with both the metallic Drude peak and a E1u infrared active phonon visible.

Thin films of Bi2Se3 were grown at Rutgers University by molecular beam epitaxy (MBE) on 0.5 mm thick crystalline Al2O3
substrates. Details on growth can be found elsewhere[3–5]. Films grow a quintuple layer (1 unit cell) at a time (1QL∼1nm).
After film growth, 100nm Se capping is deposited to prevent aging effects[6]. Se capping was shown to have a negligible
contribution to the optics at THz frequencies [2], yet it serves a very important protection layer as Cu doped Bi2Se3 is much less
stable in air than pure Bi2Se3. 3-4% optimal Cu concentration (Cu/Bi×100%) was incorporated during the film deposition and
the concentration can be controlled at the better than 1% level. Therefore, the ‘x’ in CuxBi2Se3 formula is 0.015-0.02. Samples
were sealed in vacuum and sent immediately to JHU and low temperature TDTS measurements began within 24 hours of their
growth. The samples were mounted inside an optical helium flow cryostat and cooled down to 5K within an hour.
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FIG. 1: (Color online) Demonstration of experimental setup for Faraday rotation experiments.
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Complex Faraday rotation measurements were performed in a closed-cycle 7T superconducting magnet at 5K. We use the fast
rotator technique to measure the polarization states accurately[7]. As shown in Fig.1 in the main text, a static wire-grid polarizer
(WGP1) is placed before the sample. After the sample, a fast rotating polarizer (FRP) unit and another static WGP2 are used.
WGP1 and WGP2 transmit vertically polarized light. With this combination, in the fast rotator technique, Exx(t) and Exy(t) (blue
pulses)can be measured simultaneously in a single scan by reading off the in- and out-of-phase outputs from a lockin. Complex
Faraday rotation θF = θ

′

F + iθ
′′

Fcan be obtained by θF=atan(Exy(ω)/Exx(ω)) after Fourier transforming into the frequency domain.
Linearly polarized light becomes elliptically polarized after passing through the sample with a Faraday rotation θ

′

F (real part).
The imaginary part of the Faraday rotation θ

′′

F is close to ellipticityin the small rotation angle regime[7] . A small background
rotation from misalignment was subtracted by measuring a blank substrate.

II. MORE CYCLOTRON RESONANCE DATA AND FITS
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FIG. 2: (Color online) Fit quality on 64QL Cu0.02Bi2Se3 (sample 1) at different fields. Arrows are eye guides for the cyclotron frequency.
Accurate numbers were determined by fits. Solid lines are fits with field-dependent scattering rate. Dashed lines are fits with zero-field
scattering rate.

The carrier density of each TSS can be calculated by the usual relation n2D = k2
F/4π. An effective transport mass m∗ = ~kF/vF

can still be defined for even for ‘massless’ Dirac fermions where the Fermi velocity is determined by vF = ∂EF/~∂k. In our
analysis we will consider up to quadratic dispersion for surface states (E = AkF + Bk2

F) and model the two surface states
as identical with same carrier density. Considering the TSS dispersion up to quadratic correction, the spectral weight can be
expressed in terms of kF .

2
πε0

∫
G1dω = ω2

pd =
kF(A + 2BkF)e2

2π~2ε0
(2)

Therefore, lower spectral weight means lower k f . Lower k f means lower carrier density and smaller mass. By fitting zero-field
conductance, we find ω2

pd in 64QL Cu0.02Bi2Se3 sample 1 (the one discussed in main text) equal to 3.0±0.2 × 104 THz2 · nm.
By using Eq.2, we obtain kF ∼ 0.06Å−1, EF = 145 ±5 meV, m∗ =0.135±0.05me and a total sheet carrier density n2D=5.0 ±0.3
×1012/cm2. From Faraday rotation fit, we get the spectral weight ω2

pd = 2.8± 0.1× 104 THz2· nm more accurately. By using the

relation ω2
pd = n2De2

m∗ε0
and effective mass from CR experiments, we can get carrier density n2D = 4.9± 0.1× 1012/cm2. These two

analysis agree self-consistently.
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Here we show all the data and fits for both 64QL Cu0.02Bi2Se3 samples (sample 1 and sample 2) . One can see in Fig.2 for
Cu0.02Bi2Se3 (sample 1) that the fit difference between field independent and field dependent scattering rates becomes larger
with increasing field, which is another indication of increasing scattering rate with magnetic field.

