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Abstract

Natural and engineered systems are often modeled through

mathematical equations using computer codes. Finite resources,

inability to accurately control experimental conditions,encounter, or

explore the entire parameter space of interest are a few reasons that

scientists and engineers rely on numerical simulations for predictive

capability. Associated with every prediction is an uncertainty, since

our ability to simulate a physical process is limited by our knowledge

of the physics, and the parameters. In the last two decades, the

need for Uncertainty Quantification (UQ) has been recognized in

several fields and we often ask questions about the risk or uncertainty

associated with events and make decisions accordingly. In this talk,

I will illustrate the effects of model and parametric uncertainties and

the need to include them in our predictive capabilities.
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Outline

• Motivation

• Introduction
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• Conclusions
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Motivation

• Most natural and man-made phenomena are modeled

mathematically.

• Deterministic models assume that knowledge of Initial Conditions

(ICs) yield full knowledge of the system’s behavior at all later times.

• However, this assumption ignores the fact that mathematical

models are only approximations of the underlying physics.

• Additionally, there are random effects that act on systems which

can significantly affect the behavior of the system, coupled with

errors in measurements of ICs that can affect our ability to predict

the system’s behavior.

• Hence it is necessary to consider stochastic modeling.
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Introduction to Quantifying Uncertainties

From National Research Councils 2012 report on VVUQ - Assessing

the Reliability of Complex Models: Mathematical Foundations of

Verification, Validation, and Uncertainty Quantification

• Determine and account for important sources of uncertainty

– State which sources are included in the assessment, and which

are not.

– Errors (model form, parametric, numerical etc.) are sources of

prediction uncertainty.

– Process involves physical reasoning (and virtues), as well as

mathematical/statistical reasoning.
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Quantifying Uncertainties in Predictions

• List and evaluate caveats and assumptions that go with the

prediction uncertainty assessment.

• Explicitly describe the assumed connection between computational

model(s) and the true, physical system

– Many ways to do this; different labs/systems POCs may choose

different approaches

– Depends on the required prediction, model maturity, availability

and relevance of experimental data, etc.

– Process involves physical reasoning (and virtues), as well as

mathematical/statistical reasoning.

• Exploit historical experiments, as well as reduced complexity

experiments.

5



Some Background on Examples

• The Ball Drop example: We will first look at a second order

differential equation used to model the free fall of a spherical ball.

This is a simple well-defined problem with uncertainty in parameters

and the choice of 3 models to predict travel time. Practical

applications are seldom as straightforward as this example, but

we hope to learn some useful insights that we can apply in more

complicated problems.

• The Chemical Reaction example: Chemical reactions are

prevalent in a wide range of applications including environmental

(contamination, natural gas extraction),electronics, manufacturing,

pharmaceutical industry etc. Typically the kinetics are modeled as

nonlinear differential equations, and uncertainties about the kinetics

must be well quantified for optimal results.
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Part I

Motion of an Object in Air:
The Ball Drop example

Collaborators :

David Higdon, Virginia Tech

Scott Vander Wiel, Los Alamos National Lab
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Governing Equations

Here we consider the basic ball drop example, where a (nearly)

spherical ball is dropped from rest from a given height h0 and we

estimate the time it will take to reach the ground.

The simplest model is one where the only force acting on the ball

is the gravitational force.

d2h

dt2
= −g (1)

So if we dropped a ball in vaccuum from a given height, would it

always take the same time to hit the ground?

What happens to our predictions if this experiment were performed

at different lattitudes and altitudes?
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Governing Equations

The acceleration due to gravity g varies from 9.78 − 9.83m/s2

depending upon lattitude. g is also smaller at higher altitudes. So

now our predictions have to be adjusted for these variations. Let us

assume normally distributed g with mean 9.8065m/s2 and standard

deviation 0.05m/s2
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More practically...

We know however that in reality, a feather and bowling ball don’t hit

the ground at the same time when dropped from the same height.

This is due to the force of air resistance acting on objects. Let us

consider two separate models that are typically used to describe this

drag force. Here CD is the drag co-efficient, ρ is the density and R

is the radius.

Model 1 d2h

dt2
= −g +

3

8

CDρair
Rballρball

(
dh

dt

)2

(2)

Model 2
d2h

dt2
= −g +

300

8

CDρair
Rball(ρball)1.5

(
dh

dt

)
(3)
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Typical problem in extrapolation

If you could perform experiments with only the bowling ball, could

you predict the behavior of the others?
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More parameters, more uncertainty

In additional to normally distributed g as before, we have variations

in CD and ρair, all represented as normal distributions.
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Comparison of the three models
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Comparison of the air resistance models
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Summary of Results

1. The assumptions in the governing equations can significantly affect

the drop time for the ball.

2. Varying the parameters in the governing equation gives us a

distribution of drop times.

