SNL
ldaho National
Laboratory

INL/EXT-15-35005

User Guide for the
RSEXEC Coupling

Interface in the
RELAP5-3D Code

J. Hope Forsmann, Walter L. Weaver Il

April 2015

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-15-35005

User Guide for the RSEXEC Coupling Interface in the
RELAPS5-3D Code

J. Hope Forsmann, Walter L. Weaver lll

April 2015

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Operations
Under DOE Idaho Operations Office
Contract DE-AC07-051D14517

User Guide for the RSEXEC Coupling Interface in the
RELAPS5-3D Code

INL/EXT-15-35005

J. Hope Forsmann

Walter L. Weaver lll

April 2015

User Guide for the RSEXEC Coupling
Interface in the RELAP5-3D Code

INL/EXT-15-35005

J. Hope Forsmann
Walter L. Weaver lli

April 2015

il

ABSTRACT

This report describes the RSEXEC coupling interface in the RELAPS5-3D computer code from the
users perspective. The information in the report is intended for users who want to couple RELAPS5-3D to
other thermal-hydraulic, neutron kinetics, or control system simulation codes.

il

v

INELOAUCTION ..ttt ettt ettt st eeatesat e e bt e s bt e sbeesbe e bt enbeeneeeneeeateeae 1
1.1 BacK@IOUNA. ... oottt ettt sttt 1
1.2 Basis of Coupling MethodoLOZYcc.eeruieriiiiiiiieie ettt 2
1.3 Subdivision of a Thermal-Hydraulic SyStemcccecvveviieriieciiiiiiie e 3
1.4 COUPIING TAXONOMIY ...veevvierrierierieieeieeteereeseeseatessesssesssessaesssesssessssssessseessessseesssessesssennns 3
GEeNETral CONSIACTALIONS.eeectiieiiieitieeiieeetieeeteeeteeeteeeteesbeesebeeeseeebesebeeasaeesesesseesseessssesseensseas 5
LT D O o o ' USRS 6
3.1 VItUAL SECHIOM ...ttt ettt et e s eess et e e e eeeeseene e sesseneeneens 6
3.1.1 Keyword “Machine’ccoouiiiieiiieiiiieeeeee et 6
3,12 KEYWOTA “WaIL ..iiiiiiieiicie ettt ere et staestaesta e teessaesseesseesseesseesseessesssenens 7
3,13 KEYWOId “WIIEE™ ..oiiiiiiiiiieciiieciie ettt e ete e ve e stte e te e s be e stbeestseesseessaessseesasaesssens 7
3.2 PrOCESSES SECLION. .. .uiiiiiiitieetie ettt ettt e et e et eete e ebeeeteeetaeebaeentaeeeeeesaeeesaneennes 8
3.2.1 Keyword ‘Machine’cooiiiiiiiiiiiiiieiiee et 8
3.2.2 KEYWOTA “WITES .. eietieiieieete ettt ettt et stt et e b et e e e nteeteenbeeaseeneeeneesneeenes 8
3.2.3 KEYWOTA “USES ..oiiiiieieieieeieeiiesiestesteestesteesteesteestaesseesseesseesseesseenseanseenseessenssenssennns 8
33 STMUIAtION SECHIOM.euieiiiiiitieeee ettt et 9
331 KeyWOrd MAME’ccuiouieiieiiiiiieieee sttt ettt sttt e st eae 9
3.3.2 KeyWOrds ‘TEStArt tIMEeecvieiieiieieeieeieeeeseesttesinesseeseeseesseesseenseensesssesssesssenens 9
3.3.3 KeyWords “Start timMe’ccecvveevuieiiereereieeseeseesteesteeseesseesseesseessesssesssesssesssesssenses 9
34 IMESSAZES SECLIOM.....eeetieeeiieeiieeiiieeieeeteeeteeesteeestreeseseestaeeseseessseessseessseessseessseessseessseesseeans 10
3.4.1 Keywords ‘sends’ and ‘TECEIVES’ceeeierieririeieeree ettt 10
3.4.2 KEYWOTd ‘AWAILS’ ..ecviiiiiieiieeiieeiteecieeeteeestteesieeesaeeseseestaeessseessseessseesssessssessseenns 10
343 KeyWOrd ‘PreCeedS’ ...ccuiiriiiiiieiiieirieiieeeieeeeieeesreeeteeestaeesereeseeessseessseesseessseens 11
3.5 TIMESEEPS SECTIOMeeutieuiieiieie ettt ettt et et et e e te et e eatesneesaaesstesneenseesseens 11
Examples of Coupled STMUIATIONSccverieriieriieieerieiieie e see e seestee e e e esseesseesseessesssesssessns 12
4.1 EXPICIE COUPIING....uviiieiiiiiieiiieeite ettt e eieeetee et este e et e e ebeeeebeeesbeeesbaessseessseeasseessseeeseenns 12
4.1.1 Parallel EXplicit COUPIINGccueruirieiiriiiieeee et 13
4.1.2 Sequential EXplicit COUPIING.......cccveiriiiriieiieeriieesite et ere e eeae e eseveeseveeseneens 14
4.1.3 Heat Structure COUPLIINGc.eeveiieriieeiieetieeiee et ettt et eeveesbeesreeeveeebeeeseeas 15
4.2 Semi-IMPLiCit COUPIING ...c.eiieieiiiiieii ettt 16
4.3 KiNEtiCS COUPIINE....viiuiiiieiieiieit ettt ettt et e st e st e teesbe e beenseenseenseenseensesnsennnes 18
4.4 Control SyStems COUPIINE.......cocuieiiiriieiieiieieeie ettt ettt aeeeresstesaessaesssesseenenes 21
L1070 0] VT 1T gl 23 o () ¢SSP 22
S 1S 1 o1 USSP 24

CONTENTS

APPENDIX A RSEXEC Input Data Requirementscccceeeeiieerieeenieeenieeeiee e A-1
A-1 INEEOAUCTION ...ttt ettt e bee st A-1
A-2 Virtual Section of Input DECKcceeviiiiiiiiiiiiieieeeee e A-2
A-3 Processes Section of Input DecK.........c.oecviiriiiiiiiiiiiiiieceeeeee e A-4
A-4 Simulation Section of Input DecK.........cccviiriiiiiiiiiiceeee e A-5
A-5 Message Section of Input Deckoccuveiiiiiiiiiiiiiiiiee e A-6
A-6 Time Step INformation..........ccuiiiiiiiiiieieeeeeee e e e e A-8

vi

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

List of Figures

Schematic for coupled problem dOmain...........c.eevverierieriereeniiee e 26
Schematic for parallel eXplicit COUPIING.....ccverierieriieiieie e 27
Schematic for semi-implicit and sequential explicit thermal-hydraulic coupling............. 28
Schematic of PVMEDA parallel eXplicit teSt CaSe........ccevuerererierienienieieierieseeeeee e 29
Listing of PVMEDAX template filecccoeviieviieciiiiecie e 30
Listing of PVMEDA1X template filecccooiieiieiieiieiieieeeeeeeeeeee e 31
Listing of PVMEDARX template file.........cccccvevieeiirciiiiiiieeieeieseeceeseeee e 32
Listing of PVMEDARI1X template file..........ccoovveviiriienierieieieieeie e 33
Partial listing of output file from ‘parent’ process in PVMEDAX test case..................... 34
Partial listing of output file from ‘child’ process in PVMEDAX test case...........ceceeuue.. 35
Schematic of PVMEDSX sequential eXpliCit teSt CASEevvvrrverierierieeieeieereereeeee e 36
Listing of PVMEDSX template fileccccoooiiiiiiiiiiieeeeeee e 37
Partial listing of output file from ‘leader’ process in PVMEDSX test case..........ccccc...... 38
Partial listing of output file from ‘follower’ process in PVMEDSX test case.................. 39
Schematic of heat Structure COUPINGcceevvieiiieiieiiiieee et 40
Schematic of uncoupled test case for semi-implicit COUPlNg.........cceevvvrvercrirreriereernnenn, 41
Schematic of coupled test case for semi-implicit cOUpPling.........cceeevvvververcververienreenneenn, 42
Listing of template file for ‘pvmcoreX’ test CaSE........cuvrerrvierierieriierieerieeiee e 43
Schematic 0f TYPPWR St CASE ...cc.eeuiiuiriiiieieiiiiieteeerese et 44
Schematic of reactor vessel in TYPPWR test Casecooeeveveriiienieiceieeeeeeee 45
Schematic of coupled model of reactor vessel in kinetics coupling test cases.................. 46
Schematic 0f KinetiCs ZONESco.evueeieriiriiniiiieieierie ettt 47
Listing of template file for pvmptx point kinetics coupling test caseccceeveerveernnnns 48
Listing of template file for pvmndx for nodal kinetics coupling test case........................ 49
Schematic of uncoupled control SyStemS teSt CASE.......cvervrervereerieriieieeie e ererreseee e 50
Schematic of coupled control SyStems teSt CASEeevvirrcrieeiieiiieeieeeiee e 51
Listing of template file for coupled control system test case..........cccceevveererereeerieriieneennen. 52

vii

viii

1 Introduction

This document is the fourth in a series of reports that describe the RSEXEC coupling Application
Programming Interface (API) and the code coupling system that was built using the RSEXEC coupling

API. The first repor‘[1 describes the RSEXEC coupling Application Programming Interface (API). The
second report2 describes the RSEXEC program that controls and coordinates a coupled simulation. The

third report3 describes the implementation of the RSEXEC coupling API in the RELAP5-3D code. This
report describes the RSEXEC coupling interface from the users perspective and provides advice and
recommendations as to how to use the coupling interface.

1.1 Background

The RSEXEC API and RSEXEC program were developed to facilitate the simulation of a system
(e.g., a nuclear power plant) using several different computer programs to describe the transient behavior
of the system. Simulation codes are generally written to provide detailed models of some portion of a

system, i.e., COBRA* RELAP5-3D°, FLUENT®, TRAC-PF1/MODI1’, and TRACE?® for the fluid

systems, CONTAIN? and MELCOR!? for the containment systems, NESTLE!! and PARCS!? for reactor
power, etc. The RSEXEC API, the RSEXEC program, and the code coupling system that they implement
enables the use of different codes for the simulation of different portions of the system in a unified analysis
of the transient behavior of the system.

Each code in the coupled simulation needs data from some of the other codes in the simulation. The

data are passed between the coupled codes using the Parallel Virtual Machine!3 (PVM) message passing
methodology. All of the coupled codes may be executed on a single computer where the data
communication between the codes is internal to the single computer or each code may be executed on its
own computer where the data communication occurs over the network connecting the computers. The set
of networked computers that are to perform a coupled computation becomes a virtual machine. The PVM
message passing library contains all of the functionality needed to set up the virtual machine, execute each
of the coupled codes on its designated node in the virtual machine, and provide the communication
mechanism for data transfer between the nodes of the virtual machine.

An executive program, RSEXEC, has been developed to initiate the ‘virtual’ machine, startup the
codes to be used in the coupled simulation, coordinate the data transfers between the coupled codes, and
shutdown the virtual machine at the end of the coupled simulation. In addition, the RSEXEC program
monitors the status of each computer and each code executing on the virtual machine so that faults can be
handled gracefully and so that the virtual machine might be shutdown once the simulation codes terminate,
either normally or abnormally. The RSEXEC program was originally developed to couple the
RELAPS5-3D code to other thermal-hydraulic codes, however any code that implements the RSEXEC API
may be used in a coupled simulation.

This report is intended as a user guide and describes how to design, build, and execute a coupled
simulation using codes that implement the coupling interface. The different types of coupling will be
illustrated using the installation test cases that are supplied with the distribution of RELAPS5-3D that
includes the coupling methodology. These test cases were developed to verify that the different types of
coupling had been implemented correctly by the RSEXEC and RELAPS5-3D codes. All of these test cases

use two instances of RELAPS5-3D to create the coupled simulation.

The general organization of this report is as follows. First there will be a discussion of the basis of the
coupling methodology. Then there will be a discussion of the different types of coupling. This will be
followed by a discussion of general principles that apply to all forms of coupling. Next will be a discussion
of the input for the RSEXEC program. The input file for the RSEXEC program contains all of the
information needed to describe the coupled simulation whereas the input files for the coupled programs
only describe that portion of the system that they are to simulate. Finally, there will be several sections
describing specific examples of the various types of coupling.

1.2 Basis of Coupling Methodology

The basis of the coupling methodology as implemented by the RSEXEC program and by the
RSEXEC Application Programming Interface (API) is domain decomposition. The domains that can be
separated into separate pieces are the models of the important physical processes that determine the
behavior of the system being simulated. The behavior of the separate pieces of the system being simulated
are computed by different computer programs or by different instances of the same computer code. The
physical processes that can be modeled by different computer codes are the thermal-hydraulic behavior of
the fluids in the system, the neutronic behavior of the reactor core, the thermal-mechanical behavior of the
solid structures in the system, and the behavior of the control components in the system being simulated.
This means that one computer program may compute the behavior of the fluids in all portions of the
system while other computer codes compute the neutronic behavior of the reactor core or the behavior of
control components in the system.

Additionally, the model of the thermal-hydraulic system can be subdivided into smaller pieces and
these pieces can be simulated by different computer codes using different fluid models for their portion of
the system, e.g. the primary coolant loop of a reactor may be divided into the reactor vessel with the reactor
core and other internals and the primary piping, pumps, and primary side of the steam generators can be
lumped into another piece and these two pieces of the primary system simulated by codes using different
fluid models e.g., the COBRA-TF code for the reactor vessel and internals and the RELAP5-3D code for
the remainder of the primary coolant system. Or the primary and secondary systems may be modeled by
one code, e.g. RELAPS5-3D, and the containment systems can be modeled by a different computer code,
e.g., the CONTAIN code. The control system may also be subdivided into smaller pieces. The neutronic
behavior of the reactor core must be modeled by a single code while the thermal-hydraulic model of the
reactor core may be subdivided into several pieces and the several pieces can be simulated by different
RSEXEC tasks.