We observed similar phenomena on another 64QL Cu0.02Bi2Se3 (sample 2) and reached a similar conclusion to sample 1. This
sample 2 remained bulk-insulating and with high mobility after 8 months of exposure to air, which demonstrates realization of
a robust bulk-insulating TI by the protection of Se capping. This sample also had ∼ 5.0 × 1012/cm2 but slightly lower mobility
∼ 2800 cm2/V· s. Data and fitting results are shown in Fig.3. Here we subtracted a small background from the zero-field data,
which gives the same result as a substrate background is subtracted. We also performed extended Drude analysis and conclusion
is similar to sample 1. We also observed suppression of the scattering rate at low frequency and a coupling constant λ ∼ 1.2 ±
0.3.
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FIG. 3: (Color online) Data summary on 64QL Cu0.02Bi2Se3 (sample 2) which was exposed in air for 8 months. (a) Complex conductance at
5K. Inset is enlarged real conductance (b) Real and (c) Imaginary part of complex Faraday rotation data at different fields at 5K. (d)Cyclotron
frequency versus field. The inset is a cartoon indicating EF = 150meV , 70mev below conduction band minimum. (e) Scattering rate as a
function of cyclotron frequency (red). Renomalized scattering rate by mass through extended Drude analysis (green). (f) Renormalized mass
as a function of frequency. The error bars express the uncertainty in ωp .

In Fig. 4, we show the fits for 100QL Bi2Se3. This demonstrates that one channel is the principle contribution to the CR and
dominates the Faraday rotation. This channel has spectral weight ω2

pd = 7.6 ±0.3 ×104 THz2 · nm. We use the spectral weight

( ω2
pd = n2De2

m∗ε0
) and CR mass 0.20 me to extract a total sheet carrier density n2D ∼ 1.9 ± 0.1 × 1013/cm2. If using Eq. 2 with the

TSS dispersion, from spectral weight we find kF ∼ 0.11Å−1, EF ∼ 350 meV, n2D ∼ 2.0 × 1013/cm2 and m∗ ∼0.20me. These two
analysis agree again. The second channel gives a low flat background. In the fits of 100QL Bi2Se3, we fixed the scattering rate
of the low mobility channel to 4 THz as we obtained from zero-field conductance fits, but the fits are reasonably insensitive to
the precise scattering rate of this channel. Field dependent scattering of the TSS channel of the 100QL Bi2Se3 is shown in Fig.
5 and the same basic physics as Cu0.02Bi2Se3 was seen.

A 32QL Bi2Se3 was also measured. Data summary is shown as Fig.6 The channel that dominates CR has an effective mass
∼0.19me ,carrier density ∼ 1.90 × 1013/cm2 and mobility ∼2000 cm2/V·s, which is consistent with TSSs with E f ∼ 310meV
above the Dirac point. The chemical potential agrees with ARPES measurements on similar samples[8]. A second channel with
scattering rate ∼ 4 THz is added to fit zero-field conductance. By using the effective mass of bulk/2DEG from literature, the
second channel has total sheet carrier density ∼ 0.8 × 1013/cm2 and mobility less than 300 cm2/V·s.



4

-0.3

-0.2

-0.1

0.0

0.1

0.2
θ F

 (
ra

di
an

s)

1.61.20.80.4
Frequency (THz)

  2 Drude fit
  1 Drude fit

 100QL Bi2Se3   5K 1T
 θF' θF''  Data

(a)

-0.3

-0.2

-0.1

0.0

0.1

0.2

θ F
 (

ra
di

an
s)

1.61.20.80.4
Frequency (THz)

 2T

(b)

-0.3

-0.2

-0.1

0.0

0.1

0.2

θ F
 (

ra
di

an
s)

1.61.20.80.4
Frequency (THz)

 3T

(c)

-0.3

-0.2

-0.1

0.0

0.1

0.2

θ F
 (

ra
di

an
s)

1.61.20.80.4
Frequency (THz)

 4T

(d)

-0.3

-0.2

-0.1

0.0

0.1

0.2

θ F
 (

ra
di

an
s)

1.61.20.80.4
Frequency (THz)

 5T

(e)

-0.3

-0.2

-0.1

0.0

0.1

0.2

θ F
 (

ra
di

an
s)

1.61.20.80.4
Frequency (THz)

 6T

(f)

FIG. 4: (Color online) Fit quality on 100QL Bi2Se3 at different fields. The solid curve is the two Drude fit. Dashed curve is one Drude fit.
Arrows are eye guides for the cyclotron frequencies. Accurate numbers are determined by fits.
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FIG. 5: (Color online) Drude scattering rate of 100QL Bi2Se3 as a function of cyclotron frequency at 5K.

