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Abstract—A time-coupled instanton method for characterizing
transmission network vulnerability to wind generation fluctuation
is presented. To extend prior instanton work to multiple-time-step
analysis, line constraints are specified in terms of temperature
rather than current. An optimization formulation is developed to
express the minimum wind forecast deviation such that at least
one line is driven to its thermal limit. Results are shown for an
IEEE RTS-96 system with several wind-farms.

Index Terms—Forecast uncertainty, Optimization, Transmis-
sion operations, Wind energy

I. INTRODUCTION

The prevalence of renewables in modern transmission net-
works has researchers and system operators asking: What
happens when the wind changes, and could fluctuations harm
the grid? The instanton problem provides an answer, and
this paper extends instanton analysis to the temporal setting.
Though small deviations from wind forecasts are typically
harmless, it is possible for certain wind generation patterns to
drive the system to an insecure operating point. Out of all trou-
blesome wind generation patterns, the one that deviates least
from the forecast is called the instanton. Instanton analysis
uses optimization to find the set of troublesome wind patterns,
each of which causes a particular line to encounter its flow
limit. By ranking these wind patterns according to distance
from forecast, we can characterize the system’s vulnerability
to forecast inaccuracy and enhance system operator awareness.

The instanton problem was initially considered in [1] and [2]
where a DC power flow approximation was used to turn instan-
ton analysis into a convex problem with an analytic solution.
The physically accurate AC power flow formulation was used
in [3], with an iterative scheme required for finding instanton
candidates. Current instanton research is exploring the trade-
off between problem complexity and solution accuracy, with
the goal of developing the most accurate model that remains
convex (and therefore guarantees a solution). Instanton work
to date has focused on instantaneous vulnerability by seeking
to find the smallest wind generation change that drives a line to
its power or current limit. Thus, the troublesome wind patterns
uncovered by such instanton analysis may be fleeting.

The authors acknowledge the support of the Los Alamos National Labora-
tory Grid Science Program, subcontract 270958.

It is safe to temporarily operate a line above its current limit.
Transmission system operators know this and periodically
allow lines to operate above their limits to promote smooth
operation under heavy, though temporary, flow patterns (see
the introduction of [4] for a history of dynamic line rating
starting in the 1970s). It takes time for line conductors to
heat sufficiently that they sag to an unacceptable level (as
defined by statute and nearby tree limbs). As long as the
line is allowed to cool before reaching this point, no harm
will be done. If an operator is comfortable with temporarily
overloaded lines, information from existing instanton analysis
may be too conservative to aid decision making.

In this paper we bring instanton analysis into the temporal
setting. We consider multiple time steps and replace line
current limits with heat constraints. A line’s temperature is
a function of heat input (primarily Ohmic losses and heat
from the sun) and dissipation (convection and radiation, which
depend on ambient conditions), and is represented as a differ-
ential equation (see Section 3.4 of [5] for a standard set of
equations governing line temperature dynamics). Ohmic loss
heating is related to power flow analysis via angle difference
variables. By modeling line temperature over an appropriate
time horizon, the proposed method discovers multiple-time-
step wind patterns that are both likely to occur and sure to
induce excessive sag for at least one line in the network.

The remainder of the paper describes the temporal instanton
problem (Section II), translates it into an optimization problem
(Section III), presents a solution method (Section IV), and
illustrates temporal instanton analysis using a modified RTS-
96 network (Section V).

II. PROBLEM FORMULATION

Section II-A describes an approximate line loss formulation
that forms the basis of a dynamical model developed in Sec-
tion II-B. Finally, Section II-C incorporates line temperature
dynamics into a complete mathematical model.

A. Line losses

Starting with the AC line loss expression, [6] derived the
following approximate relationship between line losses and



TABLE I
LINE HEATING PARAMETERS

Parameter Units Description
Ts s Sample time

mCp J/(m · C)
Per-unit-length heat capacity

of the conductor

ηc W/(m · C)
Conductive heat loss

rate coefficient

ηr W/(m · C)
Radiative heat loss

rate coefficient

T lim C
Line temperature at

steady-state current limit.