In the RSEXEC coupling methodology described in this report, an instance of a computer program
executing on a computational node in the virtual machine is called a task. Each task in the virtual machine
simulates one of the coupled domains. The RSEXEC program is also considered a task in the virtual
machine. Each task in the virtual machine is assigned a unique identifier called the task id by the PVM
library software.

1.3 Subdivision of a Thermal-Hydraulic System

Consider the thermal-hydraulic system that is represented by the schematic in Figure 1 (on page 26).
This system has been divided into two domains with only two connections between the domains. The
volumes in the left domain, volumes 1 and 2, are adjacent to volumes I and II in the right domain with
junctions between the adjacent volumes. Figure 2 (on page 27) shows the schematic of the coupled
analogue of this system. The two domains have been separated and the junctions between the adjacent
volumes in the uncoupled problem have been represented in the coupled simulation in both domains with
coupling junctions. Boundary volumes have been added to the ends of the coupling junctions where the
volume labeled 1 in the right computational domain is the analogue of volume 1 in the left computational
domain. Note that volume 1 in the right computational domain is a boundary component while volume 1 in
the left computational domain is in the interior of the left computational domain; this is also true for the
volumes labeled 2. The dotted lines in Figure 2 (on page 27) show the information flow between the
coupled tasks.

For this type of coupling in which only volume data, i.e. scalar data, are exchanged between the
coupled tasks, the orientation of the coupling junctions can be arbitrary and need not be consistent between
the two domains because the velocities in the coupling junctions are computed independently for the two
domains. Figure 3 (on page 28) shows the schematic for another type of thermal-hydraulic coupling in
which data for the coupling junctions are exchanged between the computational domains. The orientation
of the coupling junctions must be consistent between the two domains so that if the domain that computes
the velocities in the coupling junctions interprets a positive velocity in the coupling junction as flow into
its domain as shown in Figure 3 (on page 28), then the domain that receives the velocities must interpret
positive velocities as flow out of its domain.

1.4 Coupling Taxonomy

Several types of coupling have been implemented in the RSEXEC program. These types of coupling
can be categorized in three ways: first by the computational models that are being coupled, second by the
frequency of data exchanges between the computational tasks, and third by the type of solution algorithm
being used by the models being coupled together. The computational models that can be coupled are the
thermal-hydraulics models, the neutron kinetics models, and the control systems models. Secondly,
coupling can be either synchronous or asynchronous. Synchronous coupling is where each task uses the
same time step size and data are exchanged every time step. Asynchronous coupling is where data are
exchanged at fixed intervals. In asynchronous coupling, explicitly coupled tasks are free to use their own
time step sizes subject to the restriction of exchanging data at the correct time. Finally, the coupling may
be categorized by the type of solution algorithm used by the models being coupled together. The coupling
for the thermal-hydraulic model may be either explicit or semi-implicit. In explicit coupling the data
received from another task remain constant during the time step advancements. In semi-implicit coupling,
some of the data received from the coupled task are advanced in time while some of the data are held
constant during the time advancement.

Not all types of coupling have been implemented in the RSEXEC program. The types of coupling
that have been implemented in the RSEXEC program are synchronous and asynchronous explicit
thermal-hydraulic coupling, semi-implicit thermal-hydraulic coupling (synchronous coupling by
definition), synchronous kinetics coupling, and synchronous control systems coupling. The kinetics and

control systems coupling, as implemented, are a form of explicit coupling because the data exchanged
between the coupled codes remain constant while being used by the code that receive them.

Explicit thermal-hydraulic coupling can be further subdivided into parallel explicit coupling and
sequential explicit coupling. A schematic of parallel explicit coupling is shown in Figure 2 (on page 27)
and a schematic of sequential explicit coupling is shown in Figure 3 (on page 28). In parallel explicit
coupling, the coupled tasks are peers and the order of the messages between them is arbitrary. In sequential
explicit coupling, the leader task, i.e., the task labeled as the right computational domain in Figure 3, must
be advanced first and then the follower task, i.e., the task labeled as the left computational domain in
Figure 3, can be advanced using data received from the leader task. These roles define an order for the
computations and data exchanges. The difference between parallel explicit coupling and sequential explicit
coupling is that sequential explicit coupling is strictly mass and energy conserving while parallel explicit
may not conserve mass and energy depending upon which variables are exchanged between the codes and
when they are exchanged. The mass and energy errors in parallel explicit coupling can be reduced by
reducing the size of the explicit coupling data exchange intervals but the mass and energy errors can not be
completely eliminated. It is recommended that sequential explicit coupling be used rather than parallel
explicit coupling. The only disadvantage of sequential explicit coupling is that the wall clock time for the
simulation will be greater than the wall clock time for the equivalent parallel explicit simulation.

There are roles and a defined order of computation and data exchanges for the other types of
coupling. In semi-implicit coupling, the two roles are master and slave. The master task, the task labeled as
the left task in Figure 3, computes part of its solution and sends the data from the partial advancement to
the slave task, the task labeled as the right task in Figure 3. The slave task has been waiting to receive data
from the master task and can begin its time step advancement once the data are received. The slave task
uses the data received from the master task to begin and finish its advancement. Once the slave task has
completed its advancement, it sends its final values back to the master task. The master task then uses the
values received from the slave task to finish its advancement. The advancement of the slave task is
embedded in the middle of the master task.

The computational sequence for kinetics coupling is arbitrary where the thermal-hydraulic models
can be advanced first using the power computed during the last coupled advancement and then the kinetics
models can be advanced using the results of the thermal-hydraulic advancement or vice-versa, the kinetics
solution may be advanced first, etc. In the kinetics coupling implemented in the RSEXEC program, the
thermal-hydraulic models are advanced first and then the kinetics models are advanced using the
thermal-hydraulic conditions in the reactor core computed by the thermal-hydraulic advancement because
this is the computational order for uncoupled computations in RELAP5-3D. The task performing the
kinetics solution is designated as the server task and the tasks using the power data computed by the server
task are called the client tasks. The names client and server are used because the server performs the work
requested by the client, i.e., compute the reactor power.

Like kinetics coupling, the computational sequence for control systems coupling is arbitrary and the
RELAPS5-3D computational order has been adopted by the RSEXEC program; first the thermal-hydraulic
models are advanced, then the kinetics models are advanced, and finally the control systems models are
advanced. Within RELAP5-3D, the order of the data exchanges for control systems coupling is determined
by the user with the numbering of the control components. The control components are advanced in
numerical order as specified by the user. Care must be taken in numbering the control components so that

the computational order of control components in one task that are to send data is the same as the
computational order of the control components in the other tasks that are to receive data and vice-versa.

RELAPS5-3D has been modified so that it can function in any role in all types of coupling, either as
the master task or as the slave task in semi-implicit thermal-hydraulic coupling, as either the server task or
client task in kinetics coupling, and as the leader task or the follower task in explicit sequential
thermal-hydraulic coupling. The tasks in the other types of coupling are peers and there is no defined role
for these types of coupling.

2 General Considerations

The most important decision in the design of a coupled simulation is the determination of which
computer codes to use in the simulation. The codes should be chosen based on the type of transient being
simulated as well as on the capabilities of the codes being considered. For example, in the simulation of a
Large Break LOCA transient where reflood phenomena are important, a code like COBRA-TF might be
chosen to simulate the behavior of the reactor core, the reactor vessel, and its internals and the
RELAP5-3D code might be chosen to simulate the behavior of the remainder of the primary system
including piping, pumps, and primary side of the steam generators as well as the secondary side of the
stream generators and feedwater system. In addition, a code like the CONTAIN code might be used to
compute the response of the reactor containment to the addition of mass and energy to the containment due
to the blowdown of the reactor primary system through the break.

If more than one code is chosen for the simulation of a thermal-hydraulic system, e.g., the primary
coolant system, then the next choice is where to divide the system and which parts of the system are to be
simulated by which code. This decision will be guided in part by the choice of the code to be used in the
coupled simulation, the capabilities of the codes themselves, and by the type of transient being simulated.
For example, the COBRA-TF code uses a three field model of fluid flow whereas the RELAP5-3D code
uses a two fluid representation of fluid flow. The parts of the system to be simulated by COBRA-TF
should require the three field fluid model for accurate simulation of the important phenomena in the
transient being simulated and RELAPS5-3D should be used for that portion of the system only requiring a
two field fluid model.

When RELAP5-3D is being used in a coupled simulation, the input files being used must be
complete models of that portion of the system each RELAPS5-3D task is to simulate. This allows the
RELAPS-3D tasks to be executed individually without being coupled to the other codes. This is to
facilitate the initialization of a coupled computation where the individual RELAP5-3D tasks can be
initialized separately before performing a global initialization using the coupling methodology. The
initialization of other simulation codes may require them to be initialized in coupled mode depending upon
how the coupling has been implemented in these codes.

The next important decision to be made is the type of coupling to use between the several codes. If
the parts of the system being simulated by the different codes are tightly coupled, i.e., have similar
response times, then synchronous coupling should be used. If the parts of the system being simulated by
the different codes are not tightly coupled, then asynchronous coupling can be used. Based on these
considerations, semi-implicit coupling (a type of synchronous coupling) would be recommended for
coupling COBRA-TF and RELAPS-3D for the simulation of the reactor core, reactor vessel and primary

coolant system in order to preserve the numerical stability of the resulting coupled calculation and explicit,
asynchronous coupling would be recommended for the coupling of RELAP5-3D to the CONTAIN code
for the simulation of the containment response. Because the response of the containment depends upon the
mass and energy input to the containment through the break, the sequential subtype of explicit
asynchronous coupling would be recommended for coupling RELAP5-3D to the CONTAIN code because
it conserves mass and energy between the two codes.

3 R5EXEC Program

The RSEXEC program is used to initiate, control, and terminate the execution of a coupled
computation on a virtual machine. The input file for the RSEXEC program contains all of the information
about the coupled computation whereas the input files of the coupled codes only contain the information
needed to simulate their respective portions of the coupled computation. There are five sections in the
input file for the RSEXEC program. These sections are delimited by the keywords ‘virtual’, ‘simulation’,
‘processes’, ‘messages’, and ‘timesteps’. Comments may be included in the input file and are marked by a
sharp, i.e., ‘#’, at the beginning of the line. Lines (or cards for older users) may contain up to 256
characters. Figures 5,6,7, and 8 contain examples of input files for the several types of coupling. These
files will be discussed in detail in their appropriate sections.

Each section of the input file begins with the reserved keyword by itself on a line in the input file.
The lines that follow a keyword are considered part of that section until another keyword is encountered in
the input file. The data in the input lines are interpreted as blank delimited words. Some of the data items
entered by the user in one section of the input deck become user defined keywords in subsequent sections
of the input file. All reserved keywords in the RSEXEC input file must be in lower case. All other
character data in the RSEXEC input file can be in either case as appropriate. For example, the command
line parameters for RELAP5-3D must be in lower case but the name of the RELAP5-3D executable file
can be in either case.

3.1 Virtual Section

The “virtual” section of the input file is optional and, if present, describes the computers that are to be
used in executing the coupled simulation. If this section is absent, the virtual machine consists of the
computer executing the RSEXEC program. There can be three types of input lines in the ‘virtual® section
of the input file. The first type of input line is required if this section is included in the input file. This type
of line begins with the name of a computer that is to be used in the coupled simulation. More than one line
of this type can be included in the input file. The names of the several computers become user defined
keywords in the ‘processes’ section of the input file. The other two types on input lines begin with the
keywords ‘wait’ and ‘write’ respectively. The lines with the keywords ‘wait’ and ‘write’ are optional. Each
type of input line will be described in the following subsections.

3.1.1 Keyword ‘machine’

The ‘machine’ keyword is a user define keyword and multiple ‘machine’ keywords may be defined
in the ‘virtual’ section of the input deck. The values of the ‘machine’ keywords are the names of the
computers that are to be used in the coupled simulation. Each computer is described on a single line with
the network name of the computer appearing first followed by keyword parameters containing options for

the virtual machine.

Commonly used options are wd and ep where each option is followed by a user define directory. The
wd option specifies the working directory that contains the input files for the simulation codes and is the
default location for any output files from the simulation code. The ep option specifies the execution path
where the executable file for the simulation code is located. Other parameters may be found in the PVM
documentation. If the wd and ep options are omitted, the default working directory and default execution
path are the directory from which the RSEXEC program is executed. For options that specify directories,
each option may specify a different directory. Figure 5 shows the template file for one of the installation
test cases. The character string ‘MACHINE’ in Figure 5 has been used as a placeholder for the actual
machine name in this template. The character string “WHERE’ is a placeholder for the user defined
location of a directory specified by the wd and ep options. The placeholders are modified by the
RELAPS5-3D installation scripts to insert the name of the computer used for the installation of RELAP5-3D
and the directory from which the installation script executes the coupled installation test cases.

3.1.2 Keyword ‘wait’

There are two optional parameters that may be included in the “virtual® section of the RSEXEC input
deck. The first option uses the keyword ‘wait’ and is followed by a real number defining the global wait
time. The global wait time is the number of seconds that any task must wait to receive a message from
another task, including the RSEXEC task.

All data communication between tasks uses a handshake protocol in which a task sends a message to
another task and then listens to receive an acknowledgment from the task to which it sent the message
verifying that the other task has received the message. Alternately, a task listens to receive a message from
another task and then sends an acknowledgment to the task that sent the message verifying to the sender
that the message had been received. If a message has not been received within the wait time when waiting
to receive a message or an acknowledgment has not been received during the wait time after sending a
message, the simulation is terminated after writing a timeout error message. The timeout avoids deadlock
situations where either all codes have sent a message and are waiting to receive an acknowledgment or
where all codes are listening to receive a message that never arrives. The default global wait time is -1.0
seconds and is used by all tasks if not specifically overwritten later in the input file where a wait time of
-1.0 means that all codes will wait indefinitely.