III. ZEEMAN (SPIN) EFFECT ON TRANSPORT LIFETIME OF TOPOLOGICAL INSULATORS IN AN EXTERNAL
MAGNETIC FIELD

In principle the canting of spins in the surfaces states due to Zeeman coupling under applied field can cause an increase in
the scattering rate because backscattering can then occur. In practice this is a very small effect at the current chemical potential
levels. One can see this as follows.

The Hamiltonian of the topological insulator surface states is

Hk = vσ × k, (3)

where k is the electron momentum, v is the Fermi velocity, and σ is the Pauli matrix vector corresponding to the spin degrees of
freedom.
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FIG. 6: (Color online) Data summary on 32QL Bi2Se3 at 5K. (a) Complex conductance at 5K. Solid lines are 1 Drude fits using parameters
obtained from fitting the Faradary rotation with 1 Drude term. Dashed lines are 2 Drude fit. (b)Real and (c) Imaginary Faraday rotation at
different fields. (d) Cyclotron frequencies as a function of field. Solid line is a linear fit of fc = eB/2πm∗. The inset is a cartoon indicating
EF = 310meV .

We now introduce an external out-of-plane magnetic field B = ∇ × A, with A the corresponding vector potential. In addition
to the orbital coupling given by k → k − eA/c, the Zeeman coupling gives rise to a Dirac mass term ∆ = −gsµBB/2 in the
Hamiltonian Eq. (8). In low magnetic fields, we can derive the magnetic field dependence of the transport lifetime τtr using the
quantum kinetic theory. In this regime, the transport scattering rate 1/τtr � ωc, |∆| is small compared to the cyclotron frequency
ωc = eBv/~kF (kF is the Fermi wave vector) and the Zeeman splitting |∆|. The kinetic equation for the momentum-dependent
charge-spin density matrix fk is [9]

∂ fk
∂t

+ i[Hk + ∆σz, fk] +
1
2

[
eE +

e
c

vk × B,
∂ fk
∂k

]
+

= J( fk |k, t), (4)

where E is the external A.C. electric field from the incident light, vk = ∂Hk/∂k = v( ẑ × σ) is the velocity operator, and [ , ]+

stands for the anti-commutator. J( fk |k, t) is the collision integral that contains the information about scattering rates. The orbital
coupling to the field gives rise to the cyclotron motion which does not flip spins, and therefore does not contribute to the transport
lifetime. However, the Zeeman coupling mixes different spins and opens up a spin-flipping channel through electron-impurity
scattering. Therefore, at weak magnetic fields, the dependence on B in the collision integral only arises from the Zeeman coupling
∆. A related problem was studied in the literature in the context of the anomalous Hall effect of topological insulators due to
magnetic impurities [10, 11]. In the following, we recapitulate the approach in Ref. [10, 11] and obtain the transport lifetime in
the presence of Zeeman coupling to the external magnetic field. First we introduce notations sin θk = vk/εk and cos θk = ∆/εk

with εk =
√

(vk)2 + ∆2 to rewrite the Zeeman-split Hamiltonian as Hk = εkêk · σ, where êk = sin θk(k̂ × ẑ) + cos θk ẑ. We will
also need the other two vectors that are orthogonal to êk: ê⊥,1k = k̂ and ê⊥,2k = − cos θk(k̂ × ẑ) + sin θk ẑ. Then, writing the density
matrix fk = f (0)

k +δ fk, where f (0)
k is the equilibrium distribution function and δ fk is the non-equilibrium part, we can facilitate the

solution of Eq. (4) by resolving δ fk into components of the projected Pauli matrices σ = σ · ek , σ⊥,1 = σ · ê⊥,1k , σ⊥,2 = σ · ê⊥,2k :
δ fk = nk+skσ +s⊥,1k σ⊥,1+s⊥,2k σ⊥,2. The component nk describes the charge density distribution whereas sk , s

⊥,1
k , s⊥,2k respectively

describe the distributions of spins projected along the vectors êk , ê
⊥,1
k , ê⊥,2k . In particular, s⊥,1k , s⊥,2k describe quantum coherence

effects that contribute to corrections of higher order in 1/εFτtr in the conductivity. For the semiclassical weak-field regime
we are interested in, the Drude response is given by the conductivity to leading order in 1/εFτtr, and the transport lifetime is
therefore determined only by the dynamics of nk and sk , but not σ⊥,1k , σ⊥,2k . Projecting the collision integral J( fk |k, t) onto the
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charge sector and the “parallel-spin” sector σ , the relaxation rate of nk and sk can be calculated as

