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Micropulses

DTL RF

H

H

DTL RF

Beam micropulses f = 201.25MHz    ∼100ps long

This is the source of the 201.25 MHz RF 
signals for BPPMs

Micropulses result from RF acceleration

- 201.25 MHz repetition rate

- 5pC to 125pC per micropulse

- About 100ps long
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Transducers – origin of RF signals
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Software 
to cull 
data

Overview of the system
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FPGA

Slide 7

CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

CLB

IOB

IO
B

IOBIOB IOB

IOB IOB IOB

IOB
IO

B
IO

B

IO
B

Configurable Logic Block

Input/Output Block

Also:
Multipliers
Memory

Etc.

Configurable 
Interconnects

Enables parallel arithmetic

ADC sample rate:
240 MS/s

ADC

“Assembly-line” 
data processing



Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D Slide 8

 Introduction: LANSCE and the BPPM system

 Initial algorithm and its shortcomings

 Improved algorithm

 Details of implementation

 Comparison to another algorithm

 Signal processing modes

 Performance

 Summary



Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

The problem

 Suppose I digitize a test signal and a reference signal
• Both are sinusoids
• The fundamental frequency is well-known and is identical for the two
• The sample frequency is known pretty well (more on this later…)

 I want to know the amplitude and phase of the test signal relative to the 
reference signal

Slide 9

∆φ

Alias frequency fa
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I&Q demod (sinusoid fit) with known frequencies

 For now, assume the RF and sampling frequencies are known precisely

 Measure A & φ of the reference and test signals separately

The samples: 

0)cos( ywiAyi +−= φ

i : sample index

w : aliased frequency × ∆tsample

Parameters to determine:

A: amplitude

φ: phase

y0 : DC offset

y1

y2

y3

y4

0

0

sincos
)cos(

ywibwia
ywiAyi

++=
+−= φ

Note that a and b are I&Q 

where:

222/tan

sincos

baAab

AbAa

+==

==

  and  
so

   and   

φ

φφ

(just a trig identity)
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…I&Q demod (sinusoid fit) with known frequencies
The equation for the samples can be written as a matrix equation:
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This is of the form y=Mx

where y and M are known and x is unknown

which can be solved using singular value 
decomposition or other well-known 
techniques 

But for implementation in and FPGA, I want a simpler, deterministic method 
for the solution.

The following technique only requires several multiplications and additions

(computed)

(measured)

M : Nsamples × 3
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…I&Q demod (sinusoid fit) with known frequencies

I’ll define three vectors, c, s, and u : 
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1
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cos

=
=
=

i
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i

u
wis
wic These can be computed in advance 

and stored in the FPGA (The u vector may seem pointless, 
but it keeps the math neater)

The length of these vectors is the 
same as the data stream length

0sincos ywibwiayi ++=

Now multiply each of these vectors 
by the equation for the samples:

ucyscbccayc  ⋅+⋅+⋅=⋅ 0

Each dot-product is a scalar number

The three dot-product equations can 
be written as a matrix equation:
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Whose solution is:
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…I&Q demod (sinusoid fit) with known frequencies
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The solution:

These depend on the data and must 
be computed for each data acquisition

These don’t depend on the data, but 
do depend on the data stream length
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What if the alias frequency is not known precisely?

Slide 14

A 1000 point fit, assuming 
fRF = 201.25 MHz and
fsample = 117.440 MHz

Why is fit better near 
the middle?

RF and sample clock aren’t locked  
→ alias frequency will drift
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What if the alias frequency is not known precisely?

Slide 15

Fitted sample frequency: 117.446 MHz (51 ppm difference)

I want a method that is tolerant of 
small changes in sample frequency

The assumed alias 
frequency was wrong
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If the sample frequency is known pretty well
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wis
wic

i

i

sin
cos

=
=Rather than assuming a frequency 

when generating the vectors of 
sines and cosines:

Use the sampled reference instead

Sample i of the reference signal is: )cos( φ−= wiRri
Take the sampled reference to 
be the cosine vector
…but how about the sine vector?

The previous sample i-1 
of the reference signal is: ))1(cos(1 φ−−=− iwRri

From these two samples I can 
get the sine

This is the ith element of the sine vector

Expand

Trig identity

Recognize ri

)cos( wwiR −−= φ

wwiRwwiR sin)sin(cos)cos( φφ −+−=

wwiRwri sin)sin(cos φ−+=

w
wrrwiR ii

sin
cos)sin( 1 −=− −φ Solve to get sine term
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…If the sample frequency is known pretty well
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w
wrrwiR ii

sin
cos)sin( 1 −=− −φ The values of cosw and sinw

can be computed and stored.

Using this approach, the fitted waveform 
phase doesn’t walk relative to the data.

Also, instead of fitting the test signal and the reference,

then subtracting the phases

(along with a few applications of the mod() function)

The phase of the test signal relative to the reference is obtained 
directly in the fit
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…If the sample frequency is known pretty well
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the vectors of sines and cosines are computed:

The inverse matrix can’t be computed ahead of 
time and stored, but the dot products and 3x3 
matrix inversion are straightforward arithmetic

This must be done for each data acquisition

Requires that there is no DC offset on the reference signal
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Sensitivity to frequency errors

Slide 20

The constants cosw and sinw are computed 
for the assumed frequency.