3.1.3 Keyword ‘write’

The other optional parameter uses the keyword ‘write’ and is followed by a filename. When a task is
executing in the virtual machine, any output that would normally be written to the computer screen (called
stdout in UNIX/LINUX) is collected in a file named pvml.<user number> located on the /tmp directory
where <user number> is the id number of the person executing the RSEXEC program. The filename and
location are for UNIX/LINUX type operating systems. Consult the PVM documentation for the name and
location of this file on WINDOWS operating systems. The user may specify another directory for the pvml
file instead of the /tmp directory by specifying a directory using the PVM_TMP environmental variable.
Alternately, the user may specify either a relative path name or full path name for this output file using the
‘write’ keyword. This file, however specified, will be used for the stdout from all coupled codes unless
different files are specified for each code in the ‘processes’ section of the input file. See Figure 5 (on page

30) for an example of specifying the global stdout file.

3.2 Processes Section

The next section of the input file for the RSEXEC program is the ‘processes’ section. This section of
the input file specifies the several codes that are to be used in the coupled simulation. This section is
divided into subsections delimited by the network names of the computers specified in the ‘virtual® section.

3.2.1 Keyword ‘machine’

Each subsection begins with a user defined ‘machine’ keyword that was defined in the ‘virtual’
section of the input file. Each subsection contains lines specifying the codes to be executed on that
computer. Within each subsection, each code is described on a single line where the code described on
each line becomes a task in the virtual machine. The line begins with a descriptive name for the task,
followed by the type of time step control for the task (either synchronous or asynchronous), followed by
the name of the executable file for the particular simulation code, finally followed by any command line
parameters needed by that particular simulation code. There should be a subsection for each of the
computers listed in the ‘virtual’ section of the input file. The descriptive name for each executing code
becomes a user defined keyword in the ‘messages’ section of the input file.

3.2.2 Keyword ‘writes’

The output that would normally be written to the global stdout file specified in the virtual section of
the input file may be directed to individual files by including lines in each subsection of the tasks section
containing the keyword ‘writes’. These lines are optional and begin with the descriptive name of a task
followed by the keyword ‘writes’ followed either the relative pathname or the absolute pathname of the file
that is to contain the output from the code named by the first word on the line. Files described by a relative
pathname will be written to the path beginning at the working directory.

3.2.3 Keyword ‘uses’

Finally, another optional line includes the keyword ‘uses’. This line begins with the descriptive name
of a task followed by the keyword ‘uses’ followed by an integer followed by the reserved keyword
‘threads’. This line is used to specify the number of threads that the task is to use when and if the task has
been programmed to use multiple threads of execution in its computations. If this line is absent for a given
task, the default value of zero is sent to the task. A value of zero indicates that the task should decide for
itself how many threads to use for its computations. RELAP5-3D has been programmed to use multiple
threads of execution as indicated by the inclusion of OpenMP directives in the code source with the
maximum number of threads set to minimum of the number of CPUs in the computer on which the task is
executing and a value of 4.

3.3 Simulation Section

The next section of the input file is the ‘simulation’ section of the input file. This section begins with
the keyword ‘simulation’ on a single line. This section of the input file is optional as there are default
values for the parameters specified in this section. Each parameter is specified on a single line and each
line begins with a keyword.

3.3.1 Keyword ‘name’

The first keyword in this section of the input deck is ‘name’ and is followed by a character string of
up to 80 characters in length. This string is written to the restart files of the coupled codes for initial
simulation runs and is compared to the string written on the restart files for restart runs. If the ‘name’ string
in a restart file is not the same as the ‘name’ string in the RSEXEC input deck for a restart run, a warning
message is written to the output file of the simulation code and the restart run continues as if the names
matched. If this string is not included in the input file for the RSEXEC program, a string of 80 blank
characters is used as the default simulation name.

3.3.2 Keywords ‘restart time’

The second keyword is ‘restart time’ and can be used to specify the simulation time at which to begin
a restart run. This parameter is optional and if absent, a default value of 0 is sent to coupled codes. This
indicates that an initial run is intended. A non-zero value indicates a restart run that is to start from the time
specified. A value of -1.0 for the restart time designates that the restart is to occur from the last restart
record on the restart file. As implemented in RELAP5-3D, the mode indicated by the value of the restart
time, either an initial or a restart run, overrides the mode set in the RELAP5-3D input deck. A warning
message is written to the RELAPS5-3D output file if the modes do not match and code execution continues.
A mismatch in the modes between the mode specified in the RSEXEC input file and the input files of the
coupled codes may cause subsequent errors and code failure.

3.3.3 Keywords ‘start time’

The third keyword is ‘start time’. This optional parameter can be used to set the start time of an initial
simulation or to reset the simulation time in a restart run. The default start time for an original run is zero
seconds, and the default start time for a restart run is the restart time. In RELAPS5-3D, the start time is reset
to 0 when performing a restart run and switching from steady state mode in the restart file to transient
mode for the restart. The start time option can be used to ensure that all of the coupled codes use the same
start time. If this parameter is omitted from the input deck, the default start time is used.

3.4 Messages Section

The next section of the input file is the ‘messages’ of the input file. This section of the input file
specifies the data that are to be exchanged between the codes executing on the ‘virtual’ machine. This
section of the input file is subdivided into subsections beginning with the keywords ‘explicit’ for explicit
coupling, ‘semi-implicit’ for semi-implicit coupling, ‘kinetics’ for kinetics coupling, and ‘control system’
for coupling of control system models. The input lines in each subsection specify the data that are to be
exchanged between pairs of tasks. The names of the tasks are the user defined keywords that were
specified in the ‘processes’ section of the input file. Each line begins with the name of a task as defined in
the ‘processes’ section of the input file, followed by the keyword ‘sends’, ‘receives’, ‘awaits’, or
‘preceeds’ followed by the name of another task. Lines containing the keywords ‘sends’ or ‘receives’
specify the data to be exchanged in a message between the named tasks and each message is given a unique
identifier by the RSEXEC program called a message tag.

3.4.1 Keywords ‘sends’ and ‘receives’

The lines that use the keyword ‘sends’ or ‘receives’ are terminated with a string (a series of blank
delimited words) that defines the data that are to be sent or received. For each line that specifies data to be
sent from one task to another there must be a corresponding line that describes how the data that are
received by the second task are to be interpreted by the task receiving the data. The order of the names of
the two tasks in the receive specification is the reverse of the same two task names as defined in the send
data exchange specification. The first send data exchange specification is paired with the first receive data
specification with the same pair of task names as the send specification. Each pair of data specifications
define a single message that is to be exchanged between the tasks, a data exchange being defined as a pair
of messages: the message containing the data followed by the acknowledgment. The string defining the
data to be sent or received is sent by the RSEXEC program to the sending or receiving code and the data in
the string must be understood by the code receiving the data specification string from the RSEXEC
program.

This document describes the format for the data specification string that has been implemented by
the RELAP5-3D code. The data specification string for RELAPS5-3D consists of pairs of words, each pair
consisting of a character string containing the name of a RELAP5-3D variable followed by a fully
qualified volume, junction, or component number, or a character string containing a component name as
found in the input deck for that particular RELAPS5-3D task followed by a volume or junction number
within the component named. When a RELAP5-3D component name is used in the data specification,
RELAPS-3D replaces the component name with a internally defined list of variable names, where the
variable names used depend upon whether a volume component or junction component was named. Each
code has its own way of specifying the data items in a particular message. The total number of individual
data items specified in a ‘sends’ data specification, either data items named specifically using variable
names or data items named implicitly using a component name, must be the same as the total number of
items named in the corresponding ‘receives’ data specification.

3.4.2 Keyword ‘awaits’

In addition to the data specification lines in the messages section of the input file, additional lines
containing the keyword ‘awaits’ may be included. This line contains a pair of task names separated by the

10

keyword ‘awaits’ and the second task name is followed by a real number that defines the wait time for
messages that are to be sent from the second task to the first task for either a data message or an
acknowledgment. Two lines containing the same pair of task names but with the names reversed in the
second line may be entered but with different wait times. These lines define the wait times for individual
messages and allow the wait time for a data message to be different from the wait time for its
acknowledgment.

3.4.3 Keyword ‘preceeds’

Finally, one additional line may be included in the message specification section for explicit
coupling. This line contains the keyword ‘preceeds’ separating a pair of task names. This line specifies that
the pair of tasks named are using sequential explicit coupling and the first task named is the leader in the
sequential explicit coupling and that the second task named is the follower in the sequential explicit
coupling. If this line is not entered for a pair of tasks, parallel explicit coupling is assumed.

3.5 Timesteps Section

The last section of the input file is the ‘timesteps’ section. This section of the input file specifies the
time steps that are to be used for synchronous coupling or the data exchange intervals for asynchronous
coupling. There can be any number of time step cards and each input card defined an interval of time
during the simulation. The cards use the same data as the RELAPS5-3D time step cards for specifying the
intervals. Each card begins with the end time of the interval, followed by the minimum and maximum time
step sizes allowed during the interval. These items are followed by a packed word specifying whether extra
printed output should be produced by synchronously coupled codes, finally followed by four integers that
specify the frequency of minor edits and writes to the plot file, the frequency of major edits, the frequency
of restart writes, and the frequency of explicit data exchanges. The packed work is equivalent to the ‘dtt’
bits of the control work on the time step cards for RELAP5-3D (See Section 3 of Appendix A of Volume II
of the RELAP5-3D manual).

The output frequencies are converted to time intervals by multiplying them by the maximum time
step size. The output times for minor edits, major edits, and restart writes determined by these lines
supersede the output times determined from the information contained in the input decks of the coupled
codes for synchronous coupling. Also, the maximum and minimum time step sizes as well as the packed
word defining extra output on these cards supersede the internally defined values for synchronously
coupled codes. Only the restart write times supersede the internally defined output times for
asynchronously coupled codes (the explicit exchange intervals are not determined locally). The end of
interval time on the last line in this section defines the end time of the simulation. The input lines should be
entered with increasing end time on each card.

The output intervals are converted into time targets that define points in time that the codes should
reach by the adjustment of their time step sizes. The RSEXEC program performs the time step adjustments
for synchronously coupled codes and the time step is adjusted locally for asynchronously coupled codes. It
is recommended that the end of interval time on each time step card be an even multiple of the maximum
time step size in each time interval and that the end of interval times and the maximum and minimum time
step sizes in each interval be the same for the RSEXEC program and all of the coupled codes. This is
recommended because the time step selection logic in the RSEXEC program (for synchronously coupled

11

codes) and in RELAP5-3D (for asynchronously coupled codes) will reduce the time step size if the time
targets are too close together where RELAPS5-3D does not tolerate large time step reductions very well.

4 Examples of Coupled Simulations

This section of the report discusses examples of the several types of code coupling using the
installation test cases that are included as part of the distribution of the RELAP5-3D code. Each test case
demonstrates some aspect of the coupling methodology and consists of two instances of RELAP5-3D
coupled together. There is an uncoupled analogue for some of the coupled test cases so that the results of
the coupled and uncoupled test cases can be compared to verify that the coupled test case reproduces the
results of the uncoupled test case. Each coupled test case utilizes three input decks, one input deck for the
RSEXEC program and an input deck for each of the two instances of RELAP5-3D.

The input deck for the RSEXEC program is built using a template file that is modified to include the
name of the computer on which the test case is being executed and to include the working directory and
execution path from which the RSEXEC program is being executed. The string ‘MACHINE’ in the
template file is replaced by the name of the computer where the test case is being executed and the string
‘WHERE’ is replaced by the name of the directory containing the input file (See Figure 5 (on page 30) for
an example of a template file). The output files will be written to the working directory. It is assumed that
the RELAPS-3D executable is located in the same directory. This is not required by the PVM methodology
and the working directory and the execution path may be different at the user’s discretion. In these
examples all input file names begin with the string ‘pvm’ followed by a three to five character string
describing the test case followed by a single letter, ‘x’ for the input files for the RSEXEC program, and
other single letters for the RELAP5-3D input decks that describe their roles in the coupled test case. The
input files have the file extension ‘i’ designating an input file and the template file has the extension ‘ii’.

4.1 Explicit Coupling

Explicit coupling is characterized by the fact that the data that are received by a coupled code are
held constant during the time step advancements of that code until new data are received. Explicit coupling
can be either synchronous where data are exchanged each and every time step or it can be asynchronous
where data are exchanged at fixed intervals. Synchronous coupling means the analysis programs use the
time step sizes calculated by RSEXEC whereas asynchronously coupled codes may choose their own time
step size independently so that each one of the asynchronously coupled code may use a different set of time
steps to arrive at the same point in time, i.e., the time target, to perform the next data exchange.

Two forms of explicit coupling have been implemented using the PVM coupling methodology, i.c.,
parallel explicit coupling and sequential explicit coupling. In parallel explicit coupling, the coupled tasks
are peers and can be advanced in time in any order. In sequential explicit coupling, one task, the leader
task, must be advanced first over the coupling interval to compute the fluid flow rates in the coupling
junctions between the two domains. Once the leader task has computed the flow rates in the coupling
junctions, it sends the flow rates to the follower task which then uses the flow rates as its boundary
condition and advances through the coupling interval. Sequential explicit coupling is guaranteed to
conserve mass and energy between the two coupled codes because the flow rates in one code are the same
as the flow rates in the other code during the same coupling interval. Mass and energy are not conserved in
the simplest implementation of parallel explicit coupling because the flow rates computed in the coupling

12

junctions in the separate input decks of the two coupled tasks that represent the connection between the
coupled domains are computed independently by the two tasks. The results of these independent
computations will be different even if the geometry of the junctions are the same in the two tasks and the
same code is used to simulate each portion of the coupled system. This is a consequence of the fact that in
one task the upstream pressure for the coupling junction will change during the time step advancements
because the upstream volume is in the interior of the computational domain for that task while the
downstream pressure, being the value received from the other task, will remain constant during the
advancements. In the other task it is the upstream pressure that remains constant over the advancements
while the downstream pressure changes. This difference in the time levels for the pressures used in the
computation of the flow rates in the coupling junction ensures that the flow rates computed by the two
coupled codes will be different.