∆qs,ij W/m
Solar heat input
into conductor

∆Tamb C Change in
ambient temperature

voltage angle differences for line (i, j):

f loss
ij ≈ rij

(
θij
xij

)2

. (1)

In this expression, f loss
ij is the approximate active power loss

on the line; θij is the difference between angles θi and θk; and
rij + jxij is the impedance of the line between nodes i and
j. Three assumptions underpin (1): voltage magnitudes are all
1 pu, cosine may be approximated by its second-order Taylor
expansion, and xij ≥ 4rij . Thus, (1) uses DC power flow
assumptions to approximate line losses, but remains nonlinear.

B. Line temperature dynamics

According to analysis in [6] (which is based on [5]),
changes in line temperature may be approximated using Euler
integration:

∆Tij [t+ 1] = τij∆Tij [t] + ρij∆f
loss
ij [t] + δij∆dij [t], (2)

where the initial condition is ∆Tij [0] = 0. Constants τij and
γ̄c are defined as,

τij = 1− Tsγ̄c
mCp

, γ̄c = ηc + 4ηr(T
lim + 273)3, (3)

where ρij = Ts/mCp. Finally, ∆dij = [∆qs,ij ∆Tamb]>,
and δij represents exogenous inputs and is equal to [ρij γij ],
where

γij =
Tsγ̄a
mCp

, γ̄a = ηc + 4ηr(T
∗
amb + 273)3. (4)

Integration sample time is constrained by numerical stability
requirements, which necessitate τij ∈ (−1, 1):

Ts < min
ij

{
2mCp,ij
γ̄c,ij

}
. (5)

Table I summarizes the line temperature parameters in (2)-(5).
Assuming line parameters and ambient conditions are inde-

pendent of the power flow, (2) is driven by network conditions
through the angle difference variables θij [t]. Repeated substi-
tution and use of (1) yields an expression for the change in
line temperature at a final time in terms of angle differences

at all other time steps. If there are T total time steps, this
relationship may be expressed as:

∆Tij [T ] =
ρijrij
x2ij

T∑
t=1

τ t−1ij θ2ij [T + 1− t]

+ δij

T∑
t=1

τ t−1ij ∆dij [T + 1− t]. (6)

The first term in (6) varies with angle differences. The second
term, which is based on external conditions, is constant with
respect to power flow. Switching the order of summation and
moving constants to the left side yields

∆Tij [T ]− δij
T∑
t=1

τT−tij ∆dij [t] =
ρijrij
x2ij

T∑
t=1

τT−tij θ2ij [t]. (7)

This summation may be written in matrix form by defining
an angle difference vector, a constant vector, and a coefficient
matrix:

θij :=
[
θij [1] θij [2] · · · θij [T ]

]>
(8a)

∆dij :=
[
∆dij [1] ∆dij [2] . . . ∆dij [T ]

]>
(8b)

τ ij := diag
([
τT−1ij τT−2ij · · · 1

])
. (8c)

In terms of these newly-defined symbols (whose dependence
on T is hidden for conciseness), (7) becomes,

∆Tij [T ]− δij∆d>ijτ ij1 =
ρijrij
x2ij

θ>ijτ ijθij . (9)

The left side of (9) is constant with respect to power flow,
while the right side is a weighted, scaled two-norm of the
vector of angle difference variables θij .

The approximate line temperature dynamics developed here
will be used in Section III to model line temperature over an
optimization horizon.

C. Instanton formulation

The preceding discussion developed an approximate line
loss expression to relate line temperature to angle variables
according to (9). Here we describe the remaining parts of the
temporal instanton model.