+ 400 ppm

− 400 ppm
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Computing sine vector with integer arithmetic

Slide 22

w
wrrs

rc

iii

ii

sin
1)cos( 1 ××−=

=

−

sinw and cosw are ≤ 1

Problem for integer arithmetic

Multiply

Subtract

Multiply

Integer Float
subtract 1 14
multiply 1 11

# clock cycles

Electrode 1

Electrode 2
Electrode 3
Electrode 4

reference

Delays

Floating-point arithmetic 
uses more logic, too
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Computing sine vector with integer arithmetic
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w
wrrs iii sin

1)cos( 1 ××−= −

[ ] k
k

k
ii

k
i w

wrrs 2
1 2

sin
2)cos2(2 ÷






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

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×××−×= −

wk cos2 × w

k

sin
2

Ahead of time:

Store constants:

While processing:

Multiply  i-1 reference sample by 2k

(append k zeros)

Multiply, subtract, multiply

Divide by 22k

(drop 2k bits)

Large integers → small round-off error
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Sine vector with integer arithmetic -- Choosing k

Slide 24

Overflows of 32-bit integers

k = 15

Using integers:

Compute Acos(iw), then Asin(iw) using our algorithm

Directly compute Asin(iw) 

( A = 8192 = 213 )
Then compare these two #’s
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Block diagrams of arithmetic
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Data samples
1 N

Reference samples
N+1

S

Y

× − ×
cosw

1/sinw

Sine vector

C

Step 1:
Generate sine 
vector
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ΣC

ΣS

ΣY

Step 2:
Reduce vectors 
to scalars

scalarsData streams

Sequencing 
Logic

Electrode signals 
(4 of these)

Convert these to 
floating-point 

values
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CC

SS

×

CC×SS

CC

N

×

CC × N

Etc. 13 of these;  pairs of: 
CC, CS, SS, ΣC, ΣS, N

Step 3:
Get products 
of scalars
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CS×ΣC

DM

ΣS
×

-
ΣC×ΣC

SS
×

ΣS×ΣS

CC
×

-

-

CC×SS

N
×

CS×CS

N
×

+

Step 4:
Get the determinant of 
a matrix
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Step 5:
Get the final 
quantities of interest

CY

SS × N

a

ΣS × ΣS

-

×

SY

ΣC × ΣS
CS × N

ΣY

ΣS × CS
ΣC × SS

+

-

×
×-

÷
DM

0sincos ywibwiayi ++=

3 blocks like this (a, b, y0) 
for each electrode
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Compare to Goertzel algorithm

Slide 31

Single-component
Digital Fourier Transform (DFT)

(but computed differently)
Computationally efficient

Used for phase-control on 
other projects

Constants depend on 
record length

]2[]1[2cos2][][ −−−





+= nsns

N
knyns π

]1[2exp][][ −





−−= ns

N
kinsnxk
π

Apply a correction to center 
201.25 MHz in frequency bin k

Use xk[N] to get
amplitude and phase
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Compare to Goertzel Algorithm

Slide 32

Frequency-domain approach 
has problems with short records
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Sequencing logic
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3 processing modes

Un-chopped

Continuous stream of 
micropulses

1 µs-long blocks
(user-defined)

Minipulse

Bursts of 
micropulses

1 measurement per 
minipulse

Single-micropulse

Ringing filter engaged

Position only
(no phase)
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Sequencing logic: Unchopped mode
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625µs 
macropulse

Block
for

analysis

Previous 
block

Next 
block

Sine fit
(I&Q demod)

Single measurement of
H, V, φ

for the block

Many measurements 
per macropulse

(1 µs typ.)
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Sequencing logic: Minipulse mode
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trigger 2 (or more?)
below threshold

Rep rate and length 
of minpulses varySelf triggering

threshold

delay
Data
for

analysis

Sine fit
(I&Q demod)

Single measurement of
H, V, φ

for the minipulse
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Sequencing logic: Single-micropulse mode
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threshold

#pretrigger #posttrigger
trigger

SAW filter 
output

Compute RMS

∼350 single-micropulse beam pulses.

∼2½× normal µpulse.
1.8µs

SAW 
filter

Single measurement of
H, V ( not φ )

for the micropulse

Signal from
transducer
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Performance
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Measurements: Bench tests of DSP algorithm

Slide 39

 Used very similar
digitizers and FPGA

 2 electrodes + 
reference

 RF synthesizer, 
attenuators, phase 
shifter, etc.

RF source
201.25 MHz DSP
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Performance: Phase resolution - bench test
0.25° is resolved well
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Performance: Bench test – Phase sweep

Phase accuracy 
specification is met
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Difference from phase setpoint

Signal level: ±200 counts 
(2.5% FS)

Analysis block: 100 samples 
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Performance: Bench test – short minipulses

 150ns – long minipulses (∼ 17 samples)

 Signal level: ±2000 counts (25% FS)

 φ rms = 0.7° (spec is 2 °)

 Position rms < 0.02 mm   (spec is 0.5 mm)
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RF source
201.25 MHz DSP

pulser
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Performance: Beam-environment tests
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Reference DSP

805 MHz RF on

Analysis block :100 samples

Signal amplitude ≈ 3% full scale

RMS phase: <0.06°

RMS position: <15µm

Meets the spec
Good precision
Wide dynamic range (about 50dB)Drive

Pickup & 
analyze

Validates bench tests. For example:
±200 counts signal level (2.5% FS)

Bench Beamline
φ rms 0.060° 0.058°

Position rms 13 µm 12 µm
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Performance: Beam measurements

Single low-pass coaxial filters on electrode signals

PSR beam with 1000  290ns-long minipulses

<0.25° RMS phase

0.28 mm RMS horizontal position

(the beam position probably wasn’t constant 
during the measurement)
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DSPReference

Beam
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Summary

 An ad-hoc algorithm for determining beam position and phase 
works well

 Works with a wide range of pulse widths

 Is expensive in terms of FPGA resources

 Production systems are on order

Thanks for listening
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