4.1.1 Parallel Explicit Coupling

There are several installation test cases that use parallel explicit coupling. All of these test cases use
asynchronous coupling. The pvmeda series of test cases are based on the edhtrk (Edward’s pipe
blowdown) uncoupled test case where the 20 volume pipe in the uncoupled test case was divided into two
10 volume pipes for the coupled test cases. Figure 4 (on page 29) shows a diagram of both the uncoupled
test case and its coupled counterpart. The dashed arrows show the data exchanges between the two codes.
The schematic shows that the junction between the two halves of the test section in the uncoupled test case,
i.e. the junction between volumes 10 and 11 in the uncoupled test case, is represented by two junctions in
the coupled test case, junction 4 in the ‘child’ input deck and junction 104 in the ‘parent’ input deck. The
junctions must be oriented in the same direction because each task must interpret a positive velocity in the
junction in the same way, i.e., as out of the ‘child” domain and into the ‘parent’ domain. If the velocities in
the junction are not being exchanged between the two tasks, the junctions can be oriented independently.
This test case also illustrates that a component, either a volume or a junction, whose conditions are sent to
another task is an ‘active’ component whose fluid conditions are computed by the solution of the
conservation equations. In contrast, the components that receive conditions from another coupled task are
‘passive’ or boundary components, whose conditions are specified by the user for uncoupled problems.

The test cases include two initial runs and two restart runs. There are three input decks for each test
case: the input deck for the RSEXEC program and the two RELAP5-3D input decks. The input decks for
the RSEXEC program are built using template files, Figures 5 through 8 (see pages 30 through 33). The
two initial runs demonstrate the use of the default start time and the specified start time options in Figure 5
(on page 30) and Figure 6 (on page 31) respectively. The two restart runs demonstrate a restart from a
specified restart time during the initial run and a restart from the last restart record on the restart file
generated by the initial run, Figure 7 (on page 32) and Figure 8 (on page 33) respectively. Figures 7 and 8
for the restart runs show that the entire RSEXEC input file must be entered for a restart run. This is in
contrast to RELAP5-3D where only a minimal input file is needed for a restart run because most of the
required data are read from the restart file. The RSEXEC program does not produce a restart file so the user
must re-enter all of the data needed for the restart run.

The template files are modified during the installation task to include the name of the computer being
used to execute the coupled test case and to include the location of the working directory and execution
path for the test cases. The template file assumes that the working directory and the execution path are the
same. Figure 5 shows the template file for the pvmedax test case. This is an initial run and is the basis for

13

the two restart runs. The template file for the other initial run, pvmedalx, is shown in Figure 6. The
template files are identical except for the start time option. Test case pvmedax uses a default start time of
zero seconds, and the pvmedalx test case uses a specified start time of 0.0001 seconds.

Figure 5 shows that the descriptive names of the two coupled instances of RELAP5-3D, lines 9 and
11 in the ‘processes’ section of the input files are user defined keywords in the ‘messages’ section of the
input file that describe the data exchanged between the two codes. The ‘messages’ section of the input file
shows that there can be different numbers of messages sent from one coupled code to another coupled code
and that the messages may contain different numbers of data items. The task named ‘parent’ sends four
messages to the task named ‘child” whereas the task named ‘child’ only sends two messages to the task
named ‘parent’. The send and receive message lines have been listed together so that the number of data
items can be compared and so that the user might more easily compare the specifications for the individual
data items. Line 15 in Figure 5 shows that the first data item in the first message that the ‘parent’ task sends
is to be the pressure in volume 1 of component 103 and line 16 shows that the ‘child’ task is to interpret the
first data item in the first message received as the pressure in volume 1 of component 5. The two data items
use the same format for specifying the data item because the two coupled codes are both instances of
RELAPS-3D. If one of the coupled codes had not been RELAP5-3D, the character string specifying
pressure might be the string ‘pres’ instead of ‘p’ and the location specifier might be the number 10301 or
the string 1,103 instead of the number 103010000. The point is that the data specifiers are simulation code
specific and have meaning only to that particular code.

The absence of the keyword ‘preceeds’ in the tasks section of this file designates the coupling is
parallel explicit coupling rather than sequential explicit coupling. It is recommended that the specification
for a receive message should follow immediately after the specification for the corresponding send
message so the number of data items in each specification can be compared and checked that the data items
being sent are correct and are being interpreted correctly in the receive message.

The input file shown in Figure 5 shows the use of the ‘write’ and ‘writes’ keywords to redirect the
standard output from the RSEXEC code and the two instances of RELAP5-3D from the default output file
to individual files.

Figure 9 (on page 34) and Figure 10 (on page 35) show a portion of the RELAP5-3D output files for
the ‘parent’ and ‘child’ tasks. These figures show the description of the data items in each message sent or
received by each code along with the message tag that is assigned to each message by the RSEXEC
program. This printout provides another opportunity for the user to verify that the messages contain the
information intended.

4.1.2 Sequential Explicit Coupling

There are two test cases that illustrate the use of sequential explicit coupling; pvmedsx and
pvimeds10x. These two test cases are similar to the pvmeda test cases and are identical except for the
explicit coupling exchange frequency. Test case pvmedsx exchanges data with a frequency of one and
pvmeds10x exchanges data with a frequency of ten. The data exchange frequency should be chosen so the
flow rates do not change too much over the coupling interval where ‘too much’ depends upon the transient
being simulated and the tightness of the coupling between the two domains. The geometry and components
are the same as the pvmeda test cases. Figure 11 (on page 36) shows a diagram of the test cases where the

14

arrows show the data exchanges. It is unfortunate that the leader task, i.e., the task that ‘preceeds’ the other
task, is named ‘leader’ and the follower task is named ‘follower’ because it conflates the name of the tasks
with their roles in the coupling. The leader task sends junction data to the follower task and the follower
task sends volume data to the leader task. This is in contrast to the pvmedax test case in which both
coupled codes send volume data to the other code.

Figure 11 (on page 36) illustrates an important difference between sequential and parallel explicit
coupling. In sequential explicit coupling, the coupling junction in the two coupled tasks, junction 104 in
the leader task and junction 4 in the follower task, must observe the same junction orientation. If the
coupling junction is oriented so that positive flow in the junction is OUT of the computational domain in
one coupled task, then the coupling junction in the other task MUST be oriented so that positive flow in the
junction is INTO its computational domain. Alternately, if the coupling junction is oriented so that positive
flow in the junction is INTO the computational domain in one task, then the coupling junction in the other
task MUST be oriented so that positive flow in the coupling junction is OUT of its computation domain.
The RSEXEC coupling system does not impose any convention in the orientation of the coupling junctions
in sequential explicit coupling except that the junction orientation be consistent. It is the responsibility of
the user to ensure that the orientations are consistent in the input decks of the two coupled tasks. In
contrast, the implementation of semi-implicit coupling imposes a sign convention on the orientations of the
coupling junctions that will be explained in Section 4.2.

Figure 12 (on page 37) lists the input deck for the pvmedsx test case. The input deck is very similar to
the input deck for the pvmedax test case except for the ‘messages’ section. First, the ‘messages’ section
contains the keyword ‘preceeds’ to designate that this test case uses sequential explicit coupling instead of
the default parallel explicit coupling. Secondly, the data specifiers in the send and receive messages use
component names and volume or junction numbers within the component instead of specifying individual
data items. Component names and volume or junction numbers within the component MUST be used for
sequential coupling but their use is optional in parallel explicit coupling where individual variable names
and locations can be used. The component names are shown in parentheses below the component type and
number in Figure 11. Component 5 in the follower task is shown using a dashed line to indicate that it must
be present in the RELAP5-3D input deck to form a complete system for RELAP5-3D but it is not used in
the solution of the conservation equations for the follower task. RELAP5-3D expands a component name
into a internally defined list of variables for that component where the list is different for volume
components and junction components. Figure 13 (on page 38) and Figure 14 (on page 39) show a portion
of the RELAPS5-3D output files for this test case. The figures show the result of the expansion of the
component name and number into a list of variables.

4.1.3 Heat Structure Coupling

The coupling that has been discussed in the previous sections involves dividing a thermal-hydraulic
system, that is, a self-contained network of volumes and junctions, into two or more pieces and simulating
the separate pieces in different coupled codes. Heat structure coupling involves coupling separate
thermal-hydraulic systems using the heat flux through the solid structures whose surfaces contact fluids in
different fluid systems. For example, the primary side of a steam generator is connected to the secondary
side of the steam generator by the heat flux through the tubes in the steam generator. The primary coolant
loops of a reactor system are coupled to the containment by the heat fluxes through the reactor vessel walls
and the walls of the coolant piping. This type of coupling can be accomplished by modeling the heat

15

structure that connects the two systems in the input decks of the coupled codes. These heat structures touch
the fluid in their respective computational systems on only one side. The heat flux and the temperature on
the surface of the heat structure that touches the fluid are computed by the internally coupled heat
conduction and thermal-hydraulic model if a boundary condition can be supplied to the other side of the
heat conductor by the other RSEXEC coupled code. One code uses a surface heat flux as its boundary
condition and the other code uses the surface temperature as its boundary condition. Either parallel explicit
coupling or sequential explicit coupling can be used to exchange the heat flux data and temperature data
between the coupled codes. However, if sequential explicit coupling is used, it is recommended that the
leader task compute and send the surface heat flux to the follower task and that the follower task send the
surface temperature to the leader task so that energy would be conserved between the two tasks.

Figure 15 (on page 40) shows a diagram of heat structure coupling through a tube wall in an
uncoupled simulation and in the equivalent coupled simulation. The hashed area represents the heat
structure. In the uncoupled simulation, fluid touches the heat structure on both surfaces and convective
boundary conditions are used on both sides of the heat structure. In the coupled simulation the fluid in the
primary task only touches the fluid on one side of the heat structure, the inside of the tube for a steam
generator tube, and the fluid in the secondary task only touches the fluid on the opposite side of the heat
structure, the outside of a steam generator tube. A convective boundary condition can be used for the
surfaces that touch the fluid and the boundary condition must be specified, i.e., specified by the user or by
another task, on the other side of the heat structure. In this case, the boundary condition must be specified
on the outside of the tube in the primary task and on the inside of the tube in the secondary task.

The choice of which boundary condition to use for each task, either a surface heat flux or a surface
temperature, is up to the user, and both boundary conditions can be the surface temperature, or both
boundary conditions can be the surface heat flux, or a combination of surface temperature or surface heat
flux can be used. It is recommended that one task use a surface heat flux and the other task use a surface
temperature. This ensures that the energy out of one fluid system into the heat conductor is the same as the
heat flux into the heat conductor in the other system, thus conserving energy. In RELAP5-3D the surface
heat flux and surface temperature can be accessed directly for sending to a coupled task but RELAP5-3D
cannot use the values received from another task as boundary conditions for its heat structures. The values
received from the other task must be stored in a general table since only general tables can be used to
specify a non-convective boundary condition for a heat structure in RELAP5-3D.

4.2 Semi-Implicit Coupling

The other type of thermal-hydraulic coupling is semi-implicit coupling. Semi-implicit coupling is a
type of synchronous coupling. All of the tasks participating in semi-implicit coupling must be defined as
synchronous tasks in the ‘processes’ section of the input file of the RSEXEC program. Semi-implicit
coupling is characterized by the fact that changes in the conditions in one of the coupled domains during its
time step advancement are felt in the other coupled domain during the same time step. This tight coupling
of the conditions in the two domains eliminates the sonic Courant stability limit that is present in explicit
thermal-hydraulic coupling.

The data to be exchanged between the two domains are specified in the section of the input file for

the RSEXEC program that begins with the keyword ‘semi-implicit’. The data is defined by specifying the
component name and the volume or junction number within that component for the coupling of

16

RELAP5-3D to another code. The method of specifying the data that the other code is to send to
RELAP5-3D or receive from RELAPS5-3D is code specific and may be specified in another manner. The
input processor in RELAP5-3D expands the component name and number into a predefined list of data
items. The list of items for volumes is different from the list of items for junctions. One task sends volume
data to the other task and the other task sends junction data back to the first task. The task sending volume
data is designated the master task and the task sending junction data is designated the slave task. The slave
task is responsible for computing the flow rates in the coupling junction using the conditions in the
coupling volume that are received from the master task.

In RELAPS5-3D the simulation model as defined in the input deck is divided into self-contained fluid
systems such as the primary coolant system and a number of secondary coolant systems. Any one of the
fluid systems in a RELAP5-3D simulation may only be connected to a single other task and coupling of a
fluid system in RELAP5-3D to multiple tasks is not allowed, i.e., there can only be one ‘master’ task and
one ‘slave’ task for a fluid system. However, one fluid system in RELAP5-3D may act as the master task
in coupling to another task and a different fluid system in the same RELAPS5-3D model may function as
the ‘slave’ task when coupling. Figure 17 (on page 42) shows a schematic of a semi-implicitly coupled test
case. The lower and upper core components in the master task are placed in the same fluid system by
RELAPS5-3D because they are connected through the bypass component. If the bypass component was
removed, RELAP5-3D would normally put the lower core and upper core components into different fluid
systems. However, because both of these components are coupled to the same task, i.e., the slave task, they
are placed into the same fluid system by RELAPS5-3D.

Figure 16 (on page 41) shows a schematic for the uncoupled version of the ‘pvmcore’ installation
test case and Figure 17 (on page 42) shows the schematic of the coupled version of the same test case. This
test case represents a heated reactor core channel and an unheated bypass channel connected between
upper and lower plenum volumes. The dashed lines in Figure 17 illustrate the data exchanges between the
two tasks. Figure 18 (on page 43) lists the template file for the input deck to the RSEXEC program for this
test case.

The coupling boundary components in the master task (the time dependent volume and attached
single junction in Figure 17) are passive components because the conditions in these components are
computed by the slave task and are sent to the master task. The coupling boundary components can be
either time dependent junctions and time dependent volumes whose conditions are normally supplied by
the user in tables or they can be single volumes and single junctions. Single volumes and single junctions
are normally active components, i.e. their conditions are computed as part of the solution algorithm, but
they are converted into passive components in coupled simulations if their conditions are received from
another task. Any combination of these coupling boundary components can be used in the master task.