3. The governing physics is sometimes represented by more than one

model form, and complete uncertainty analysis must include all

known model forms and parametric uncretainties in order to obtain

a full statistical distribution of resulting quantities, in this case, the

drop time.
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Part II

Quantification of Uncertainties
in Geochemical Reactions

Collaborators :

Daniel Tartakovsky, UC San Diego

Bruce Robinson, Los Alamos National Lab

Alejandro Aceves, Southern Methodist University
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Groundwater Transport Problem

• Contaminants are transported in groundwater by many physical

processes.

• Advection : Transport along with flow of groundwater.

• Diffusion : Movement from areas of higher concentration to lower

concentration.

• Dispersion : Movement along and perpendicular to flow due

to mixing of flowpaths with varying velocities. Diffusion and

Dispersion are represented together.

• Advection Dispersion Equation

∂C

∂t
= −v∂C

∂x
+

∂

∂x

(
D(x)

∂C

∂x

)
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Groundwater Transport Problem

• Sorption : Process by which solutes sometime attach to rocks and

other minerals.

• Reaction : Interaction with other minerals in the ground to yield

other chemicals.
dC

dt
= F (C,Ci)

• Advection Dispersion Reaction Equation

∂C

∂t
= −v · ∇C +∇ ·D∇C + F (C,Ci)

• We will first consider uncertainties in reactions and look at the

transport problem separately.
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Chemical Reactions

Consider a (reversible) chemical reaction between n species

A1, A2, ...An that can be represented as

α1A1 + α2A2 + . . .+ αmAm
αm+1Am+1 + . . .+ αnAn,

where {αi}ni=1 are stoichiometric coefficients. The concentration

Ci(t) of a reacting species Ai at time t is described by a nonlinear

rate equation,

dCi
dt

= Fi(C1, C2, ...Cn), i = 1, . . . , n

subject to appropriate initial conditions.
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A Simple Chemical Reaction

Consider an irreversible chemical reaction involving three reacting

species, two reactants A1 and A2 forming a species A3, such that

A1 +A2→ A3.

The reaction rate equations for the concentrations Ci of each species

can be written as

dCi
dt

= −kC1C2, i = 1, 2,
dC3

dt
= kC1C2,

where the reaction rate constant k, initial conditions are specified

C1(0) = C, C2(0) = C, C3(0) = 0,

C and k have precisely determined values.
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Deterministic Model

The system of reaction equations described in the previous slide

can be solved exactly by introducing new variables

u1 = C1 − C2, u2 = C1 + C3, u3 = C1 + C2 + 2C3

which yields a set of decoupled equations

dui
dt

= 0, i = 1, . . . , 3.

Due to the Initial Conditions, C1(t) = C2(t), which leads to

C1(t) = C2(t) =
C

Ckt+ 1
, C3(t) =

Ckt

Ckt+ 1
.
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Uncertainties in Chemical Reactions

• Parametric uncertainty : Refers to the imperfect knowledge about

the coefficients entering the functions Fi (i = 1, . . . , n) and/or

initial concentrations.

• Parametric uncertainties relating to reaction rate constant are

studied here.

• Model uncertainty : Refers to the imperfect knowledge about the

functional forms of Fi (i = 1, . . . , n).

• Model Uncertainty relating to imperfect molecular collisions and

imperfect mixing are considered.

• The solution in the determinsitic case is compared with those that

consider each or both types of uncertainty.
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Quantification of Parametric Uncertainty

This uncertainty can be quantified by treating the reaction rate

constant k as a random process k(t) with a mean k̄, variance σ2
k.

dCi
dt

= −k̄C1C2− δkC1C2, i = 1, 2,
dC3

dt
= k̄C1C2 + δkC1C2,

The numerical solution is given (Kloeden and Platen, )by

C1(t+ ∆t) = C1(t)− k̄C1(t)C2(t) [∆t+ ∆W ] ,

where ∆t is a time step and ∆W is a Gaussian variable with zero

mean and the variance proportional to the variance of k.
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Solutions of FPE - Reaction problem

The stochastic rate equations can be written as follows:

dCi
dt

= −k̄C1C2− δkC1C2, i = 1, 2,
dC3

dt
= k̄C1C2 + δkC1C2,

(4)

Close inspection of the Langevin-type equations reveals that they

have only one independent variable, say concentration C1. Now, the

probability density function for C1, p(C1; t) satisfies the Fokker-Planck

equation,

∂p

∂t
= −∂vp

∂C1
+

∂2

∂C1
2 (Dp) , (5)
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Solutions of FPE - Reaction problem

where the drift and diffusion coefficients are given according to Ito

calculus by

v = k̄C2
1 and D = σ2

kC
4
1 , (6)

respectively. An initial condition for (5) reflects the degree of certainty

in the initial concentration C and, in general, is expressed by a

probability density function, p(C1; 0) = p0(C1). If it is known

precisely, the initial condition takes the form p(C1; 0) = δ(C1 − C),

where δ(x) is the Dirac delta function.