The following equations describe an optimization problem
that minimizes deviation from the wind forecast while heating
a certain line to a specified (limiting) temperature:

min
dev

T∑
t=1

dev>t Qdevdevt (10a)

subject to:∑
j

Yijθij,t = Gi,t +Ri,t + devi,t −Di,t (10b)

∀i ∈ 1...N, t ∈ 1...T

Gt = G0,t + kαt ∀t ∈ 1 . . . T (10c)
θref,t = 0 ∀t ∈ 1 . . . T (10d)

∆Tij [T ] = ∆T lim
ij for some (i, j) ∈ G (10e)

where:



• devi,t is the difference between actual output and forecast
output at wind-farm i and time t. Thus, devt is the vector
of wind forecast deviations at time t.

• Qdev may be set to the identity matrix or used to encode
correlation between wind sites.

• Ri,t is renewable generation forecast at bus i and time t.
• Yij is the (i, j)-th element of the admittance matrix,

which assumes zero resistance.
• θij,t is the difference between voltage angles θi and θj

at time t.
• Gi,t is conventional active power generation at node i

and time t, and Gt is a vector including all nodes.
• Di,t is active power demand at bus i and time t.
• N is the number of buses (nodes).
• G0,t is scheduled conventional active power generation

(without droop response).
• k is the vector of participation factors for conventional

generators, with
∑
i ki = 1. (The case where ki = 1

corresponds to generator i taking all slack.)
• αt is the power mismatch at time t.
• ∆T limij is the change in temperature that will push line

(i, j) to its thermal limit.
• θref is the voltage angle of the reference bus.
• G is the set of edges (lines).
Equation (10a) expresses the desire to find wind patterns

that remain close to the wind forecast. The first constraint
equation (10b) enforces DC power balance. The next con-
straint (10c) models conventional active power generation as
a sum of scheduled generation and droop response (where
generators share the task of compensating for mismatch be-
tween total generation and load). The system angle reference
is established by (10d). Last is (10e), which constrains the
temperature of a particular line to be equal to its limit at the
final time T . Using (9) we can express (10e) as

∆T lim
ij − δij∆d

>
ijτ ij1 =

ρijrij
x2ij

θ>ijτ ijθij . (11)

Thus, (10) has a quadratic objective function, a set of linear
constraints, and a single quadratic constraint. By solving (10)
for each line in the network, we obtain a set of instanton
candidate wind patterns, each of which will heat a particular
line to its thermal limit. Of these candidates, the one that
deviates least from the wind forecast (across all time steps)
is the instanton wind pattern.

The form of (10) suggests a QCQP optimization formula-
tion. The next section establishes this QCQP.

III. CONVERSION TO OPTIMIZATION PROBLEM

Previous instanton work relied on convex optimization to
quickly find instanton wind patterns. Heat-constrained tempo-
ral instanton analysis is more complicated: it cannot be for-
mulated as anything simpler than a quadratically-constrained
quadratic program (QCQP). QCQPs are NP-hard in general;
reasonable solutions may exist, but unless the quadratic con-
straint matrices are positive-definite there is no solution guar-

antee (see [7]). Because system operators require robustness,
“no solution found” is an unacceptable output. With this
criterion in mind, we proceed to develop an optimization
model whose structure permits us to find solutions despite
nonconvexity.

With all deviation, angle, and mismatch variables stacked
into a single vector, (10) takes the form:

min z>Qobjz (12a)
s.t. Az = b (12b)

z>Qθz = c. (12c)

The objective (12a) is equivalent to (10a), the linear equality
constraints (12b) represent (10b)-(10d), and the quadratic
equality constraint (12c) is equivalent to (10e). The vector z
consists of (N +NR + 2)T variables, where N is the number
of nodes, NR is the number of nodes with wind-farms, and T
is the number of time steps. Note that NRT of the variables
represent deviations from forecast at each wind-farm and time
step. There are also NT angle variables (of which T are
fixed to zero according to (10d)) and T mismatch variables
αt (one per time step). The last T variables are auxiliary
angle difference variables used to convert (10e) into a norm
constraint; they are defined later in (15).

