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Executive Summary 
In the context of future power system requirements for additional flexibility, demand response 
(DR) is an attractive potential resource. Its proponents widely laud its prospective benefits, 
which include enabling higher penetrations of variable renewable generation at lower cost than 
alternative storage technologies, and improving economic efficiency. In practice, DR from the 
commercial and residential sectors is largely an emerging, not a mature, resource, and its actual 
costs and benefits need to be studied to determine promising combinations of physical DR 
resource, enabling controls and communications, power system characteristics, regulatory 
environments, market structures, and business models. The work described in this report focuses 
on the enablement of such analysis from the production cost modeling perspective. In particular, 
we contribute a bottom-up methodology for modeling load-shifting DR in production cost 
models. The resulting model is sufficiently detailed to reflect the physical characteristics and 
constraints of the underlying flexible load, and includes the possibility of capturing diurnal and 
seasonal variations in the resource. Nonetheless, the model is of low complexity and thus 
suitable for inclusion in conventional unit commitment and market clearing algorithms. The 
ability to simulate DR as an operational resource on a power system over a year facilitates an 
assessment of its time-varying value to the power system. 

The modeling methodology is demonstrated through a case study of aggregated supermarket 
refrigeration systems providing balancing energy reserves in real-time markets at different levels 
of variable generation (VG). This DR resource is implemented in a test power system that 
represents a subset of the U.S Western Interconnection centered on Colorado. The value of DR 
from the population of supermarkets in Colorado is found to be $32.85 per kilowatt-year (kW-yr) 
presuming no other DR resources. The value decreases significantly (to $6.95/kW-year in the 
most extreme case) when we increase the capacity of the DR resource to naïvely represent the 
incorporation of DR from other flexible loads (in actuality, other DR resources will have 
different characteristics, such that the decrease in value will not be as steep). Refrigeration DR is 
found to offer greater value to the power system during the winter months than the summer 
months due to operational constraints that limit the flexibility of the resource during the summer. 
The value of DR is found to increase as the penetration of VG increases, reaching $46.05/kW-
year for our baseline DR penetration and a variable generation (VG) penetration of 55%. We do 
see a plateau in the value of DR going from 45% to 55% VG. This is attributable to the inability 
of DR to provide energy storage on horizons longer than 24 hours.  

Overall, this work is a study in methodology. The case study is included primarily to show that 
the model is working properly and that this line of research is worthwhile. The reported numbers 
do not represent a true value of DR, but they do suggest orders of magnitude for a particular DR 
resource providing a particular grid service in a particular power system; they also confirm 
expected correlation directions between value and DR penetration (decreasing) and between 
value and VG penetration (increasing). Future work includes extending this method and 
developing new methods to be able to model physically realistic DR resources at scale. Some 
important aspects not studied here include capturing all possible value streams for a single 
resource (capacity, energy, and ancillary service values), simultaneously evaluating DR from 
multiple resources, and economically competing DR resources based on their costs of 
enablement and the trade-offs between end-user disutility and participation payments. 
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1 Introduction 
The structures of future power systems are uncertain. Several common objectives have emerged, 
including the accommodation of high penetrations of renewables, increased economic and 
resource efficiency, and the maintenance of current reliability standards; yet, there is no 
consensus on how best to achieve these objectives. Across most future scenarios being explored 
in large-scale integration studies, the need for operational flexibility emerges as a common theme 
[1], [2]. Flexibility can be realized on both the supply and demand side, and even within 
transmission networks. The focus of this work is the modeling of energy-shifting demand 
response in production cost models.  

Demand response (DR) is a broad term that encompasses all manners in which end-use electrical 
load can be altered to support the operation of the power system. It covers a range of time-scales 
and services, from frequency regulation, to load shifting on an hourly scale, and further on to 
long-term capacity provision and end-use efficiency improvements. At all of these scales, there 
is a general lack of accurate models depicting how DR will participate in the bulk power system. 
Thus, while DR appears to be a promising candidate for providing power system flexibility, its 
true value is as yet unknown.  

