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Introduction to Control Theory
Part 1. Introduction to Control

Alexander Scheinker1

1Los Alamos National Laboratory, Low Level RF Control Group
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What is control theory?

A study of differential equations, which have user-defined inputs.

Example: Mass - Spring - Damper

mẍ(t) = −kx(t)− bẋ(t) + f(t),

where f(t) is a force that we apply.

We want to choose inputs in a way that transform a given differential
equation into a different equation, one that has certain properties that we
want.

A systematic approach to designing state-based inputs (feedback)
f(x, ẋ, t), which guarantee stable behavior of systems, robust to
uncertainties and external disturbances.
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Simple Problem: Given a mass (no friction), m, we want to move it to a
position 1 meter away, in 1 second, by applying a force:

mẍ(t) = f(t).

Choose f(t) such that the system’s trajectory, x(t), satisfies x(0) = 0,
x(1) = 1, and ẋ(0) = 0.

m

f(t)

x(t)

Solution: If x(t) = t2, then x(0) = 0, x(1) = 1.

• x(t) = t2

• ẋ = 2t

• ẍ(t) = 2

• mẍ(t) = 2m

So we can try f(t) = 2m
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Choose f(t) such that the system’s trajectory, x(t), satisfies x(0) = 0,
x(1) = 1, ẋ(0) = 0, and ẋ(1) = 0.

Solution: Let’s try, f(t) = a1 − a2t.

• mẍ(t) = a1 − a2t

• ẋ(t) = a1
m t−

a2t2

2m

• x(t) = a1t2

2m −
a2t3

6m

• ẋ(1) = 0 = a1
m −

a2
2m =⇒ a2 = 2a1

• x(1) = 1 = 3a1
2m −

a2
6m =⇒ 1 = 3a1

2m −
2a1
6m =⇒ a1 = 6m, a2 = 12m

So we can try f(t) = 6m− 12mt
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Solution: Let’s try,

f(t) =


k 0 < t < 0.5
−k 0.5 < t < 1
0 1 < t

(1)

Turns out we need to choose k = 4m, can use the force:

f(t) =


4m 0 < t < 0.5
−4m 0.5 < t < 1
0 1 < t

(2)
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Problem: Given

mẍ(t) = −kx(t)− bẋ(t) + f(t),

choose f(t) such that the system’s trajectory, x(t), arrives at x(1) = 1.

m

f(t)

x(t)k b

Solution: Again, consider f(t) = a1 − a2t, so the differential equation is
now

mẍ(t) = −kx(t)− bẋ(t) + a1 − a2t,

and we have the constraints x(0) = 0, x(1) = 1, ẋ(0) = 0, ẋ(1) = 0.
After some horrible algebra, we get:
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These require exact knowledge of k, b, and m.

a1 = −
e−
√

b2−4km
2m k

(
b

(
−1 + e

√
b2−4km

m

)
+

(
1 + e

√
b2−4km

m − 2e
b+
√

b2−4km
2m

)√
b2 − 4km

)
4
(√

b2 − 4km
(

Cosh
[

b
2m

]
− Cosh

[√
b2−4km

2m

])
− kSinh

[√
b2−4km

2m

])

a2 = − k2

k +
√
b2 − 4km

(
−Cosh

[
b

2m

]
+ Cosh

[√
b2−4km

2m

])
Csch

[√
b2−4km

2m

]
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Oops, we forgot the spring. When x(1) = 1 and ẋ(1) = 0, for

mẍ(t) = −kx(t)− bẋ(t) + f(t),

we still have:
mẍ(t) = −k + f(t).

Need to satisfy ẍ(t ≥ 1) = 0 =⇒ f(t ≥ 1) = k

Solution: So, consider

f(t) =

{
a1 − a2t 0 < t < 1

k 1 < t
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What happens when k, b, and m values in a1(k, b,m), a2(k, b,m) are
slightly wrong:
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What happens when k, b, and m values are correct, but there is an
external disturbance:
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What happens when k, b, and m values are correct, but initial conditions
change:
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All of the above problems are compounded with larger, more complicated
systems

m1ẍ = −k2(x− y)− b2 (ẋ− ẏ) + f(t),

m2ÿ = −k1(y) + k2(x− y) + b2 (ẋ− ẏ)− b1ẏ.

m2

f(t)

x(t)

k2

b2

m1

k1

b1

y(t)
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FIG. 2. Lumped mass model of the ILC �nal focus with the SiD con�guration.
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The main point of control theory, is in assuming that our model is slightly
wrong, that our measurements of system parameters, such as m, k, and b
are slightly wrong, that our actuator dynamics are modeled slightly
incorrectly, that we are unaware of external disturbances, and all of our
measurements are noisy.