Variables may be stacked in any order. One convenient
ordering is T groups of (N + NR + 1) variables, with
the T auxiliary angle difference variables at the end. At a
particular time step t, the group of (N + NR + 1) variables
is [dev>t θ>t αt]

>, with devt representing deviations from
forecast at the NR wind nodes, θt is the column of N angle
variables at time t, and αt is the mismatch between generation
and demand at time t.

The remainder of this section describes the components of
(12). The objective matrix Qobj is described in Section III-A,
linear constraint parameters A and b are considered in Sec-
tion III-B, and the constraint matrix Qθ is addressed in
Section III-C.

A. Objective function and Qobj

The objective function depends solely on deviation vari-
ables, so Qobj is a matrix that weights only the dev variables
in z. If there are two time steps, for example, the vector of vari-
ables would be z =

[
dev>t θ>1 α1 dev>2 θ>2 α2 θ̂

]>
,

and Qobj would be,

Qobj =


Qdev 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Qdev 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Note that Qdev represents the correlation between wind-farms
(if any). In the Section IV numerical analysis, we will assume
Qdev = I , the identity matrix.



B. Linear constraints: A and b

All constraints except the temperature limit may be grouped
into a single linear system Az = b. Setting aside the T
auxiliary variables for the moment, the A matrix has a block
diagonal structure where each block consists of (N + 1) rows
and (NR + N) columns. The first N rows describe power
balance and distributed slack behavior at each node. For node
i and time t, we fix elements of A and b to establish∑

j

Yijθj,t = (G0
i,t + kiαt) + (Ri,t + devi,t)−Di,t. (13)

The first pair of terms on the right-hand side of (13) represents
conventional generation with distributed slack (generator i is
taking a portion ki of the mismatch αt). The second pair
of terms is renewable generation: forecast Ri,t plus deviation
devi,t. The final term is demand at node i and time t. (Note
that renewable generation terms are zero for nodes without
wind-farms.) In addition to the N rows corresponding to (13)
at the N nodes, there is one additional equation associated
with time t that fixes the angle reference:

θref,t = 0. (14)

The (N + 1) rows of Az = b expressed in (13) and (14)
pertain to a single time step t, with T blocks of this form
arranged diagonally to form (N + 1)T rows of A and the
corresponding b vector. There is one additional block of A
used to define auxiliary angle difference variables θ̂ij,t in terms
of angle variables θi,t and θj,t at each time step:

θ̂ij,t = τ
T−t
2 (θi,t − θj,t) . (15)

The next subsection explains why these variables are helpful.

C. Quadratic constraint: Qθ and c

Recall that (11) describes the temperature constraint on a
chosen line (i, j). We can rearrange (11) into the form of (12c),
with all constants on the right side:

θ>ijτ ijθij =
x2ij
ρijrij

(
∆T lim

ij − δij∆d
>
ijτ ij1

)
(16)

This makes it clear that the appropriate value of c in (12c) is

c =
x2ij
ρijrij

(
∆T lim

ij − δij∆d
>
ijτ ij1

)
(17)

From the definition of θ̂ij,t in (15), we see that the left side
of (16) may be expressed as θ̂>ij θ̂ij . Thus, if the θ̂ij variables
are placed at the bottom of z, Qθ must be a matrix of zeros
with a T -by-T identity matrix in the lower-right corner. This
ensures that z>Qθz = θ̂>ij θ̂ij , as desired.

Section II described the temporal instanton problem, Section
III expressed it as a QCQP, and this section defined each
component. Next we present a solution method for (12).

IV. SOLUTION

The structure of (12) is similar to that of the well-known
trust region subproblem. Here we describe a four-step solution
method based in part on [8]. We begin by considering the
vector of variables z as three groups: z1 ∈ RNRT contains all
wind deviations, z2 ∈ R(N+1)T contains angle and mismatch
variables, and z3 ∈ RT contains auxiliary angle difference
variables involved in line temperature calculation. (This par-
tition of z is independent of how the variables are ordered.)
With this notation, the problem becomes

min z>1 Qzz1 (18a)
s.t. Az = b (18b)

z>3 z3 = c, (18c)

where Qz is Qdev repeated in block-diagonal fashion T times.
Several changes of variables may be used to obtain an

equivalent form of (18) whose solution is straightforward.