We solved the Fokker-Plank equation (5)–(6) both analytically and

numerically with a forward Euler algorithm. The analytical solution for

the Fokker-Planck equation can be obtained by setting the probability

current S defined below to 0
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Solutions of FPE - Reaction problem

[
v − ∂

∂C1
D

]
p = 0 (7)

This is valid assumption for a stationary process where the drift and

diffusion coefficients do not depend explicitly upon t. The probability

density can be solved for as follows:

p(C1) = p0exp

(
k̄

σ2
kC1

)
(8)
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Results : Error Bars

99.7% Confidence Interval
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Quantification of Model Uncertainty

Modified Gillespie algorithm: Reaction PDF P (τ, µ) for reaction µ

to occur in the infinitesimal time interval [t+ τ, t+ τ + ∆τ ] given a

certain state at time t.

Residence time τ , during which no reactions occur, depends upon

the total molecular population of all reacting species and reflects the

randomness of collisions.

A constant deterministic value τ corresponds to standard reaction

rate equations

dCi
dt

= Fi(C1, C2, ...Cn), i = 1, . . . , n
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Quantification of Model Uncertainty (cntd.)

Modified SSA:

1. Compute the total number of reacting pairs of molecules available

for each reaction ai, and compute their sum a0 =
∑
ai

2. Generate random numbers r1 and r2 on the uniform unit interval

and m uniformly random on the interval [1, 10]

3. Compute τ = −ma−1
0 ln r1

4. Determine which reaction µ occurs by taking µ to be that integer

for which
∑µ−1
j=1 aj < r2a0 ≤

∑µ
j=1 aj

5. Update time by τ and molecular levels for reaction µ (decrease

reactants by 1 and increase products by 1)

6. Repeat steps 1-5 until either of the reactant population goes to

zero or steady state is reached
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Quantification of Joint Uncertainty

To account for both sources of uncertainty, we modify the first step

of the algorithm by replacing the constant value k with its random

counterpart whose mean and variance are k̄ and σ2
k, respectively.
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Deterministic solution
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Example: Neptunium Ion Exchange

Schematic of containers with Neptunium stored underground
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Example: Neptunium Ion Exchange

Reacting system:

NpO+
2 + {tAl −Na}
 {tAl −NpO2}+Na+

Ca2+ + 2{tAl −Na}
 {2tAl − Ca}+ 2Na+.

Standard deterministic model:

dC1

dt
= −k1C1C4 + k2C2C3 − 2k3C

2
1C6 + 2k4C

2
2C5,

dC2

dt
= k1C1C4 − k2C2C3 + 2k3C

2
1C6 − 2k4C

2
2C5,

dC3

dt
= k1C1C4 − k2C2C3,

dC4

dt
= −k1C1C4 + k2C2C3,

dC5

dt
= k3C1

2C6 − k4C2
2C5,

dC6

dt
= −k3C1

2C6 + k4C
2
2C5
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Neptunium Ion Exchange : Results

To account for uncertainty in the reaction rate constants k1, k2,

k3, and k4, we treat them as normal white noise, whose mean values

were determined from experimental data (Viswanathan et al, 1998).
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Neptunium Ion Exchange: Results

Effects of varying parameters (Initial Conditions and Reaction

Rates) on Distribution coefficient Kd = C3/C4:

Varying Initial Conditions Varying Reaction Rates
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Neptunium Ion Exchange: Results

Distribution coefficient Kd = C3/C4:
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Neptunium Ion Exchange: Results

Distribution coefficient Kd = C3/C4:
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Summary of Results

1. The rate at which a reaction occurs varies greatly due to the

inclusion of various sources of uncertainty.

2. The range of distribution coefficients obtained for the neptunium

competitive ion exchange process considered underscores the need

for uncertainty quantification. It is expected that the same behavior

will be present in more complex, multicomponent systems involving

more chemical species.

3. The proposed approach yields a complete probabilistic description

of the reaction rates and distribution coefficient, key parameters

affecting the fate and migration of neptunium in the subsurface.

This is important, since these distributions are highly skewed.
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Summary of Results

4. The uncertainty quantification tools employed in this study are

fully scalable and can be used to investigate any number of coupled

reversible or irreversible geochemical reactions.

5. Transport of radionuclides such as neptunium could be greatly

affected by the reactions that take place in the subsurface and

hence quantification of modeling and parametric uncertainties is

crucial in describing the overall transport.
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Conclusions

• Uncertainties in parameters are important, but do not present a

complete picture of the uncertainties in predictions.

• Sensitivity analysis can be performed to isolate those parameters

contributing the biggest source of uncertainty.

• Model form uncertainty is often ignored, but is key to understanding

errors in predictions when simulation results deviate from

observations.

• Uncertainty under extrapolation is challenging, especially for high

dimensional systems.
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Questions?

Thank you!
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