1
τk

=
niεk

4v2

∫ 2π

0

dφk′k

2π
|u(k, φk′k)|2 (1 − cos φk′k)

(
1 + cos2 θk + sin2 θk cos φk′k

)
, (5)

where φk′k is the angle between the momenta k and k′, ni is the impurity concentration and |u(k, φk′k)|2 is the disorder-averaged
impurity potential correlator evaluated at momentum k′ = k. In the absence of a magnetic field such that ∆ = 0, the angular form
factor in Eq. (5) reduces to the standard expression (1 − cos2 φk′k) which describes suppression of backscattering.

We can model the impurity potential as short-range delta-function scatterers with |u(k, φk′k)|2 ≡ u2
0 becoming independent of

k. The transport lifetime is determined by Eq. (5) at the Fermi level at low temperatures εF � kBT . Evaluating the angular
integral, we finally obtain the transport lifetime in the weak magnetic field regime

1
τtr

=
niu2

0εF

8v2

1 + 3
(

gsµBB
2εF

)2 . (6)

Denoting the zero-field transport time as 1/τtr,0 = niu2
0εF/8v2, we can see that the weak-field transport lifetime 1/τtr,B is related

to that in zero field as

1
τtr,B

=
1
τtr,0

1 + 3
(

gsµBB
2εF

)2 . (7)

If we use gs ∼ 50, ε f ∼ 150meV, the spin effect only gives 0.03 % increases at 1 T. Therefore, we do not think Zeeman effect
is the cause for increasing of scattering rate.

IV. ORBITAL EFFECT ON TRANSPORT LIFETIME OF TOPOLOGICAL INSULATORS IN AN EXTERNAL MAGNETIC
FIELD

Here we investigated whether or not the formation of Landau levels can cause a substantial change in the scattering rate.
The Hamiltonian of the topological insulator surface states is

H = vσ · (k × ẑ) , (8)

where k is the electron momentum, v is the Fermi velocity, and σ is the Pauli matrix vector corresponding to the spin degrees of
freedom.

We now introduce an external out-of-plane magnetic field B = B ẑ = ∇ × A, with A = Bxŷ the corresponding vector potential
in the asymmetric gauge. In addition to the orbital coupling given by k → k + eA/c (where e > 0), the Zeeman coupling gives
rise to a Dirac mass term ∆ = −gsµBB/2 in the Hamiltonian Eq. (8). For Bi2Se3, gs = 8.4 from band structure calculations. The
second-quantized Hamiltonian can then be written as

H = ωc(aσ+ + a†σ−) + ∆σz, (9)

where ωc =
√

2v/`B is the Dirac-model cyclotron frequency, a = (`B/
√

2)[∂/∂x + (x + x0)/`2
B] is the harmonic-oscillator

lowering operator, and σ± = (σx ± iσy)/2. As usual, `B =
√

1/eB is the magnetic length and x0 = `2
Bky is the cyclotron orbit

center coordinate. The Landau levels are labeled by integers n, which for n , 0 have eigenenergies and eigenspinors (throughout
we use an overbar · · · to denote a spinor quantity)

εn = sgn(n)
√
ωc|n| + ∆2, |n〉 =

[
C↑n||n| − 1〉
C↓n||n|〉

]
. (10)

where ||n|〉 (without an overbar and |n| is the absolute value of n) denotes the harmonic oscillator eigenstate (Fock state), and

C↑n = sgn(n)
√
ε|n| + sgn(n)∆/

√
2ε|n|,

C↓n =
√
ε|n| − sgn(n)∆/

√
2ε|n|. (11)

In the n = 0 LL, spins are aligned with the perpendicular field so that

ε0 = −∆, |0〉 =

[
0
|0〉

]
. (12)
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The influence of impurity scattering on the density of states and transport properties of the electron system can be captured
using the self-consistent Born approximation (SCBA) [12, 13]. This approximation captures certain features of Landau level
broadening due to disorder and is usually sufficient to describe magnetotransport properties when localization effect is not
important. Proceeding similar to Ref. [12, 13], the self-energy matrix Σ contains diagonal elements that couple the same Landau
level n, Σn,n ≡ Σd, and off-diagonal elements that couple opposite Landau levels n,−n, Σn,−n ≡ Σo. For delta-correlated disorder
potential 〈U(r)U(r′)〉 = niu2

0δ(r − r′), SCBA implies that

Σ+ = ω2
cρ

Nc∑
n=0

ε − Σ−

(ε − Σ+)(ε − Σ−) − ε2
n
, (13)

Σ− = ω2
cρ

Nc∑
n=1

ε − Σ+

(ε − Σ+)(ε − Σ−) − ε2
n
, (14)

where we have defined the dimensionless parameter ρ = niu2
0/(4πv2) that characterizes the disorder strength, and Σ± = Σd ± Σo.