A. Translation

The first step is to change variables from z to y = z − z∗,
where z∗ ∈ {z : Az = b}. This translation transforms Az =
b into Ay = 0. To prevent the change from introducing a
linear term into the quadratic constraint, we require z∗3 = 0.
To satisfy Az∗ = b, the subvectors z∗1 and z∗2 must satisfy,

A

z∗1z∗2
0

 = b.

It is straightforward to find a min-norm z∗ that satisfies this
constraint by partitioning and factorizing A appropriately.
After translation, the problem becomes

min y>1 Qzy1 + 2y>1 Qzz
∗
1 (19a)

s.t. Ay = 0 (19b)

y>3 y3 = c. (19c)

B. Kernel mapping

The form of (19b) suggests an intuitive explanation: any
solution to (19) must lie in the nullspace (kernel) of A. If
dimN (A) = k is the dimension of this nullspace, we can
let y = Nx where the k columns of N span N (A). (Note
that x does not refer to reactance in this context.) This change
of variables is akin to a rotation, but reduces the problem
dimension to k. Partitioning N according to,y1y2

y3

 =

N1

N2

N3

x
allows (19) to be written,

min x>(N>1 QzN1)x+ 2x>(N>1 Qzz
∗
1) (20a)

s.t. x>N>3 N3x = c. (20b)

All feasible solutions to (20) lie in the nullspace of A, so the
linear constraints are now implicit.



C. Obtaining a norm constraint

After kernel mapping, the quadratic constraint is no longer
a norm constraint. This can be corrected in two steps. First,
perform an eigendecomposition N>3 N3 = UDU> and let x̂ =
U>x. The constraint is diagonal in terms of x̂:

x>N>3 N3x = x̂>Dx̂ (21)

where D is diagonal and has at most T nonzero elements, so
the right side of (21) may be expanded into:[

x̂>1 x̂>2
] [0 0

0 D̂

] [
x̂1
x̂2

]
. (22)

The second step is to change variables from x̂ to w =
[w>1 w>2 ]>. The variables x, x̂ and w are related through:[

w1

w2

]
=

[
I 0

0 D̂1/2

] [
x̂1
x̂2

]
= Kx̂ (23)

=⇒ w = KU>x.

(Note that x = UK−1w because UU> = I .) In terms of w,
(20b) is transformed through (21) to give the form of a norm:

x̂>Dx̂ = x̂>2 D̂
1/2D̂1/2x̂2 = w>2 w2 . (24)

Of course, this change of variables must also be applied to
the cost function. After substitution and simplification, the full
problem becomes:

min w>Bw + w>b (25a)

s.t. w>2 w2 = c (25b)

where

B = K−1U>N>1 QzN1UK
−1 and b = 2K−1U>N>1 Qzz

∗
1 .

The manipulations in this section have restored the norm
structure of the quadratic constraint. In the next section we use
the KKT conditions of (25) to eliminate w1, the unconstrained
part of w. This will allow us to write the objective in terms
of w2 only.

D. Eliminating w1

Note that w1 is unconstrained in (25). For a fixed w2, we
can use the KKT conditions to find w1 such that the objective
is minimized. Begin by expanding the objective:

f(w) =
[
w>1 w>2

] [B11 B12

B>12 B22

] [
w1

w2

]
+
[
w>1 w>2

] [b1
b2

]
= w>1 B11w1 + 2w>1 B12w2 + w>2 B22w2

+ w>1 b1 + w>2 b2.