Recent work has shown how DR might be incorporated into large-scale integration studies, and 
thus competed against other energy resources on both a capacity and an operational basis [3], [4]. 
The framework developed by Hummon et al. is based on DR resource data estimated using a top-
down approach that applies time-varying fractional estimates of sheddability, controllability, and 
acceptability, to aggregate power consumption data broken down by end-use [5]. The work 
described in this report complements that earlier work by developing a methodological 
framework for bottom-up analysis of load-shifting DR from thermal-electric loads (e.g., air 
conditioning, water heating, heat pumps and refrigeration). For these loads in particular, it is 
difficult to model the physical characteristics and constraints of the underlying end-use 
accurately from a top-down perspective. We thus seek to more accurately model resource 
availability and constraints through the use of dynamic models of individual loads while 
respecting the mixed-integer programming (MIP) complexity of representation allowable in a 
conventional unit commitment algorithm. The methodology is demonstrated on the motivating 
example of supermarket refrigeration, which, from the perspective of DR, has the positive 
characteristics of high thermal mass, and potentially low enablement costs (e.g. based on large-
scale rollout across an entire supermarket chain). 

A wealth of research addresses DR, yet the body of work concerned with establishing models 
suitable for its practical implementation in large-scale power system studies is limited. Many 
authors consider implementing detailed state-space or time-series models of flexible load directly 
within system dispatch algorithms [6], [7]. This approach provides an assessment of the 
theoretical value that DR would provide if its flexibility were fully accessible, but the complexity 
of this representation of DR renders it impractical. System operators do not have the ability to 
manage many thousands of devices, each on the scale of a few kilowatts (kW). The value of this 
modeling approach for an integration study is also limited as the complexity involved precludes 
the assessment of the resource over the temporal and geographical scales of interest. Another 
commonly adopted approach is to represent the price responsivity of load through an elasticity 
value [8], [9]. The simplicity of this approach is appealing; however, it has been demonstrated 
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that the elasticity value of electrical demand is highly variable and exhibits no correlation with 
the price of electricity [10]. This holds particularly for thermal-electric loads that exhibit storage 
properties and non-linear losses, such as those loads used for load shifting. Furthermore, there 
are concerns that if the price responsivity of loads can be activated, operating large quantities of 
price-responsive DR could introduce instability into the power system [11], [12]. 

Of the works that directly discuss DR models suitable for an integration study, Zerrahn and 
Schill [13] present the most promising approach. In [13], load shifting is modeled similarly to a 
battery, with a limitation on the time span over which load shifting can occur. The work 
presented here expands upon that work by offering a more flexible definition of the services 
provided to the power system by the DR resource, and by elaborating on how the seasonal 
characteristics of the resource affect its flexibility. Other works that investigate models of DR 
suitable for integration studies include [14], which focuses on the provision of frequency 
regulation from residential loads. Hao et al. [14] support the objective of this work by 
highlighting the importance of developing a compact aggregate representation of the flexibility 
of loads that characterizes the set of behaviors achievable while respecting the constraints of the 
constituent loads. Marzooghi et al. [15] model DR in combination with solar PV and storage at 
the transmission level. They employ a generic model of DR that has a similar structure to a 
battery model, but they do not elaborate on how the parameters used can be related to the 
physical characteristics or constraints of the underlying end use.  

The work described here deviates from previous research by developing a modeling 
methodology for load-shifting DR that incorporates the physical characteristics and constraints 
of the individual end-uses within the aggregate population flexibility model. The methodology 
considers the seasonal variations in the resource, which have had limited treatment in previous 
works, an exception being the work of Hummon et al. [4] where the seasonal variation in the DR 
resource is incorporated directly in the top-down resource description. The developed population 
model is of comparable complexity to that described in [13], [15], but it offers a greater scope of 
flexibility, allowing multiple DR products to be offered from a given flexible load population. 
The model is demonstrated through a case study in which DR is implemented on a test power 
system that resembles that of Colorado and Wyoming, using PLEXOS, a commercial production 
cost modeling tool. The case study simulations span a year and facilitate analysis of the seasonal 
variations in the DR resource. 