The coupling boundary components in the ‘pvmcorep’ input deck, the input deck for the master task
in the ‘pvmcore’ test case, are time dependent volumes and single junctions as shown in Figure 17. The
coupling boundary components in the pvmnds.i input deck (the input deck for the master task in the
‘pvmnd’ coupled test case that is a test case for combined semi-implicit thermal-hydraulic coupling and
nodal kinetics coupling) are also a combination of time dependent volumes and single junctions (See
Figure 21 (on page 46)). The coupling boundary components in the ‘pvmnonc’ coupled test case (not
discussed in this report) are time dependent volumes and time dependent junctions in the master task.
These test cases illustrate the different combinations of volume and junction components that may be used

17

as coupling boundary components when RELAP5-3D is used for the master task of semi-implicit coupling.
It is recommended that the coupling boundary components in the master task be time dependent volumes
and time dependent junctions to emphasize that these components are passive components.

The coupling boundary components in the slave task must be active components, i.e., they must be
single volumes and single junctions whose conditions are computed as part of the time step advancement
when RELAPS5-3D is used for the slave task. The conditions in the coupling boundary components in the
slave task are sent to the master task after they are computed during the time step advancement in the slave
task. If a task is functioning as the master task in the coupling of a computational system, it can only send
volume data to its corresponding slave task and if a task is functioning as the slave task, it must only send
junction data. A mixture of volume data and junction data in the messages that the master task sends to or
receives from its slave task is not allowed and vice-versa. The three test cases illustrate all of the
combinations for the coupling boundary components for the master task in semi-implicit coupling.

The only requirement that is imposed on the input decks of the coupled tasks is that the coupling
junctions in the master task be oriented such that a positive flow rate in the junctions indicates flow INTO
the domain represented by the master task and conversely, that the coupling junctions in the slave task be
oriented such that positive flow in the coupling junction represents flow OUT of the domain represented by
the slave task. This is shown in Figure 17 where the arrows representing the coupling junctions show the
proper orientation. This is different from the requirement for junction orientation in sequential explicit
coupling where it is only required that the orientation of the junctions be consistent between the coupled
codes.

Finally, the input decks for RELAP5-3D semi-implicitly coupled codes must be valid input decks,
capable of uncoupled execution. The coupling boundary volumes in the master task shown in Figure 17 are
shown in dashed lines to indicate that their conditions are never used in coupled problems but that they
must be included in the RELAPS-3D input deck to satisfy the RELAP5-3D input processor. If these
coupling boundary volumes are not present in the RELAP5-3D input deck, the code will terminate at the
end of input processing with an input error.

4.3 Kinetics Coupling

Kinetics coupling is a specialized type of explicit coupling in which one of the coupled codes
computes reactor power using either a point kinetics or nodal kinetics model and the other coupled codes
use the computed reactor power in their computations. The code performing the kinetics computation is
designated as the ‘server’ task and the other codes are designated as the ‘client’ tasks. Kinetics coupling
may be either synchronous or asynchronous but only synchronous kinetics coupling has been implemented
by the RSEXEC program at this time. The kinetics code needs thermal-hydraulic fluid conditions in the
volumes and heat structures that represent the reactor core to perform its computations. The kinetics
coupling as implemented in the RSEXEC program expects the client tasks to perform their
thermal-hydraulic computations at the beginning of a time step using the reactor power data received from
the server task at the end of the previous time step. After the client codes advance their thermal-hydraulic
models, they send the required thermal-hydraulic conditions to the server task and listen to receive the
computed reactor power data. Before beginning the kinetics computations of a time step advancement the
server task listens to receive the thermal-hydraulic conditions from the client tasks, then advances the
reactor power using the thermal-hydraulic conditions received from the client tasks. The thermal-hydraulic

18

conditions received from the client tasks are used by the server task to compute the reactivity for point
kinetics or the neutron cross sections for nodal kinetics. Once the server task has completed its time step
advancement it sends the newly updated reactor power to the client tasks.

The data that are to be sent from the client tasks to the server task consist of predetermined sets of
fluid conditions in the specified volumes in the thermal-hydraulic model of the client task or a single value,
presently defined as the volume averaged temperature in a heat structure, in the specified heat structures in
the client system model. The volumes are designated using the component name and volume number and
the volume averaged temperature is designated by the use of the keyword ‘heatstr’ and the fully qualified
heat structure number, where fully qualified means using the heat structure component number and heat
structure number within the heat structure component as described in Section 4.8 of the RELAP5-3D input
description (Appendix A of Volume II of the RELAP5-3D manuals).

The power data that the server task send to the client tasks consist of a set of five values for point
kinetics or sets of five power values for nodal kinetics. The power data consist of the total power, the
fission power, the total gamma power, the gamma power from the decay of fission products, and the
gamma power from the decay of actinides. The actinides are Neptunium 238 and Plutonium 239 produced
by neutron absorption in Uranium 238. The power for point kinetics is specified by the use of the keyword
‘power’ with the parameter 0 (zero) and the sets of power data are specified by the use of the keyword
‘zone’ for nodal kinetics power data with the parameter being the zone identification number. The zones
are defined in the input data for the kinetics model of the server task.

A ‘zone’ is a mapping between the volumes and heat structures in a thermal-hydraulic model and the
computational nodes in the kinetics model. A zone contains one or more volumes and heat structures from
the thermal-hydraulic model and one or more nodes from the kinetics model. The point kinetics model can
be considered a kinetics model having only one zone that encompasses the entire reactor core. The
conditions in the volumes of a zone are used to compute a weighted average set of fluid properties for the
zone and the conditions in the heat structures in a zone are used to compute a weighted average structure
temperature for the zone. The fission power in the zone is the summation of the fission powers in the
kinetics nodes in the zone. The other powers in the zone are computed by the decay heat model using the
total fission power in the zone.

The volume data that are to be received by the server task are defined using the keyword ‘volume’
and the parameter is a user defined value that must be distinct from the identifiers for the volumes in the
thermal-hydraulic model in the server task. When RELAPS5-3D is the server, the volume parameters must
be numbers less than 1000000. Similarly, the heat structure temperatures to be received by the server task
are defined using the keyword ‘heatstr’ and parameter values less than 10000. If RELAP5-3D is the server
task, the reactor power may also be determined using a power table or control variable. These two options
are specified using the keywords ‘tableout’ and ‘cntrlvar’ respectively. If these options are used, the five
power values sent by the server task are all the same value, the output value from the table or control
variable.

The implementation of the kinetics coupling has been verified using two sets of test cases, one set of
test cases for point kinetics and one set of test cases for nodal kinetics. Each set consists of two test cases,
an uncoupled test case and a coupled test case. All test cases are based on the thermal-hydraulic model in
the ‘typpwr’ installation test case. Figure 19 (on page 44) shows a schematic of the uncoupled test case

19

(test case ‘pvmnd’) used to verify the implementation of the kinetics coupling. Figure 20 (on page 45)
shows a detailed view of the reactor vessel for the uncoupled test case and Figure 21 (on page 46) shows
the schematic of the reactor core for the coupled test case (test case ‘pvmndx’) that uses semi-implicit
coupling for thermal-hydraulic coupling. The middle four volumes and heat structures of the reactor core,
i.e., pipe 335 in the uncoupled model, have been removed from the input model for the server task and
have been moved to the input model for the client task. The coupled test case uses semi-implicit coupling
of the thermal-hydraulic model in the server task to the thermal-hydraulic model in the client task. The
server task is the master task for semi-implicit coupling and the client task is the slave task for
semi-implicit coupling. Figure 22 shows a schematic of the nodal kinetics model in the server task. The
figure shows the core model for the uncoupled version of the test case on the left and the coupled version
of the test case on the right. Each zone has a single volume and a single heat structure but zones can have
multiple volumes and multiple heat structures. The middle four zones in the server task are shown as
having phantom volumes and heat structures because these volumes and heat structures do not exist in the
thermal-hydraulic model for the server task. Their conditions are computed by the thermal-hydraulic
model in the client task. The arrows in Figure 22 show the thermal-hydraulic data flow between the client
task and the server task.

The point kinetics test cases are the ‘pvmpt’ test cases and the nodal kinetics test cases are the
‘pvmnd’ test cases. The uncoupled test cases use RELAP5-3D input decks pvmpt.i and pvmnd.i
respectively and the coupled test cases use the ‘pvmpts’ (the server task) and ‘pvmptc’ (the client task)
input decks for the coupled point kinetics test case and the ‘pvmnds’ (the server task) and ‘pvmndc’ (the
client task) input decks for the server and client tasks in the coupled nodal kinetics test case. The template
files for the point kinetics and nodal kinetics test cases are ‘pvmptx’ and pvmndx’ respectively. Figure 23
(on page 48) shows the template file for the point kinetics test case and Figure 24 (on page 49) shows the
template file for the nodal kinetics test case.

The figures show that the data to be transferred between the server and client tasks are defined by
pairs of words as is used by explicit and semi-implicit coupling. Remember that the way the data items are
specified to the coupled codes is code specific and that using pairs of words is specific to RELAP5-3D and
may be different when coupling different codes to RELAP5-3D. Figure 24 shows how volume numbers
less than 1000000 and heat structure numbers less than 10000 are used by the server task to receive data
for phantom volumes and phantom heat structures that are not part of its thermal-hydraulic model.

The implementation of the kinetic coupling was verified by comparing the results of the coupled and
uncoupled test cases where identical results were expected and where identical results were computed. The
test cases used for the verification of the kinetics coupling use both thermal-hydraulic coupling and the
kinetics coupling. However, this is not a requirement of kinetic coupling and the server task could be a
pure kinetics code having no thermal-hydraulic model for the reactor core. In this case, all of the
thermal-hydraulic conditions for the reactor code must be obtained from the client code.

20

4.4 Control Systems Coupling

Control system coupling is the last type of coupling and like kinetics coupling is a specialized type of
synchronous explicit coupling. The assumed order of computations is to advance the thermal-hydraulic
model, then advance the kinetics model, and finally advance the control systems model. This is the order of
computations in RELAP5-3D. The control systems coupling in RELAP5-3D is implemented by a new type
of control block called the ‘cplfnctn’ control block. This control block can send data to its analog (the
analogous control component) in another task, and can receive data from its analog in another task. The
control block first sends any data specified by the RSEXEC program and then listens to receive any data
specified. Because the control blocks in a RELAP5-3D control systems model are updated in numerical
order, the sends and receives are not coordinated by the RSEXEC program as is done for parallel, explicit
coupling. The user must be careful in ordering the control blocks in the coupled models so that when a
control block in one task is sending data, the analog in the other coupled task is listening to receive that
data and vice-versa or a deadlock will occur. A deadlock occurs when both tasks are either listening to
receive a message or are both listening to receive the acknowledgment to a message that they have just
sent.

The ‘cplfnctn’ control block in RELAP5-3D can send multiple data items and can receive multiple
data items. The data items that are to be sent must be data items that are defined in the RELAP5-3D input
model. A input error results if the user tries to send a data item that is not part of the RELAP5-3D input
deck. When receiving data items, a control block needs to store the values so that they may be accessible to
the other models in RELAP5-3D. The mechanism chosen for RELAPS5-3D was to use the RELAP5-3D
interactive variables. The user must define at least as many interactive variables as there are values to be
received by the ‘cplfnctn’ control blocks. The variables to be sent or received by RELAPS5-3D for control
systems coupling are specified in the ‘control’ section of the input deck for the RSEXEC program. The
data items are described by the keyword ‘extfnctn’ followed by the control block number of the ‘cplfnctn’
control block in the RELAPS5-3D input deck. This pair of descriptors is followed by pairs of descriptors, a
name string and a integer parameter, that describe a data item in the RELAP5-3D database. As many pairs
of data descriptors are entered as necessary to specify the data items for that ‘cplfnctn’ control block.
Multiple ‘extfnctn’ specifications may be entered on the same line in the input file for the RSEXEC
program. Note that the identifier for a coupling control block in the input files for the RSEXEC program is
the string ‘extfnctn’, which is different from the name of the coupling control block in RELAP5-3D, the
string ‘cplfnctn’.

Two test cases were used to verify the implementation of the control system coupling: ‘pvmes’, and
‘pvmcesx’. Figure 25 (on page 50) shows the schematic of a portion of the control system of the ‘pvmcs’
installation test case, which is the uncoupled analogue of the coupled test case ‘pvmcesx’. This test case is
identical to the ‘edhtrk’ test case that is used as the uncoupled analogue of the ‘pvmedax’ coupling test
case. The thermal-hydraulic coupling in the ‘pvmcsx’ test case is identical to the thermal-hydraulic
coupling portion of the ‘pvmedax’ test case except that the tasks are defined as synchronous tasks instead
of asynchronous tasks. Synchronous coupling is used for the control system test cases because only
synchronous coupling has been implemented for control systems coupling in the RSEXEC program and in
RELAPS5-3D.

A schematic of the control systems in the coupled version of this test case is shown in Figure 26 (on
page 51). The template for the input file for the RSEXEC program for this test case is shown in Figure 27

21

(on page 52). Most of the control system in the ‘pvmcs’ test case is included in the input file for the ‘child’
task of the coupled simulation but control blocks 12 and 13 in the uncoupled test case are moved to the
‘parent’ task. These control blocks in the ‘parent’ task receive their input from the interactive variable
‘extvarl’ which in turn receives its value from ‘cplfnctn’ control block 1. Control blocks 12 and 13 in the
‘child’ task are replaced by a ‘cplfnctn’ control block as shown in Figure 26. This control block sends input
data to ‘cplfnctn’ control block 1 in the ‘parent’ task and receives output data from ‘cplfnctn’ control block
14 in the ‘parent’ task.

Figure 26 illustrates the use of interactive variables to store the values received by the ‘cplfnctn’
control blocks. Interactive variables are specified using the name of the interactive variable and the
parameter 1000000000. It is the parameter 1000000000 that distinguishes a variable as an interactive
variable in RELAP5-3D. The user can verify that the variable named ‘extvarl’ specified in the input file
for the RSEXEC program is defined in the input deck for the parent task, i.e., file pvmcsp.i, and that the
interactive variables specified in the input file for the RSEXEC program for the child task are defined in
the RELAPS-3D input deck, i.e., file pvmcsc.i. The implementation of the control systems coupling was
verified by comparing the output of the uncoupled test case ‘pvmcs’ to the output of the coupled version of
the test case ‘pvmcsx’. The output of the regular control blocks, i.e., the non-coupling control blocks, is
expected to be identical to the coupled control blocks.