Eqs. (13)-(14) define the self-consistency condition from which the self-energy can be solved.

A. Moderately High Landau level filling, and Negligible Inter-LL Coupling

This is the simplest case with essentially the physics contributed by each single LL. For Fermi energy filling up to a LL |N | > 0,
if disorder effect are small so that inter-LL coupling is negligible, the sum over n in Eqs. (13)-(14) is contributed predominantly
by the n = N term and other terms n , N can be neglected. We can set Σ+ ≈ Σ− ≡ Σ in Eqs. (13)-(14) and obtain

Σ =
ω2

cρ

2
1

(ε − εN − Σ)
, (15)

Solving yields the retarded self-energy

Σ =

{
(1/2)

[
ε − εN − i

√
Γ2 − (ε − εN)2

]
, for |ε − εN | < Γ

0, otherwise
(16)

where Γ2 = 2ω2
cρ = niu2

0/(π`
2
B). The density of states follow from ν(ε) = −(1/π)

∑
x0

∑
N ImGN(ε), where GN(ε) = 1/(ε−εN −Σ)

is the Green function, and GN(ε) = 4Σ/Γ2 following from Eq. (15). Substituting the self-energy Eq. (16) and suming over the
LL degeneracy

∑
x0
{...} = 1/(2π`2

B) gives

ν(ε) =
1

π2`2
BΓ

∑
N

√
1 −

(
ε − εN

Γ

)2
θ (Γ − |ε − εN |) , (17)

where θ(x) = 1 for x ≥ 0 and 0 for x < 0 is the unit step function. Eq. (17) describes a semi-elliptical shape of the density of
states of each LL, which cuts off sharply at |ε − εN | = Γ. This is of course only an approximation to the real profile of a disorder
broadened LL, which never cuts off sharply and tails off more gradually. The tail parts are what correspond to the localized states
in the broadened LL. Therefore, when localization effect to transport is not important, SCBA is a sufficient approximation to
high-field transport. In particular, it should capture the dependence of the transport coefficients on B accurately. As shown in the
RMP [14], the transport lifetime is proportional to the density of states. Eq. (17) predicts an overall trend for ν(ε) that increases
with B, therefore the transport lifetime should also increase with B in this moderately high LL filling with negligible inter-LL
coupling effect from disorder. Since the experimental data does not show an increasing trend at the higher end of the magnetic
field range, in our opinions this is probably not the regime where the sample was at 4 − 7 T. We have furthermore checked the
case of an “improvised” SCBA where people replace the semi-elliptical density of states with a Gaussian one to better capture
the effects of localization (which were found to be in better agreement with magneto-transport experiments in GaAs quantum
wells), the overall dependence of B is still increasing, so it does not change our conclusion in this section.

B. High LL with Inter-LL Coupling—Magneto-oscillations in transport lifetime

For LL disorder broadening 1/τq large such that ωcτq � 1 (but 1/τq > 1/τtr so 1/τtr could be . ωc), this regime corresponds
to sdH magneto-oscillations. For a LL filling |N | > 0, we have Σ+ ≈ Σ− ≡ Σ in Eqs. (13)-(14)

Σ = ω2
cρ

Nc∑
n=0

ε − Σ

(ε − Σ)2 − ε2
n
, (18)
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Furthermore, for high LL filling |N | � 1, one can use the approximation of extending the lower limit of the sum to −Nc and
setting Nc → ∞, because the main contribution comes from the Fermi level and contributions from negative LLs and from N to
∞ amount to negligible errors. This is a standard trick in going to the weaker-field regime from the strong-field LL sum formula
to obtain the magneto-oscillatory behavior.