This work focuses solely on load-shifting DR. It is acknowledged that flexible loads are capable 
of providing a range of power system services including reserves and contingency, and the 
decision to focus on load-shifting DR was due to the complexity of this form of DR and the 
ability to derive a representation of other services from a load-shifting model. The representation 
of load shifting in a power system model is more complex than that of, for example, contingency 
due to the necessity of balancing any response from the flexible load with an energy recovery. 
The coupling of response and recovery ensures that the local operating conditions return to their 
normal operating level following the DR event. The load-shifting DR model fully characterizes 
the flexibility of the resource and consequently also facilitates the characterization of the 
resource available for the provision of contingency and other ancillary service support. Another 
reason for the focus on load shifting is that its participation in the power system can be easily 
understood within the framework of existing day-ahead, balancing, or real-time markets, where 
the system operator is free to dispatch the DR resource within its declared constraints. In 
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comparison, the requirements for DR providing contingency services are not well defined. This 
is particularly the case for thermal-electric loads where a recovery is necessary following a 
response. There are no clear guidelines for how this recovery should be treated if thermal-electric 
loads participate in contingency support, and it is possible that these flexible loads would be 
precluded from contingency services due to the necessity of energy recovery.  

The DR model developed in this work represents the resource as seen at the interface between 
the aggregator/retailer and the system/market operator. No consideration is given to how the 
resulting dispatch will be distributed among the constituent flexible loads in the DR population. 
A significant body of work discusses the scheduling of individual flexible loads; for examples 
see [16], [17]. Given that the physical constraints of the individual loads are reflected in the 
population model, it is assumed that any dispatch within those constraints can be achieved by a 
separate control framework at the interface between the aggregator and the device using 
established methods.   
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2 Preliminaries 
2.1 Conventions and Terminology 
In this report, any references to the power adjustments that occur during a DR event are taken 
from the perspective of the power system. When power is supplied to the power system, this is a 
positive quantity that corresponds to a reduction of load, while power drawn from the power 
system is a negative quantity representing an increase in load. 

The DR resource modeled here is considered to be comprised of two quantities: the base load 
and the flexible load. The base load is the consumption required to maintain normal operating 
conditions and is included in the conventional system load. The flexible component of the load is 
the adjustment away from this baseline. The flexible load is offered to the system operator as a 
product to be dispatched alongside conventional power system resources. 

A DR event consists of a response followed by a recovery. This terminology does not have any 
implications for the direction of the response or recovery. A DR event can commence with either 
a supply of power to the system or a draw of power from the power system. At the device level, 
this translates to a DR event commencing with either a shed of load or pre-cooling/pre-heating. 

2.2 Running Example: Supermarket Refrigeration 
The research described here builds on previous work by the authors wherein a time series model 
of a supermarket refrigeration system was identified using experimental data from a refrigeration 
test center [18], [19]. This time series model facilitated the simulation of the refrigeration system 
behavior during DR events, and thus informs the DR population model described in this work. 
The example figures shown in Section 3 are built using the time series model that was developed 
in our previous work, and refer to the behavior of flexible refrigeration. The characteristics 
exhibited in these figures can be found across all types of flexible thermal-electric loads, though 
with different levels of flexibility and coupling with the environment.  
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3 Characterizing Thermal-Electric Load-Shifting 
Demand Response for Power System Studies 

Many thermal-electrical loads share key characteristics that make them ideally suited to 
providing load-shifting DR. The flexibility to operate within an acceptable temperature range 
and the dynamic interaction between electrical input and heat output mean that power 
consumption can be shifted in time while maintaining acceptable operating conditions. Such 
thermal loads include heating, cooling, and refrigeration, and can be found in residential, 
commercial, and industrial settings.  

The analogy of a battery is often employed to describe load-shifting DR in power systems due to 
the energy storage that occurs during load shifting [20], [21]. However, there are several 
distinctions between batteries and appliances capable of load shifting.  