5 Coupling Errors

There are many types of errors that can occur in a coupled computation. The coupling methodology
has been designed to detect a number of these errors and fail gracefully. The first type of error that can
occur is that the virtual machine may fail to start up correctly. The PVM software will write a message to
the screen and then terminate. This type of error occurs because another virtual machine is already running
or a previous coupled run failed and that virtual machine was not shut down properly. In either case the
user must clean up the temporary files used by PVM before trying to run again. PVM writes a file named
pvimd.<uid> where the string <uid> is the identification number of the user executing the coupled run. This
file is written by default to the /tmp directory. The user may redirect this file to the directory defined in the
PVM_TMP environmental variable. If this file is present, the virtual machine will fail to start up and the
user must either remove this file or change the location for the file. The virtual machine may also fail to
start up if the user has failed to define the PVM_ROOT and PVM_ARCH environmental variables that
define the location of the PVM software library.

The second type of error is an error in the input processing sections of the coupled codes. The
RSEXEC program sends messages to the coupled codes during their input processing phase to define the
data that are to be exchanged between the several coupled codes. The input processors of the coupled
codes check that the variables named in the messages received from the RSEXEC program exist in the
database of the code and return a failure condition to the executive program at the end of initialization if
the variables are not defined in the input file. Additionally, a coupled code may fail during initialization
because of errors in its input deck. In both of these cases, the code returns a failure condition to the
RSEXEC program. The RSEXEC program displays the initialization status of the coupled codes on the
terminal screen and in its output file. If there is a failure in the initialization of any of the coupled codes,
the coupled run is terminated and the virtual machine is terminated gracefully.

The third kind of error is an error in the transient time step advancements. Several conditions may

22

cause the coupled run to terminate. One of the coupled codes may experience a hard failure such as a
divide by zero and its execution terminated by the operating system. The RSEXEC coupling has been
coded to detect the failure of one of the coupled tasks and to terminate the other tasks gracefully. The tasks
that have not failed will usually write a message saying that they have timed out while waiting for a
message from the failed task. They will also inform the RSEXEC program of this condition and the
RSEXEC program will direct the remaining tasks to terminate after writing a final restart record. Another
kind of timeout may occur if the user has specified a wait time that is too small using the keyword ‘awaits’.
This detection and graceful shutdown task will occur UNLESS the user has told the task to wait ‘forever’
using the keyword ‘awaits’ in the input file for the RSEXEC program. An infinite wait time, i.e., a wait
time of -1.0, should never be used for production runs because the codes will never timeout when a failure
condition is encountered. The user should consult the output file of the code experiencing the hard failure
or timeout to determine what has happened.

Another type of error that will cause a coupled run to terminate is if one of the coupled tasks
encounters an error in its computations from which it cannot recover. For example, RELAP5-3D cannot
recover from a fluid property error. In this case RELAP5-3D tells the RSEXEC program that it must
terminate its execution and the RSEXEC program then tells all of the other coupled codes that they should
also terminate their execution. It then terminates the virtual machine gracefully after all of the coupled
codes have ceased their execution. The user should examine the output file of the code experiencing the
problem to determine how to fix it.

The last kind of error is a deadlock where all of the coupled codes are listening to receive data from
another code or all codes have just sent a message and are waiting to receive an acknowledgment for the
message they just sent. The user will notice that the display on the terminal screen stops being periodically
updated which happens when the coupled run is progressing normally. In this case, all of the codes should
timeout waiting for the message or the acknowledgment. This kind of deadlock should only occur in
control systems coupling where the user has defined the control blocks in the wrong order. Any other type
of deadlock indicates an error in the coupling methodology and should be referred to the code support
staff.

23

10

11

12

13

14

24

6 References

J. Hope Forsmann, W. L. Weaver, The Application Programming Interface for the RSEXEC
Program and Associated Code Coupling System, INL/EXT-05-00107, Idaho National
Laboratory, April 2015.

J. Hope Forsmann, W. L. Weaver, Programmers Manual for the RSEXEC Program,
INL/EXT-05-00159, Idaho National Laboratory, April, 2015.

J. Hope Forsmann, W. L. Weaver, Programmers Manual for the RSEXEC Interface in the
RELAP5-3D Code, IN/EXT-05-00203, Idaho National Laboratory, April, 2015.

C. Y. Paik and L. E. Hochreiter, Analysis of FLECHT SEASET 163-Rod Blocked Bundle Data
Using COBRA-TF, NUREG/CR-4166, US Nuclear Regulatory Commission, 1986.

The RELAPS Code Development Team, RELAPS5-3D Code Manuals, Vol I, 11, 1V, and V, 1daho
National Engineering and Environmental Laboratory, INEEL-EXT-98-00834, Revision 2.2,
October 2003.

Fluent Corporation, Fluent 6 User s Guide, 2001.

Safety Code Development Group, TRAC-PFI1/MODI: An Advanced Best-Estimate Computer
Program for Pressurizer Water Reactor Thermal-Hydraulic Analysis, LA-10157-MS,
NUREG/CR-3858, Los Alamos National Laboratory, July 1986.

J. W. Spore, et. al., TRAC-M/FORTRAN 90 (Version 3.0) Theory Manual, NUREG/CR-6724,
Los Alamos National Laboratory and Pennsylvania State University, July 2001.

K. K. Murata et. al., Code Manual for CONTAIN 2.0: A Computer Code for Nuclear Reactor
Containment Analysis, SAND97-1735, NUREG/CR-6533, Sandia National Laboratory,
December 1997.

R. O. Gauntt et. al., MELCOR Computer Code Manuals: Version 1.8.5, SAND2000-2417,
NUREG/CR-6119, Sandia National Laboratory, October 2000.

P. J. Turinsky, R. M. K. Al-Chalabi, P. Engrand, NESTLE: A Few-Group Neutron Diffusion
Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed Source
Steady State and Transient Problems, EGG-NRE-11406, Idaho National Engineering Laboratory,
1994.

T. Downar et. al., PARCS: Purdue Advanced Reactor Core Simulator, PU/NE-98-26, Purdue
University, West Lafayette, IN, September, 1998.

A. Geist et. al., PVM (Parallel Virtual Machine) Users Guide and Reference Manual, Oak Ridge
National Laboratory, ORNL/TM-12187, 1993.

R. P. Martin, “RELAP5/MOD3 Code Coupling Model,” Nuclear Safety, Vol. 36, No. 2,
pp- 290-299, July-December 1995.

25

6¢C

Edward’s Pipe test case as an uncoupled test case

PIPE 103 SNGIJ 104
T [T T T T T
2 o) o]0 -
TDV 105
Edward’s Pipe test case as a parallel explicit coupled test case
Process CHILD
PIPE 3 TDJ4 TDVS
I I | I
1] 2] | 9110 T
| | | | i :
IR
o ! Process PARENT
<@ — — - Vvolume data : | SNGIJ 204
junction dat Y S - o
-€t------ Junction data Ly 1] 2 | 91 10 —
TDV 105 SNGJ 104 PIPE 103 TDV 205

Figure 4 Schematic of PVMEDA parallel explicit test case

1. # pvm asynchronous explicit test case pvmeda

2. virtual

3. MACHINE wd=WHERE ep=WHERE

4. write pvmedax.out

5. simulation

6. name edward’s pipe asynchronous explicit coupling test case
7. processes

8. MACHINE

9. parent asynchronous relap5.x -i pvmedap.i -o pvmedap.p -r pvmedap.r
10. parent writes pvmedap.out

11. child asynchronous relap5.x -i pvmedac.i -o pvmedac.p -r pvmedac.r
12. child writes pvmedac.out

13. messages

14. explicit

15. parent sends child p 103010000 uf 103010000 ug 103010000
16. child receives parent p 5010000 uf 5010000 ug 5010000

17. parent sends child voidg 103010000

18. child receives parent voidg 5010000

19. parent sends child velfj 104000000 velgj 104000000

20. child receives parent velfj 4000000 velgj 4000000

21. parent sends child mflowgj 104000000 mflowfj 104000000
22, child receives parent mflowgj 4000000 mflowfj 4000000

23. child sends parent p 3100000 uf 3100000 ug 3100000

24, parent receives child p 105010000 uf 105010000 ug 105010000
25. child sends parent voidg 3100000

26. parent receives child voidg 105010000

27. # child sends parent velfj 4000000 velgj 4000000

28. # parent receives child velfj 104000000 velgj 104000000

29. # child sends parent mflowgj 4000000 mflowgj 4000000

30. # parent receives child mflowgj 104000000 mflowfj 104000000
31. timesteps

32. #0.0050 0.0000001 0.00005 7 2050100 1

33. 0.050 0.0000001 0.0001 7 10501001

34. #0.5000 0.0000001 0.0001 7 1050100 1

Figure 5 Listing of PVMEDAX template file

30

XN R WD -

9

10.
I1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

pvm asynchronous explicit test case pvmeda
virtual
MACHINE wd=WHERE ep=WHERE
processes
MACHINE
parent asynchronous relap5.x -i pvmedap.i -o pvmedalp.p -r pvmedalp.r
child asynchronous relap5.x -i pvmedac.i -o pvmedalc.p -r pvmedalc.r
simulation
start time 0.0001
messages
explicit
parent sends child p 103010000 uf 103010000 ug 103010000
child receives parent p 5010000 uf 5010000 ug 5010000
parent sends child voidg 103010000
child receives parent voidg 5010000
parent sends child velfj 104000000 velgj 104000000
child receives parent velfj 4000000 velgj 4000000
parent sends child mflowgj 104000000 mflowtj 104000000
child receives parent mflowgj 4000000 mflowfj 4000000
child sends parent p 3100000 uf 3100000 ug 3100000
parent receives child p 105010000 uf 105010000 ug 105010000
child sends parent voidg 3100000
parent receives child voidg 105010000
#child sends parent velfj 4000000 velgj 4000000
#parent receives child velfj 104000000 velgj 104000000
#child sends parent mflowgj 4000000 mflowgj 4000000
#parent receives child mflowgj 104000000 mflowfj 104000000
timesteps
#0.0050 0.0000001 0.00005 7 2050100 1
0.050 0.0000001 0.0001 7 10501001
#0.5000 0.0000001 0.0001 7 1050100 1

Figure 6 Listing of PVMEDA1X template file

31

1. # pvm asynchronous explicit test case pvmeda

2. virtual

3. MACHINE wd=WHERE ep=WHERE

4. processes

5. MACHINE

6. parent asynchronous relap5.x -i pvmedarp.i -o pvmedarp.p -r pvmedarp.r
7. child asynchronous relap5.x -i pvmedarc.i -o pvmedarc.p -r pvmedarc.r
8. simulation

9. restart time 0.02

10. name edward’s pipe asynchronous explicit coupling test case
11. messages

12. explicit

13. parent sends child p 103010000 uf 103010000 ug 103010000
14. child receives parent p 5010000 uf 5010000 ug 5010000

15. parent sends child voidg 103010000

16. child receives parent voidg 5010000

17. parent sends child velfj 104000000 velgj 104000000

18. child receives parent velfj 4000000 velgj 4000000

19. parent sends child mflowgj 104000000 mflowfj 104000000
20. child receives parent mflowgj 4000000 mflowfj 4000000

21. child sends parent p 3100000 uf 3100000 ug 3100000

22. parent receives child p 105010000 uf 105010000 ug 105010000
23. child sends parent voidg 3100000

24, parent receives child voidg 105010000

25. #child sends parent velfj 4000000 velgj 4000000

26. #parent receives child velfj 104000000 velgj 104000000

27. child sends parent mflowgj 4000000 mflowgj 4000000

28. #parent receives child mflowgj 104000000 mflowfj 104000000

209. timesteps

30. #0.0050 0.0000001 0.00005 7 2050100 1

31. 0.050 0.0000001 0.0001 7 10501001

32. #0.5000 0.0000001 0.0001 7 1050100 1

Figure 7 Listing of PVMEDARX template file

32

N U AW —

9

10.
I1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

pvm asynchronous explicit test case pvmeda
virtual
MACHINE wd=WHERE ep=WHERE
processes
MACHINE
parent asynchronous relap5.x -i pvmedarp.i -o pvmedarlp.p -r pvmedarlp.r
child asynchronous relap5.x -i pvmedarc.i -o pvmedarlc.p -r pvmedarlc.r
simulation
restart time -1.0
messages
explicit
parent sends child p 103010000 uf 103010000 ug 103010000
child receives parent p 5010000 uf 5010000 ug 5010000
parent sends child voidg 103010000
child receives parent voidg 5010000
parent sends child velfj 104000000 velgj 104000000
child receives parent velfj 4000000 velgj 4000000
parent sends child mflowgj 104000000 mflowtj 104000000
child receives parent mflowgj 4000000 mflowfj 4000000
child sends parent p 3100000 uf 3100000 ug 3100000
parent receives child p 105010000 uf 105010000 ug 105010000
child sends parent voidg 3100000
parent receives child voidg 105010000
#child sends parent velfj 4000000 velgj 4000000
#parent receives child velfj 104000000 velgj 104000000
#child sends parent mflowgj 4000000 mflowgj 4000000
#parent receives child mflowgj 104000000 mflowfj 104000000
timesteps
#0.0050 0.0000001 0.00005 7 2050100 1
0.060 0.0000001 0.0001 7 10501001
#0.5000 0.0000001 0.0001 7 1050100 1

Figure 8 Listing of PVMEDARI1X template file

33

34

0 Variables for Explicit Send Message Tag 1
variable code parameter

p 103010000
uf 103010000
ug 103010000

0 Variables for Explicit Send Message Tag 3
variable code parameter

voidg 103010000

0 Variables for Explicit Send Message Tag 5

variable code parameter

velf 104000000

velgj 104000000

0 Variables for Explicit Send Message Tag 7
variable code parameter

mflowgj 104000000

mflowf] 104000000

0 Variables for Explicit Receive Message Tag 9
variable code parameter

p 105010000
uf 105010000
ug 105010000

0 Variables for Explicit Receive Message Tag 11
variable code parameter

voidg 105010000

Figure 9 Partial listing of output file from ‘parent’ process in PVMEDAX test case