Consider the sum in Eq. (18), using the Poisson summation formula, we obtain

n=∞∑
n=−∞

F(n) =
π

ω2
c

(ε − Σ) cot
{
π

ω2
c

[
(ε − Σ)2 − ∆2

]}
, (19)

Expanding cot(πz) into a Fourier series,

cot(πz) = −i

1 + 2
∞∑

k=1

ei2πkz

 , (20)

(valid for Imz > 0) and writing the retarded self-energy as Σ = Σ′ + iΣ′′ where Σ′ and Σ′′ < 0 are the real and imaginary parts of
the retarded self-energy, Eq. (18) becomes

Σ′ + iΣ′′ = −iπρ
(
ε − Σ′ − iΣ′′

)
(21)

×

1 + 2
∞∑

k=1

exp
{

i
2πk
ω2

c

[
ε2 − ∆2 − 2εΣ′ +

(
Σ′

)2
−

(
Σ′′

)2
− i2Σ′′

(
ε − Σ′

)]} ,
Eq. (22) is a nonlinear equation that needs to be solved iteratively. The small parameter here is the so-called Dingle factor which
is the real part of the expression inside the sum

λ = exp
{
−

4π
ω2

c
|Σ′′|

(
ε − Σ′

)}
. (22)

So we can write Eq. (22) as

Σ′ + iΣ′′ = −iπρ
(
ε − Σ′ − iΣ′′

) 1 + 2
∞∑

k=1

λkexp
{

i
2πk
ω2

c

[(
ε − Σ′

)2
− ∆2 −

(
Σ′′

)2
]} , (23)

and solve for Σ up to first order in disorder correlation ∼ niu2
0 (O(ρ1)) and to first order in λ (O(λ1)).

In the zeroth order O(λ0), we have Σ′ = 0 and Σ′′ = −(niu2
0/4v2)ε, the latter can be identified as the quasiparticle scattering

rate 1/2τq,0 = (niu2
0/4v2)ε at zero magnetic field.

To first order O(λ1), we obtain

Σ′ =
1
τq,0

ελ sin
[
2π

(
ε2 − ∆2

ω2
c

)]
,

Σ′′ = −
1

2τq,0

{
1 + 2λ cos

[
2π

(
ε2 − ∆2

ω2
c

)]}
. (24)

The density of states is ν(ε) = −(1/2π2`2
B)Im

∑Nc
n=−Nc

ImGn(ε). For the present high LL regime, the contribution from the zeroth
LL is small, and ν(ε) ' 2

∑Nc
n=0(ε − Σ)/[(ε − Σ)2 − ε2

n], which is equal to 2ImΣ/ω2ρ according to the SCBA equation Eq. (18).
Therefore

ν(ε) = ν0(ε)
{

1 + 2λ cos
[
2π

(
ε2 − ∆2

ω2
c

)]}
, (25)

with ν0(ε) = ε/2πv2 being the density of states at zero magnetic field.
The ratio of the transport scattering rate at finite field to that at zero field is equal to that of the density of states [14], and

finally we have

1
τtr,B

=
1
τtr,0

1 + 2λ cos
2π ε2

F − (gsµBB/2)2

ω2
c

 , (26)

where 1/τtr,0 = niu2
0εF/4v2 is the transport time at zero field.

If we are in this scenario, scattering rate should show oscillation above 3T whenωτ = fcΓ ≥ 1. We also rule out this possibility.



9

25x10
-3

20

15

10

5

0

R
ea

l c
on

du
ct

an
ce

 (
1/

O
hm

)

2.01.51.00.5
Frequency (THz)

             5K
64QL Cu0.02Bi2Se3 

 with 100nm capping
 no capping

(a) 25x10
-3

20

15

10

5

0

R
ea

l c
on

du
ct

an
ce

 (
1/

O
hm

)

2.01.51.00.5
Frequency (THz)

              5K
64QL Cu0.02Bi2Se3 with Se capping

 Fresh
 8 months later

(b)

FIG. 7: (Color online) (a) Real conductance of 64QL Cu0.02Bi2Se3 (sample 2) with and without 100nm Se capping at 5K . (b) Real conductance
of 64QL Cu0.02Bi2Se3 (sample 2) with 100nm Se capping right measured right after growth and 8 month later.

V. EFFECT OF SE CAPPING

Our previous work on pure Bi2Se3 showed that Se capping had a negligible effect on the optical properties of Bi2Se3, but
does decrease the scattering rate somewhat. However, it is of great importance in the present case of Cu doped Bi2Se3 as these
samples are very air sensitive. Transport measurements in Ref.[5] were performed within 20 mins after samples were taken
out of ultra-high vacuum MBE chamber. Samples for THz measurements were sealed in vacuum bags and shipped overnight
to JHU. The total exposure to atmosphere is around 10 mins before loading into the cryostat . As one can see in Fig.7(a), Se
capping protects the mobility of the sample well as opposed to non-capped samples with a flat Drude peak. 100nm Se capping
still protects the sample well even after 8 months as shown in Fig.7(b).