We assume that we are wrong and so we actively monitor our error and
provide feedback based on the error, to make our system as robust as
possible.
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Consider the simple problem

ẋ(t) = f(t).

We will use feedback, so we replace f(t) with u(x, t) and, for notational
simplicity, sometimes drop the arguments, writing

ẋ = u. (3)

Also, given a desired set point, xs, for x(t), we rewrite the dynamics, (3),
in terms of the error

e = x− xs, ė = ẋ− ẋs = ẋ,

we get:
ė = u.
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Given
ė = u,

to force e(t) towards zero, one of the simplest things that we can do is use
proportional feedback

u = −ke,

so that the “closed loop” system system is

ė = −ke,

which has solution

e(t) = e(0)e−kt, (x(t)− xs) = (x(0)− xs) e−kt.

Notice this is independent of initial condition.
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If there are un-modeled disturbances,

ė = −ke+ n

the system has equilibrium at

ė = 0 = −ke+ n efinal =
n

k
,

which you can also see from the solution

e(t) =
n

k

(
1− e−kt

)
+ e(0)e−kt.

In this case there will always be a steady state offset.
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To deal with un-modeled disturbances, we add an additional, integral of
the error term

ki

∫ t

0
e(τ)dτ,

so our overall system now looks like

ė(t) = −kpe(t)− ki
∫ t

0
e(τ)dτ + n.

In case of a un-modeled disturbance, the integral term will continue to
grow, forcing e(t) towards zero.
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Back to the mass-spring-damper system:

mẍ(t) = −kx(t)− bẋ(t) + u. (4)

We rewrite the dynamics, (4), in terms of the error

e(t) = x(t)− xs(t), ė(t) = ẋ(t)− ẋs(t), ë(t) = ẍ(t)− ẍs(t).
We get:

më(t) +mẍs(t) = −ke(t)− kxs(t)− bė(t)− bẋs(t) + u,

which we regroup as

ë = − k
m
e− b

m
ė+

u

m
− k

m
xs −

b

m
ẋs − ẍs,

and use a proportional - integral controller

u = −kpe− ki
∫ t

0
e(τ)dτ,

to get the closed-loop system

ë = − k
m
e− b

m
ė− kp

m
e− ki

m

∫ t

0
e(τ)dτ − k

m
xs −

b

m
ẋs − ẍs,
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Grouping some terms we get

ë = −
(
k + kp
m

)
e− b

m
ė− ki

m

∫ t

0
e(τ)dτ − k

m
xs −

b

m
ẋs − ẍs.

Increasing the proportional gain, kp, is equivalent to increasing the spring
constant.
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The proportional and integral terms are “too slow.” Increasing integral
control slows the response too much and we see many repeated
overshoots. Increasing proportional causes large initial overshoots. We
need to add a third, fast type of control, derivative control:

u = −kd (ẋ(t)− ẋs(t)) = −kdė(t).

Adding the derivative control term, we get

ë = −
(
k + kp
m

)
e−

(
b+ kd
m

)
ė− ki

m

∫ t

0
e(τ)dτ − k

m
xs −

b

m
ẋs − ẍs.

Notice that, while increasing the proportional gain, kp, is equivalent to
increasing the spring constant, adding derivative gain, kd is equivalent to
increasing the damping factor, which we would expect to slow down the
high frequency oscillations.
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Finally, utilizing proportional-integral-derivative (PID) control, we can
handle a wide range of disturbances and initial conditions, without needing
a very detailed knowledge of the system parameters.
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Coupled Mass-Spring-Dampers:

m2ÿ = −k1y + k2(x− y) + b2 (ẋ− ẏ)− b1ẏ,
m1ẍ = −k2(x− y)− b2 (ẋ− ẏ) + n(t) + u.

m2

f(t)

x(t)

k2

b2

m1

k1

b1

y(t)
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Coupled Mass-Spring-Dampers:

u = −kpey − ki
∫ t

0
ey(τ)dτ − kdėy, ey = y(t)− ys(t)
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State Space Form
In general, a mass m subject to a force, F (x, ẋ, t), has dynamics