0 Variables for Explicit Send Message Tag 9
variable code parameter

p 3100000
uf 3100000
ug 3100000

0 Variables for Explicit Send Message Tag 11
variable code parameter

voidg 3100000

0 Variables for Explicit Receive Message Tag 1
variable code parameter

p 5010000
uf 5010000
ug 5010000

0 Variables for Explicit Receive Message Tag 3
variable code parameter

voidg 5010000

0 Variables for Explicit Receive Message Tag 5
variable code parameter

velfj 4000000

velgj 4000000

0 Variables for Explicit Receive Message Tag 7
variable code parameter

mflowgj 4000000
mflowfj 4000000

Figure 10 Partial listing of output file from ‘child’ process in PVMEDAX test case

35

Edward’s Pipe test case as a sequential explicit coupled test case

Process FOLLOWER
PIPE 3 TDI 4 TDV 5
(Edward’s) (rhtbdj)

T T I T r 1

1] 2] |9|1()T>| |

L — 4

<& — — - volume data Process LEADER SNGJ 204
-t------ junction data : | | ' '
— 1| 2 | | 91 10 —
TDV 105 SNGJ 104 PIPE 103 TDV 205

(Iftbdv) ~ (Iftbd))

Figure 11 Schematic of PVMEDSX sequential explicit test case

36

1. # pvm asynchronous explicit conserving test case pvmedsx

2. virtual

3. MACHINE wd=WHERE ep=WHERE

4. # wait 10000.0 1

5. processes

6. MACHINE

7. leader asynchronous relap5.x -i pvmedsl.i -o pvmedsl.p -r pvmedsl.r
8. follower asynchronous relap5.x -i pvmedsf.i -o pvmedsf.p -r pvmedsf.r
9. messages

10. explicit

11. leader preceeds follower

12. # follower sends volume conditions to leader

13. follower sends leader edward’s 10

14. # leader receives volume conditions from follower

15. leader receives follower Iftbdv 1

16. # leader sends average junction conditions to follower

17. leader sends follower Iftbdj 0

18. # follower receives average junction conditions from leader
19. follower receives leader rhtbdj 0

20. timesteps

21. 0.050 0.0000001 0.0001 7 10501001

Figure 12 Listing of PVMEDSX template file

0 Variables for Explicit Send Message Tag 3
variable code parameter

voidgj 104000000
rhogj 104000000
ugj 104000000
qualaj 104000000
velgj 104000000
voidfj 104000000
rhofj 104000000
ufj 104000000
velfj 104000000
qualnjl 104000000
qualn;j2 104000000
qualn;j3 104000000
qualnj4 104000000
qualnj5 104000000
aflowgj 104000000
uflowgj 104000000
uflowf] 104000000
mflowgj 104000000
mflowf] 104000000
vilowgj 104000000
vilowf] 104000000
flenthg 104000000
flenthf 104000000
flentha 104000000
nflowgjl 104000000
nflowgj2 104000000
nflowgj3 104000000
nflowgj4 104000000
nflowgj5 104000000

0 Variables for Explicit Receive Message Tag 1
variable code parameter

P 105010000
voidg 105010000
voidf 105010000
ug 105010000
uf 105010000
quala 105010000
rhog 105010000
rhof 105010000
tempg 105010000
tempf 105010000
qualanl 105010000
qualan2 105010000
qualan3 105010000
qualan4 105010000
qualan5 105010000

Figure 13 Partial listing of output file from ‘leader’ process in PVMEDSX test case

38

Variables for Explicit Send Message Tag 1
variable code parameter

p 3100000
voidg 3100000
voidf 3100000
ug 3100000
uf 3100000
quala 3100000
rhog 3100000
rhof 3100000
tempg 3100000
tempf 3100000
qualanl 3100000
qualan2 3100000
qualan3 3100000
qualan4 3100000
qualan5 3100000

0 Variables for Explicit Receive Message Tag 3
variable code parameter

voidgj 4000000
rhogj 4000000
ugj 4000000
qualaj 4000000
velgj 4000000
voidfj 4000000
rhofj 4000000
ufj 4000000
velf 4000000
qualnj1 4000000
qualnj2 4000000
qualn;j3 4000000
qualnj4 4000000
qualnj5 4000000
aflowgj 4000000
uflowgj 4000000
uflowfj 4000000
mflowgj 4000000
mflowf] 4000000
vilowgj 4000000
vilowf] 4000000
flenthg 4000000
flenthf 4000000
flentha 4000000
nflowg;jl 4000000
nflowgj2 4000000
nflowgj3 4000000
nflowgj4 4000000
nflowgj5 4000000

Figure 14 Partial listing of output file from ‘follower’ process in PVMEDSX test case

Uncoupled Primary Secondary

fluid fluid fluid fluid
volume volume volume volume
-4 — — — - surface heat flux

-4——— surface temperature

Figure 15 Schematic of heat structure coupling

40

Upper TDV (210)

* SNGJ (200)

Upper Plenum(190)

SNGJ(180) ‘ * * SNGJ (901)

- — 1 Bypass (2)

SNGJ(130) SNGJ (900)

Lower Plenum (120)

f SNGJ (100)

Lower TDV (110)

Figure 16 Schematic of uncoupled test case for semi-implicit coupling

41

SLAVE SYSTEM

SNGJ(180)

Upper Upper
Core (16) —~ — _ Core (16)

SNGJ(115) T -
Middle
Core (6)

SNGJ(105) |- — — o
Lower - /Lower
Core (5) Core (1)

SNGJ(130)

MASTER SYSTEM

Upper TDV (210)

K
} 4

NGJ (200)

Upper Plenum(190)

SNGJ (901)

Bypass (2)

* SNGJ (900)

f SNGJ (100)

Lower TDV (110)

Figure 17 Schematic of coupled test case for semi-implicit coupling

42

NN LA W~

9

10.
11.
12.
13.
14.
15.
16.
17.

pvm semi-implicit test case pvmcore
virtual
MACHINE wd=WHERE ep=WHERE
processes
MACHINE
primary synchronous relap5.x -i pvmcorep.i -o pvmcorep.p
core synchronous relap5.x -i pvmcorec.i -o pvmcorec.p
messages
semi-implicit
primary sends core lrcore 5 upcore 1
primary receives core lcrout 0 upcrin 0
core sends primary Ircout 0 upcrin 0
core receives primary lrcore 1 upcore 1
timesteps
0.5000 0.000001 0.00625 403 1205000
1.0000 0.000001 0.00625 403 20 20 500 0
10.000 0.000001 0.0125 403 10 50 500 0

Figure 18 Listing of template file for ‘pvmcorex’ test case

43

(311

(ame} e

(1213

B

]

(2)
©

cuo ")

[<]

[5)

<} {010

e ez €100

cnae (310 [$31]

c1e w2
cuna ® €190
J

Figure 19 Schematic of TYPPWR test case

.

@)
2oy 2w

=

~
c280
—an

B S

an
® \\
®

® ¢ O

204

0 al

©

ca0

op
[OR!
5 @ 203 €208 T
c200 20
©

o) ®
Q Q
Q 7o)

a o (D ')
(om0 J| [coes]
[eoe | [_caeo]

€3
ol| o
ol @ ®
e
Qo ®
®|l® @
ol @ ®
1
®| |® (0]
k33
o I —
®]

©

44

Figure 20 Schematic of reactor vessel in TYPPWR test case

45

MASTER SYSTEM

A v SLAVE SYSTEM

-t Junction data

<4 — — — - Volume data

Figure 21 Schematic of coupled model of reactor vessel in kinetics coupling test cases

46

Uncoupled Zone Schematic Coupled Zone Schematic

Server Client

C) -
C) -«
C) _
) (1 <«
C) KEY
volume - heat structure data
-——— volume data
|:| heat structure

() zone

Figure 22 Schematic of Kinetics Zones

1. # pvm executive input for point kinetics coupling

2. virtual

3. MACHINE wd=WHERE ep=WHERE

4. processes

5. MACHINE

6. server synchronous relap5.x -1 pvmpts.i -0 pvmpts.p

7. client synchronous relap5.x -i pvmptc.i -o pvmptc.p

8. messages

9. semi-implicit

10. server sends client Ircore 1 upcore 1

11. client receives server Ircrbdv 1 upcrbdv 1

12. client sends server corein 0 coreout 0

13. server receives client Ircrout 0 upcrin 0

14. kinetics

15. server sends client power 0

16. client receives server power 0

17. client sends server core 1 core 2 core 3 core 4

18. server receives client volume 33502 volume 33503 volume 33504 volume 33505
19. client sends server heatstr 3350001 heatstr 3350002 heatstr 3350003 heatstr 3350004
20. server receives client heatstr 1 heatstr 2 heatstr 3 heatstr 4
21. timesteps

22. 1.0 0.0000001 0.50 72 2 160 1

23.

Figure 23 Listing of template file for pvmptx point kinetics coupling test case

48

NG AW —

DO M = = = e = e e = = \©
SYRXTINh DD = O

21.
22.
23.

5 7vm executive input for nodal kinetics coupling

virtual
MACHINE wd=WHERE ep=WHERE
processes
MACHINE
server synchronous relap5.x -i pvmnds.i -o pvmnds.p
client synchronous relap5.x -i pvmndc.i -o pvmndc.p
messages
semi-implicit
server sends client Ircore 1 upcore 1
client receives server Ircrbdv 1 upcrbdv 1
client sends server corein 0 coreout 0
server receives client Ircrout 0 upcrin 0
kinetics
server sends client zone 3 zone 4 zone 5 zone 6
client receives server zone 3 zone 4 zone 5 zone 6
client sends server core 1 core 2 core 3 core 4
server receives client volume 33502 volume 33503 volume 33504 volume 33505
client sends server heatstr 3350001 heatstr 3350002 heatstr 3350003 heatstr 3350004
server receives client heatstr 1 heatstr 2 heatstr 3 heatstr 4
timesteps

1.00 0.0000001 0.0312571 16 160 1

Figure 24 Listing of template file for pvmndx for nodal kinetics coupling test case

49

Time Control Block 12 Control Block 14
Differentiator Integrator
Time Control Block 13 Control Block 15
Integrator Differentiator

Figure 25 Schematic of uncoupled control systems test case

50

IS

Parent Control System

Control Block 12
Differentiator

Control Block 1 I User Variable Control Block 14
Cplfnctn extvarl Cplfnctn
\ Control Block 13 ;
\ Integrator :
\
\)
\ r———- - - - - - " -""-"" -7 - 0 — — — =
\ : Child Control System
\
|
| User Variable Control Block 14
Ly B >
: extvarl Integrator
time Control Block 12
Cpltfnctn
User Variable Control Block 15
— % — -
extvar2 Differentiator

Figure 26 Schematic of coupled control systems test case

1. # pvm synchronous explicit test case pvmcsx for control system coupling

2. virtual

3. MACHINE wd=WHERE ep=WHERE

4. # wait 10.0

5. processes

6. MACHINE

7. parent synchronous relap5.x -i pvmesp.i -o pvmcsp.p

8. child synchronous relap5.x -i pvmesc.i -0 pvmesc.p

9. messages

10. explicit

11. parent sends child p 103010000 uf 103010000 ug 103010000
12. child receives parent p 5010000 uf 5010000 ug 5010000

13. parent sends child voidg 103010000

14. child receives parent voidg 5010000

15. parent sends child velfj 104000000 velgj 104000000

16. child receives parent velfj 4000000 velgj 4000000

17. parent sends child mflowgj 104000000 mflowfj 104000000
18. child receives parent mflowgj 4000000 mflowtj 4000000

19. child sends parent p 3100000 uf 3100000 ug 3100000

20. parent receives child p 105010000 uf 105010000 ug 105010000
21. child sends parent voidg 3100000

22. parent receives child voidg 105010000

23. control

24, child sends parent extfnctn 12 time 0

25. parent receives child extfnctn 1 extvarl 1000000000

26. parent sends child extfnctn 14 cntrlvar 12 cntrlvar 13

27. child receives parent extfnctn 12 extvarl 1000000000 extvar2 1000000000

28. timesteps
29. 0.050 0.0000001 0.0001 7 10501001

Figure 27 Listing of template file for coupled control system test case

52

APPENDIX A
R5SEXEC Input Data Requirements

A-1 Introduction

The input to the executive program is divided into five sections. These sections are delimited by
reserved keywords. The keyword stands alone on an input card and indicates that the following cards
contain data appropriate for that section of the input deck. A section of the input deck begins with a
keyword and ends with another keyword or at the end of the input deck. Within each section of the input
deck, additional keywords are used to identify the data on individual input cards. The keywords are
arranged in a hierarchy where they must be used in the proper order. The reserved keywords are written in
lower case and shown below:

. virtual
- wait
- write
. simulation
- name
- start time

- restart time

. processes
- synchronous
- asynchronous
- uses
- writes
. messages
- explicit
- preceeds
- awaits

- semi-implicit
- awaits
- kinetics
- awaits
- power
- zone
- heatstr
- table

- cntrlvar

. control

- awaits

timesteps

In addition to these reserved keywords, the user can define keywords to be used in subsequent
sections of the input decks. The user defined keywords are defined at the beginning of the input deck.
Because the sections of the input decks are delimited by keywords, they can appear in any order in the deck
but are processed by the input processor in a specific order. The layout of the five sections of the input
deck is described in the order in which they are processed. Comment lines contain the sharp character (#)
as the first non-blank character on the line and can appear anywhere in the input deck. Blank lines and
unusual characters such as a tab are not allowed in the input deck.

A-2 Virtual Section of Input Deck

The first section of the input deck is optional. This section, if present, begins with the keyword
‘virtual’. There are two types of input records in this section.The first type of input record specifies the data
for the computational nodes in the virtual machine. The data consist of the name of the computational node
followed by a variable number of PVM configuration parameters that are sent to the computational node
when it is added to the virtual machine. The names of the computational nodes in the virtual machine
become user defined keywords. If these input records are omitted, all processes are executed on the
processor where the executive program is executed using default values of all PVM configuration
parameters. The second type of record in this section specifies the global wait time for communication
between the processes. If this record is omitted, the default wait time is infinite.