3.1 Characterizing Demand Response through the Saturation Curve 
The primary distinction between a battery and load shifting is that while a battery contains a 
fixed energy volume, the amount of energy stored or dissipated through load shifting is non-
linearly dependent on the magnitude of the adjustment in power consumption. The ability of 
flexible loads to adjust their power consumption is limited by constraints at the device level that 
ensure the controlled temperatures do not deviate from an accepted range; these are often called 
comfort or operational limits. Thus, the response provided by a flexible load is said to saturate 
once a temperature constraint becomes binding and the adjustment in power consumption can no 
longer be maintained.  

The phenomenon of response saturation is illustrated in Figure 1 and Figure 2, which illustrate 
the behavior of a refrigeration unit when it is required to follow a power consumption reference. 
Figure 1 shows that the power consumption is steady until it is required to reduce from 14 kW to 
8 kW. The reduction of 6 kW can be maintained until the temperature in the refrigeration system 
reaches its upper bound (as seen in Figure 2). Once the upper temperature limit is reached, the 
prescribed reduction can no longer be maintained, at this point it is said that the response has 
saturated. When the power reference is no longer active, the system will recover the energy lost 
during the response event by increasing consumption to the maximum allowable level such that 
all the compressors on the system are operating to bring the case temperature back to the normal 
operating conditions, that is, following a temperature set-point as shown in Figure 2. This 
recovery is seen in Figure 1 when the power reference returns to zero. Note that in this case, the 
consumption at 14 kW is the baseline consumption, and the deviation of 6 kW is the response 
provided to the power system. 
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Figure 1. Power consumption in refrigeration system when required to follow a power reference 

(dashed green line, active when non-zero) 

 
Figure 2. Temperature in the refrigeration system, subject to upper and lower limits  

(dashed red lines) 
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Figure 3 describes the maximum flexibility of a load-shifting device in the form of a saturation 
curve, which illustrates the relationship between a power adjustment in a flexible load and the 
duration for which the adjustment can be maintained. This curve applies to a particular flexible 
resource or population of resources at a particular time or under a particular set of environmental 
conditions. Any adjustment in consumption on one side of the saturation curve (a response) must 
be combined with an adjustment in the opposite direction as found on the other side of x-axis (a 
recovery) to complete the DR event. This ensures that the energy deviation caused by a response 
is corrected through a recovery. The combination of a response and recovery, possibly separated 
by some period of time, form a DR event. The energy stored or dissipated during this response 
can be calculated as the factor of the magnitude of the power adjustment and the duration for 
which it is maintained. 

 
Figure 3. Saturation curve of a sample refrigeration system as seen from the power 

system perspective 

The saturation curve provides valuable insight into the capabilities of a single load-shifting 
appliance, and it can similarly be employed to describe the capabilities of a population of similar 
appliances. For a homogeneous population of flexible loads, an aggregate saturation curve can be 
found through simple summation along the power axis. It is intuitive that a group of N identical 
appliances can maintain an adjustment in power consumption of Nα kW for the same duration as 
a single appliance can maintain an adjustment of α kW. For a heterogeneous population, one can 
cluster appliances into approximately homogeneous sub-groups and determine an aggregate 
saturation curve for each. Clustering has been previously employed to represent heterogeneous 
populations of DR resources in [6], [14], [22]. 
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While the saturation curve is an effective representation of the abilities of a flexible load, or 
population thereof, it is not suitable for direct inclusion in a power system model or market-
clearing algorithm. The saturation curve represents a large number of combinations of upwards 
and downwards power adjustments, each for distinct maximum durations. While there is a 
relationship between each power adjustment and its saturation time, it is a non-linear relationship 
that cannot be linearized for inclusion in a linear optimization, such as market clearing or unit 
commitment.  