Next, set the partial derivative with respect to w1 equal to
zero:

∂f

∂w1
= 2w>1 B11 + 2w>2 B

>
12 + b>1 = 0

=⇒ w1 = −B−111

(
B12w2 +

1

2
b1

)
. (26)

After substitution of (26), the objective depends only on w2:

f(w2) = w>2
(
B22 −B>12B−111 B12

)
w2

+ w>2 (b2 −B>12B−111 b1).

(Note that the constant term, which plays no role in minimiza-
tion, was omitted.) The full optimization problem becomes:

min w>2 B̂w2 + w>2 b̂ (27a)

s.t. w>2 w2 = c, (27b)

where

B̂ = B22 −B>12B−111 B12 and b̂ = b2 −B>12B−111 b1.

This is a QCQP in T dimensions with a single norm constraint.
It is straightforward to obtain solutions to this problem, as the
next subsection shows.

E. Solution via enumeration

A straightforward method of solving (27) involves initially
diagonalizing B̂ through an eigendecomposition. It will be
assumed that step has been completed.

Let v be the Lagrange multiplier associated with (27b) and
write the first-order optimality condition for (27):

∂L(w2, v)

∂w2
= 2B̂w2 + b̂− v(2w2) = 0

=⇒ B̂w2 +
1

2
b̂ = vw2. (28)

Equation (28) is a linear system that yields w2 for fixed v:

w2,i =
b̂i/2

v − B̂i,i
. (29)

In addition to satisfying (29), an optimal w2 must satisfy the
quadratic constraint. Substituting (29) into (27b) yields the
“secular equation” (see [8]):

s(v) =
∑
i

(
b̂i/2

v − B̂i,i

)2

= c. (30)

Note that s(v) has one pole per unique nonzero diagonal
element of B̂. There are at most two solutions per pole, one
on each side. This is best understood graphically. Figure 1
illustrates a three-pole secular equation taken from analysis
of the RTS-96 network. The Lagrange multiplier v is on the
horizontal axis, and the secular equation value s(v) is on the
vertical. Solutions are intersections of s(v) with the horizontal
line s(v) = c. They can be computed numerically with a
simple binary search algorithm.

V. RESULTS FOR RTS-96 NETWORK

We used data from [9] to demonstrate temporal instan-
ton analysis on a wind-augmented RTS-96 network model.
Consider a scenario unfolding over three time steps: first the
wind forecast is 50% of some nominal value, next it is equal
to the nominal value, and finally it is scaled to 150% of
nominal. Throughout this wind ramping, generator dispatch
and demand remain constant. Temporal instanton analysis with
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Fig. 1. Plot of secular equation for a single line in the RTS-96. Note that
s(v) approaches infinity at the three poles, and there could be as many as six
solutions if c were large enough.

c = 0.03 and τ = 0.5 indicates that the line between buses 121
and 325 is most susceptible to excessive heating under these
conditions. In other words, of all dangerous wind patterns that
could occur during the wind ramp, the most likely is a pattern
that overheats the line between buses 121 and 325. Figure 1
illustrates the secular equation used to find this instanton
pattern, and Figure 2 shows the system state at the second
time step. The largest deviation in the instanton pattern is
0.73 pu, well within the range of wind forecast values (whose
maximum is 1.2 pu).

VI. CONCLUSIONS

The paper has extended instanton analysis to consider
the temperature dynamics of overloaded lines. The resulting
formulation is a quadratically constrained quadratic program
(QCQP). A computationally cheap algorithm has been devel-
oped for obtaining candidate solutions of this QCQP. There is
a great deal of flexibility in the temporal instanton model that
has yet to be explored. In future work we plan to include
transformers, consider the effects of ambient conditions in
greater detail, and test the limits of the algorithm using larger
networks with many time steps.
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Fig. 2. Graph depiction of RTS-96 system state under instanton conditions
at time step 2 of 3. The stressed line is between buses 121 and 325 (top
center). wind-farms are indicated by blue, and lines are colored according to
how close their flows are to static active power limits.
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