F (x, ẋ, t) = ma = mẍ, (5)

if we define
x1 ≡ x, x2 ≡ ẋ1 = ẋ,

we can rewrite (5) as

ẋ1 = x2, (6)

ẋ2 =
1

m
F (x1, x2, t). (7)

Example: Driven Mass-Spring-Damper: The equation of motion

mẍ = −kx− bẋ+ u, (8)

can be rewritten as

ẋ1 = x2, (9)

ẋ2 = − k
m
x1 −

b

m
x2 +

1

m
u. (10)
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Example: Coupled Mass-Spring-Dampers: The equations of motion are:

m1ÿ = −k1y − b1ẏ + k2 (x− y) + b2 (ẋ− ẏ) + u1, (11)

m2ẍ = −k2 (x− y)− b2 (ẋ− ẏ) + u2. (12)

Defining state variables

x1 ≡ y, x2 ≡ ẏ, x3 ≡ x, x4 ≡ ẋ,

we rewrite (11), (12) as

ẋ1 = x2, (13)

ẋ2 = − k1

m1
x1 −

b1
m1

x2 +
k2

m1
(x3 − x1) +

b2
m1

(x4 − x2) +
1

m1
u1, (14)

ẋ3 = x4, (15)

ẋ4 = − k2

m2
(x3 − x1)−

b2
m2

(x4 − x2) +
1

m2
u2. (16)
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Combining like terms, we rewrite the equations of motion as

ẋ1 = x2, (17)

ẋ2 = −
(
k1

m1
+
k2

m1

)
x1 +

(
b1
m1
− b2
m1

)
x2 +

k2

m1
x3 +

b2
m1

x4 +
1

m1
u1, (18)

ẋ3 = x4, (19)

ẋ4 =
k2

m2
x1 +

b2
m2

x2 −
k2

m2
x3 −

b2
m2

x4 +
1

m2
u2. (20)

which we rewrite as
ẋ1

ẋ2

ẋ3

ẋ4


︸ ︷︷ ︸

ẋ

=


0 1 0 0

−
(

k1
m1

+ k2
m1

) (
b1
m1
− b2

m1

)
k2
m1

b2
m1

0 0 0 1
k2
m2

b2
m2

− k2
m2

− b2
m2


︸ ︷︷ ︸

A


x1

x2

x3

x4


︸ ︷︷ ︸

x

+


0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0


︸ ︷︷ ︸

B


u1

u2

u3

u4


︸ ︷︷ ︸

u

,

(21)
finally resulting in the concise linear matrix differential equation

ẋ = Ax+Bu. (22)
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In general, a linear time-invariant system can be written in the form
ẋ1

ẋ2
...
ẋn


︸ ︷︷ ︸

ẋ

=


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann


︸ ︷︷ ︸

A


x1

x2
...
xn


︸ ︷︷ ︸

x

+


b11 b12 . . . b1n
b21 b22 . . . b2n

...
...

...
...

bn1 bn2 . . . bnn


︸ ︷︷ ︸

B


u1

u2
...
un


︸ ︷︷ ︸

u

(23)

ẋ = Ax+Bu. (24)

Typically, a linear feedback control of the form

u = −Kx

is used, resulting in a closed loop system of the form

ẋ = (A−BK)x,

which has solution
x(t) = e(A−BK)tx(0).

Therefore, stability is guaranteed if A−BK is Hurwitz:

Re {λi (A−BK)} < 0. (25)
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Example

ẋ = x+ u, u = −2x (26)

ẋ = −x =⇒ x(t) = e−tx(0). (27)

Example

ẋ = Ax+Bu (28)

[
ẋ1

ẋ2

]
︸ ︷︷ ︸

ẋ

=

[
1 0
0 1

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+

[
2 0
0 2

]
︸ ︷︷ ︸

B

[
u1

u2

]
︸ ︷︷ ︸

u

(29)

u = −Kx = −
[
1 0
0 2

]
︸ ︷︷ ︸

K

[
x1

x2

]
︸ ︷︷ ︸

x

(30)

[
ẋ1

ẋ2

]
=

[
−1 0
0 −3

]
︸ ︷︷ ︸

A−BK

[
x1

x2

]
(31)

[
x1(t)
x2(t)

]
=

[
e−t 0
0 e−3t

] [
x1(0)
x2(0)

]
=

[
e−tx1(0)
e−3tx2(0)

]
(32)

λi(A−BK) = {−1, −3} (33)
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