A-2

The format of the first type of records in this section of the input deck is:

W1(A)
W2(A)

W3(A)

Name of computational node
First PVM configuration parameter

Second PVM configuration parameter.

See the PVM documentation for the description of the available PVM configuration parameters.

The format of the second type of record for this section of the input decks is:

W1(A)

W2(R)

W3(I)

Keyword ‘wait’

Global wait time (s). This is the amount of time to wait while listening to receive a
message from another code or to wait to receive the acknowledgment to a message that
has been sent to another coupled code. A value of -1.0 indicates an infinite wait time. This
option should be used carefully because a deadlock might result if there is an error in the
coupled computation.

Debug flag. A value of 1 indicates that each coupled task will be started up in a debugger
window. The debugger to be used depends upon the architecture being used to execute the
virtual machine and the compiler used to compile the child processes. This input is
intended for code development and should not be used for production runs. In addition, the
global wait time specified by the previous word on this card should be set to -1.0 (infinite
wait time) so that the coupled tasks do not ‘time out’ while the user is examining the state
of the coupled codes in the debugger.

The format of the third and last type of record for the ‘virtual’ section of the input deck is:

WI1(A)

W2(A)

Keyword ‘write’

Filename. The information normally written to the ‘standard output’ file for the
PVMEXEC program and all child processes will be written to this file instead of the
default file named pvml.<uid> located on the /tmp directory or on the directory specified
in the PVM_TMP environmental directory. The <uid> is the user identification number of
the user executing the coupled simulation.

The data in the first section of the input deck are used to generate a PVM host file for starting the

virtual machine.

A-3 Processes Section of Input Deck

The second section of the input deck is required and specifies the simulation codes that are to be
executed using the virtual machine along with where they are to be executed. This section of the input deck
is delimited by the keyword ‘processes’. This keyword is followed by subsections which are delimited by
the names of the computational nodes in the virtual machine that were specified in the ‘virtual® section of
the input deck. Each of these subsections contains a variable number of input records describing the
simulation codes to be executed on that computational node.

An input record consists of a user name for the process, the keyword ‘synchronous’ or
‘asynchronous’, and the name of an executable file followed by any command line parameters needed by
the executable. The keyword ‘synchronous’ denotes that the time step to be used by the code is controlled
by the executive program. The keyword ‘asynchronous’ denotes that the code may select its own time step
size subject to the restriction that it must exchange data with other processes at fixed, executive program
specified times. Synchronous time step control is required for semi-implicit, control system, and kinetics
coupling. Synchronous or asynchronous time step control may be used for explicit coupling. In addition,
the executive program controls printing, plotting and restart information generation for synchronous
processes while it only controls restart information generation for asynchronous processes. For
RELAPS-3D, the parameters would be things like the name of the input file, the name of the output file,
etc. The format of this record is:

WI1(A) User name for process

W2(A) Keyword ‘synchronous’ or ‘asynchronous’
W3(A) Name of executable file

W4(A) First command line parameter

W5(A) Second command line parameter.

A second input record may be included for each named process. This record begins with the user
name of the process followed by the keyword “uses’, which in turn is followed by an integer that specifies
the number of threads of execution to use for the process. Any words after the third word are ignored. This
record is used for multi-threaded executables. The format of this second type of record is:

WI1(A) User name of process

W2(A) Keyword ‘uses’

W3() Number of threads to be used by this process
W4(A) Keyword ‘threads’. This word is optional.

A third input record may also be included for each named process. This record contains a filename

and the information normally written to the ‘standard output’ file by this process will be written to this file

instead. The format of this record is:

W1(A)
W2(A)

W3(A)

User name of process
Keyword ‘writes’

Filename. The information normally written to the ‘standard output’ file by the process
names in this input record will be written to this file instead of the default file named
pvml.<uid> located on the /tmp directory or on the directory specified in the PVM_TMP
environmental variable. The <uid> is the identification number of the user executing the
coupled simulation.

A-4 Simulation Section of Input Deck

The third section of the input deck is optional and provides information about the simulation being

executed. This section of the input deck begins with the keyword ‘simulation’. There can be up to three

optional input data records in this section. The first input data record begins with the keyword ‘name’,

followed by a string value that describes the simulation being executed.

WI1(A)

W2(A)

Keyword ‘name’

String containing description of simulation.

The second input data record begins with the keyword ‘restart’ followed by the word ‘time’ followed

by a decimal number. The decimal number is the time from which to restart the coupled computation. A

value of -1.0 indicates that the restart is to begin from the last restart record from a previous run. If this

input record is absent from the input deck, a new problem is assumed.

W1(A)
W2(A)

W3(R)

Keyword ‘restart’
Keyword ‘time’

Time from which to restart the previous simulation (s).

The third optional input data record begins with the keyword ‘start’, followed by the word ‘time’

followed by a real number. If this input record in absent from the input deck, a start time of zero is assumed

for a new run and the start time is obtained from the restart record for a restart run. If the problem type is

new and this input record is input, the start time is set to the value in this input record. If the problem type

is restart, then the only valid value for the start time is zero. This is used to reset the simulation time when

switching from a steady state run to a transient run on a restart.

WI1(A) Keyword ‘start’
W2(A) Keyword ‘time’.
W3(R) Start time of simulation run (s).

If this entire section is omitted from the input deck, a new run starting from time zero is assumed and
the name of the simulation is blank.

A-5 Message Section of Input Deck

The fourth section of the input deck is required and describes the messages that are to be sent
between the individual processes. The section begins with the keyword ‘messages’. The data are divided
into subsections denoted by the keywords ‘explicit’, ‘semi-implicit’, ‘kinetics’ and ‘control’. The
individual input records in each subsection begin with the user name of a process, the keyword ‘sends’ or
‘receives’, and the user name of the process receiving or sending the data as appropriate given the keyword
in the second position in the input record. These data are followed by pairs of identifiers which specify
what data to send (or receive). The data identifier consists of a component/variable name and a
volume/junction number or component number as appropriate. The component name is used with
semi-implicit thermal-hydraulic coupling and kinetics coupling, and the variable name is used for explicit
thermal- hydraulic coupling and control system coupling. The format of this input record is:

WI(A) Computational process name

W2(A) Keyword. Enter ‘sends’ or ‘receives’
W3(A) Computational process name

W4(A) Name of first component/variable/keyword
WS5() Component or volume/junction number.

Input cards for explicit thermal-hydraulic coupling messages may specify either a component name
or a variable name while input cards for semi-implicit thermal-hydraulic coupling messages should only
specify component names. Any type of volume or junction component may be the source of data being
sent to another process. Components receiving data from a coupled process should be boundary
component types like time dependent volumes or time dependent junctions whose conditions are
determined at the beginning of a time step advancement and would normally remain unchanged during the
time step. The conditions in the coupling time dependent volumes and time dependent junctions for
semi-implicit thermal-hydraulic coupling change during a time step advancement as a result of the

A-6

semi-implicit coupling methodology while conditions in boundary coupling components for explicit
thermal-hydraulic coupling remain unchanged during the time step advancement.

Input cards for kinetics messages may contain reserved keywords depending on whether the message
is sending data to a coupled process or receiving data from a coupled process. Kinetics messages sending
data to a coupled process may name volumes using the component name or heat structures using the
keyword ‘heatstr’. These components must be present in the input deck for the process sending the
message. The keyword ‘power’ is used to specify the reactor power from the point kinetics model and the
keyword ‘zone’ is used to specify the power in a zone from the multi-dimensional kinetics model. The
parameter for the keyword ‘power’ is 0 (zero). The keywords ‘table’ or ‘cntrlvar’ can be used to send the
output from the table or control variable specified. Kinetics messages specifying data to be received by a
process use the keywords ‘volume’ and ‘heatstr’ to specify that volume data and heat structure data are
being received. The parameter for volume data must be less than 1000000 and the parameter for heat
structure data must be less than 10000. The volumes and heat structures specified in kinetics receive
messages must only be referenced by the point or multi-dimensional kinetics models.

Power data are received by specifying the keyword ‘power’ or ‘zone’. If ‘table’ or ‘cntrlvar’ values
are being sent, the corresponding receive should be specified as ‘power’ (‘zone’ could also be used but is
not recommended). The parameter for ‘power’ is 0 (zero). The data specified by the keywords ‘power’ and
‘zone’ should only be referenced by the heat structure source cards, Cards 1CCCG701 through 1CCCG799
for heat structures contained in the input deck of the process receiving the data.

Input cards for control system coupling which specify data to be sent may contain any data item that
can be used as an input value to a control variable (See Section 3.1 of Appendix A of Volume II of the
RELAP5-3D manual). The corresponding data specifier in the receiving process must be an external
function control block or an interactive variable.

In addition to the required input records specifying the contents of the messages, optional
asymmetrical wait times may be specified for the communication between each pair of processes for each
category of communication (i.e., explicit, semi-implicit, kinetics, and/or control). These wait times are
specified by inserting the following input record in the appropriate subsection of the ‘messages’ section of
the input deck. The format of the wait time input record is:

WI1(A) Name of process awaiting message
W2(A) Keyword ‘awaits’

W(A) Name of process to wait upon
W(R) Wait time (s).

The wait time is set on a message by message basis and is used as the wait time for the acknowledgment if
the message is a send message and is the wait time if the message is a receive message. The global wait

A-7

time is used if the wait time input record is not input for a given pair of processes. The global wait time is
used for communication between the executive process and the other processes in the virtual machine.

The last type of input card in the ‘messages’ section can only appear in the explicit subsection of the
messages section of the input file. This card is optional and controls what type of explicit
thermal-hydraulic coupling is used between the processes named on the card. By default, parallel explicit
thermal-hydraulic coupling is used between processes not named on this type of input card. If this card is
present, the explicit coupling between the two processes named on the card is sequential explicit
thermal-hydraulic coupling and the card defines the leader and follower processes for the sequential
explicit thermal-hydraulic coupling. The format of the input record is:

WI(A) Name of leader process in sequential explicit thermal-hydraulic coupling
W2(A) Keyword ‘preceeds’
W3(A) Name of follower process in sequential explicit thermal-hydraulic coupling.

A-6 Time Step Information

The last section of the input file contains the time step information for the coupled computation. This
section is delimited by the keyword ‘timesteps’. The data in this section of the input deck describe a series
of one or more time intervals with the maximum and minimum time step sizes for the interval along with
the number of maximum time steps between plot records, print records, restart records, and explicit
asynchronous coupling. A negative entry for any of the edit frequencies (W4, W5, W6, and W7) will cause
the corresponding item not to be executed during that time interval. The end times on these input records
must be in ascending order.

WI1(R) Time interval end time (s)

W2(R) Minimum time step size (s)

W3(R) Maximum time step size (s)

W4(D) Control option. This word has the packed format dtt. It is not necessary to input leading
ZEeros.

The digit d, which represents a number from O through 7, can be used to obtain extra
output at every hydrodynamic time step. The number is treated as a three-bit binary
number. If no bits are set (i.e., the number is 0), the standard output at the requested
frequency using the maximum time step is obtained (see words 5 and 6 of this card). If the
number is nonzero, output is obtained at each successful time step, and the bits indicate
which output is obtained. If the first bit from the right is set (i.e., d = 1 if the other bits are
not set), major edits are obtained every successful time step. If the second bit from the

W5(I)

w6(I)

wW7(I)

WS(I)

right is set (i.e., d = 2 if the other bits are not set), minor edits are obtained every
successful time step. If the third bit from the right is set (i.e., d = 4 if the other bits are not
set), plot records are written every successful time step. These options should be used
carefully, since considerable output can be generated.

The digits ss, which can represent a number from 0 to 99, can be used to modify the
solution controls for semi-implicitly coupled processes. The only values permitted at this
time are 0 and 1. A value of 1 indicates that the mass error time step control in
RELAPS5-3D is to be disabled for semi-implicit coupling and a value of 0 means that the
individual coupled processes use the time step and/or solution controls indicated on their
input cards. The value of this word can be used to override parts of the solution controls
for semi-implicitly coupled codes and the response of each code is code specific.
RELAPS5-3D responds by ignoring the mass error time step control as indicated earlier.

Minor edit and plot frequency (-). This is the number of maximum (requested) time
advances per minor edit to the printed output and write of plot information to the
restart-plot file.

Major edit frequency (-). This is the number of maximum (requested) time advances per
major edit to the printed output.

Restart frequency (-). This is the number of maximum (requested) time-advances per write
of restart information to the restart-plot file.

Explicit asynchronous coupling frequency (-). This is the number of maximum (requested)
time advances per exchange of data between explicitly coupled codes.

A-10

	INL-EXT-15-35005.pdf
	INL/EXT-15-35005
	J. Hope Forsmann
	Walter L. Weaver III
	April 2015
	1 Introduction
	1.1 Background
	1.2 Basis of Coupling Methodology
	1.3 Subdivision of a Thermal-Hydraulic System
	1.4 Coupling Taxonomy

	2 General Considerations
	3 R5EXEC Program
	3.1 Virtual Section
	3.1.1 Keyword ‘machine’
	3.1.2 Keyword ‘wait’
	3.1.3 Keyword ‘write’

	3.2 Processes Section
	3.2.1 Keyword ‘machine’
	3.2.2 Keyword ‘writes’
	3.2.3 Keyword ‘uses’

	3.3 Simulation Section
	3.3.1 Keyword ‘name’
	3.3.2 Keywords ‘restart time’
	3.3.3 Keywords ‘start time’

	3.4 Messages Section
	3.4.1 Keywords ‘sends’ and ‘receives’
	3.4.2 Keyword ‘awaits’
	3.4.3 Keyword ‘preceeds’

	3.5 Timesteps Section

	4 Examples of Coupled Simulations
	4.1 Explicit Coupling
	4.1.1 Parallel Explicit Coupling
	4.1.2 Sequential Explicit Coupling
	4.1.3 Heat Structure Coupling

	4.2 Semi-Implicit Coupling
	4.3 Kinetics Coupling
	4.4 Control Systems Coupling

	5 Coupling Errors
	6 References