VI. VALIDITY OF ONE DRUDE COMPONENT FIT IN PREVIOUS WORK[1, 2]

For the 100QL Bi2Se3 sample, fitting zero field conductance data by a single Drude term, a phonon term and a ε∞ term, we find
the Drude spectral weight is ω2

pd is 4.6× 106 4π2THz2 · nm. Using Eq. 2, we find kF ∼0.14Å−1, m∗ ∼0.22me and EF ∼480 meV.
A fit to the Faraday rotation data alone shows that the spectral weight ω2

pd contributing to the TSSs is 2.8×106 4π2THz2nm. Still
using Eq. 2, a kF ∼0.11Å−1, m∗ ∼0.20me and EF ∼350 meV are obtained, as mentioned above already. One can see EF and kF

are overestimated by ∼ 30%, while m∗ is overestimated by ∼ 10% if one associates all the Drude spectral weight in the zero-field
conductance to the TSSs. These quantities are overestimated in the single Drude component model because one assigns all the
bulk/2DEG spectral weight as the TSSs spectral weight. The second Drude channel (bulk/2DEG) is flat in our measurement
frequency regime and only contributes a smooth background. However, considering the fact that the TSSs contribute more than
90% to the total conductance, a single Drude model analysis is still a good approximation and a thickness independent Drude
peak as observed previously in Bi2Se3[1, 2] is not surprising. The presence of this very flat subdominant contribution does not
call into question any of the conclusions of our previous works [1, 2]. Here we just clarify this point and provide a method to
separate contributions from TSSs and bulk/2DEG in magneto-THz measurements.

VII. EFFECTIVE MASS CONSISTENCY WITH PREVIOUS WORK

In our earlier work[1], a heavier 0.35me cyclotron mass for TSSs was reported. This was judged to be a reasonable number
based on a linear dispersion of the TSSs and using m∗ = EF/v2

F , where EF ∼0.5eV and vF = 5 × 105m/s. However, if one
considers quadratic corrections the to TSS dispersion, one finds that this mass does not give the right kF . In addition, if we use a
linear dispersion EF = ~vFkF and use spectral weight to estimate the chemical potential, the relation is ω2

pd = ~vFkFe2/2πε0~
2 =

E f e2/2πε0~
2 and EF is ∼0.75eV. Therefore, when EF is in the conduction band, quadratic corrections are significant. The fact

that in order that the wave functions of the TSSs vanish at the TI/vacuum interface, a quadratic correction is needed [15, 16]. We
believe that the mass given in previous work was incorrect for pure Bi2Se3 films and the revised value of 0.20me given in this
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FIG. 8: (Color online) Calculation of Kerr rotation with effective mass 0.35me and mass 0.20me with carrier density n2D = 2 × 1013/cm2 and
scattering rate ΓD=1THz at 6T.

work is correct.
The reasons for this correction is multifold. 1.) Signal to noise has been significantly increased in the current generation

of experiments [7] allowing more reliable fits to the spectra. 2.) The current generation of Bi2Se3 films have mobilities of the
order 2000 - 3200 cm2/V· s [4]. In order to see a well-defined cyclotron resonance in the dissipative response, the relation
ωcτ = µB > 1 needs to be satisfied[17]. ωcτ = µB ∼ 1.5-2 is still too small to see very sharp peaks in the amplitude of
Kerr/Faraday rotation in our field range. 3.) In the previous work, due to (now overcome) uncertainties in the measured phase in
the fast rotator experiment, only the amplitude of the Faraday rotation was considered reliable. Unfortunately this is a somewhat
insensitive method of probing the cyclotron frequency. As one can see from Fig.8, the rotation spectrum does not differ much
using 0.35me or 0.20me in the amplitude plot. To fit the data accurately when ωcτ ∼ 1, one needs to fit the complex Faraday
rotation; the peak in the imaginary angle approximately gives the cyclotron frequency. In this regard, phase sensitive time-
domain THz spectroscopy is a powerful tool to study cyclotron resonances in topological insulators of the current generation.
Despite the differences in these numbers, the Bi2Se3 samples we measured in this paper are similar to those in Ref[1] and the
qualitative conclusion that TSSs dominates made in Ref[1] remains.

VIII. ASSUMPTION OF NEARLY EQUAL CONTRIBUTION OF THE TOP AND BOTTOM SURFACE STATES

In the main text, we showed that the carrier density estimated by using the spectral weight and mass from the Faraday rotation
fits is close to the value obtained using spectral weight from Faraday rotation fit and surface state dispersion. This shows the
assumption of nearly equal contribution from two surface states is a good approximation. Similarly, ARPES and DC transport
showed the chemical potential of the two surface states differed by around 50 meV[18, 19]. Considering the potential fluctuation
near the Dirac point [20] is also around 50 meV estimated by previous work[21], the equal contribution is not surprising.

A method was discussed in Ref.[21] to distinguish the contribution of the two surfaces from each other. Unfortunately, it
appears that the interface between In2Se3 and Bi2Se3 is not as simple as assumed in Ref.[21]. It has been found that there is
20-30% Indium diffusion into the Bi2Se3 layer in a recent study[22]. The topological phase transition occurs near x∼ 6 % in
(Bi1−xInx)2Se3[2, 23]. Therefore, the interface of In2Se3 and Bi2Se3 is not the boundary of normal band insulator and topological
insulator. The true interface TSS must be buried deeply and exist in a background of high disorder. Due to gradient Indium
diffusion, the interface which hosts SSs could be (Bi0.045In0.955)2Se3 / Bi2Se3. This hypothesis can explain that the conduction
band minimum is positioned only ∼ 80 meV above the Dirac point, because the bulk gap decreases when approaching the
topological phase transition point at x ∼ 6 %. Also, more Indium substitution reduces the total carrier density, which could be
the reason that the top surface has a lower carrier density as discussed in Ref.[24]. We also measured a 32QL Bi2Se3 capped by
10nm In2Se3. This sample has lower spectral weight and a larger scattering rate, as shown in Fig.9. However, assuming the gate
does not affect the back surface, Ref.[24] estimated ∼ 1013/cm2 carrier sits on the back surface. This can be additional support
for the assumption of nearly equal contribution of two surface states in normal Bi2Se3 samples.
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IX. ROLE OF COPPER

The majority of Cu was found to be Cu0+ (neutral) by X-ray photo-emission spectroscopy in this batch of samples[5]. Our data
also supports this scenario. If 2% Cu substitutes for Bi, then we would observe the shift of phonon frequency as we did in the
(Bi1−xInx)2Se3 case. In (Bi1−xInx)2Se3, we can observe a shift of the phonon at x∼ 1%. Also note that Cu has around half of the
atomic number of In, which means 2% Cu substitution would shift the phonon frequency even higher. Normal Bi2Se3 is known
to have a conducting bulk with EF ∼ 350 meV-450 meV due to Se vacancies. Along with Ref.[5],we believe Cu incorporation
deactivate Se vacancies so the density is reduced. We encourage more work to be done to resolve the role of copper by other
methods such as STM measurements and first-principle calculations.

X. BAND BENDING

Topological Insulators can be understood as special narrow-gap semiconductors with surface states. Therefore, band bending
effects can be important for topological insulators. Ref. [5] has a nice summary about band bending in TIs. Here we re-emphasize
its importance. The bulk chemical potential for normal Bi2Se3 is pinned near the conduction band minimum (therefore ∼ 230
meV above Dirac point)[5, 25], while the surface state chemical potential is ∼ 350 meV in our samples. Downward band bending
results in accumulation layers. From magneto-terahertz measurements, we conclude that any accumulation layer carriers have
a large scattering rate, are essentially featureless in the Faraday rotation and count for less than 10 % of total conductance. For
Cu0.02Bi2Se3, the chemical potential at the surface is ∼ 150 meV the Dirac point, and therefore upwards band bending must
occur. ARPES can play an essential role in determining whether a material is a topological insulator by counting if the number
of surface state branches is odd or even, but it is not the best tool to conclude whether a TI is bulk-insulating or not due to
its extreme surface sensitivity and band bending. For example, upwards band bending was reported in bulk-conducting TI[25]
where ARPES did not observe bulk states but SdH saw a dominating bulk contribution. The most effective way to probe for
bulk-insulating TIs is through transport measurements. In DC transport, if the carrier density contributing to SdH oscillations is
equal to the total carrier density measured by the Hall effect, then the bulk is insulating[5]. In AC optics, if the carrier density
contributing to cyclotron resonance is equal to the total carrier density in the Drude term of the zero field conductance, one can
conclude that the bulk is insulating.
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