To simplify the saturation curve sufficiently such that the characterization of the DR resource is 
suitable for inclusion in a unit commitment model, it is necessary to define a subset of abilities 
within the saturation curve. Figure 3 illustrates four possible combinations of capacity and 
duration that a population of load-shifting DR resources could offer into an energy market. The 
combinations are defined by the period within which the response and recovery must balance. 
Once that is specified, the maximum upwards and maximum downwards power adjustments can 
be read off of the saturation curve. Those, along with the balancing period, that is the sum of the 
saturation times for the maximum upwards and downwards power adjustments, are used to 
define the DR thermal storage resource within the unit commitment model. Thus, the saturation 
time (y-axis value) shown for each selection in Figure 3 is 50% of the DR storage resource’s 
balancing time. Imposing a balancing period ensures that the underlying flexible load returns to 
an intermediate temperature following a DR event, so that it is prepared for future events. The 
DR storage resources are mutually exclusive; only one choice of balancing period can be actively 
dispatched at a time. 

3.2 Resource Efficiency 
A further distinction between load-shifting DR and a battery is that the round-trip efficiency of a 
DR event is dependent on the magnitude of the response and recovery. In a conventional battery 
or energy storage device the efficiency is considered constant and independent of the 
charging/discharging rate.  

The efficiency of a load-shifting DR event can be calculated as the ratio of the energy supplied to 
the power system and the energy drawn from the power system during a DR event.  

𝜂𝐷𝐷 =
∑ Δ𝑃+𝑇
𝑡=1

∑ Δ𝑃−𝑇
𝑡=1

  

Determining the round trip efficiency of a DR event is non-trivial, as the efficiency depends on 
the magnitude of both the response and the recovery. Based on the models developed in [18], the 
efficiency profile of DR events from a supermarket refrigeration system has been calculated and 
is shown in Figure 4. Figure 4 illustrates the efficiency of DR events that commence with power 
drawn from the power system (above) and power supplied to the power system (below).The 
efficiency has been calculated by combining response and recovery events sampled from the 
saturation curve. The energy associated with each response and recovery has been calculated 
from the power magnitude and duration of each.  

A higher efficiency (>100%) is most desirable, as this indicates that the amount of energy drawn 
from the power system is less than the energy supplied to the system. It can be observed from 
Figure 4 that the efficiency can range between approximately 60% and 180%, depending on the 
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magnitude of the response and recovery. Events in which the power supplied to the power 
system are small but sustained for a long time, and the power drawn is large but over a short 
time, exhibit the highest efficiencies.  

This can be understood by considering our running example of a refrigeration system. A power 
draw from the power system to the refrigeration system reduces the temperatures within the 
refrigeration system and consequently increases the losses to the system. A prolonged power 
draw will result in a slow reduction in temperature and large energy losses, requiring more power 
be drawn from the grid and consequently reducing the efficiency of the DR event. In contrast, a 
large power draw will reduce the temperature rapidly and can only be maintained for a short 
period due to saturation. This behavior results in reduced losses to the ambient and improved 
DR efficiency.  

Symmetric events (where response and recovery have the same magnitudes) tend to exhibit an 
efficiency of just below 100%. The efficiency of symmetric events is indicated in Figure 4 by the 
yellow line, while the 100% efficiency contour is indicated in red. It can be observed that while 
the efficiency of a symmetric event is close to 100%, it does not exhibit a fixed offset from the 
100% efficiency contour and is dependent on the magnitude of the response and recovery. 

We did not consider the possible variation in the efficiency with changing environmental 
conditions because requisite data were not available. This is a possible topic for future research. 
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Figure 4. Round-trip efficiency of a DR event 

The red lines show the 100% efficiency contours and the yellow lines show the efficiency of symmetric events (i.e., a 
response and recovery of the same power magnitude). 

3.3 Seasonality in the Demand Response Resource 
When considering thermal end-end uses for the provision of load-shifting DR, there are three key 
characteristics to consider; the baseline power consumption, the maximum possible power 
consumption, and the energy required to achieve a given temperature change. These quantities 
are influenced by several environmental factors—primarily the ambient temperature—but also 
occupancy and typical building operating hours, among other factors. 

The baseline power consumption defines the amount of power consumption that can be shed as 
part of a DR event. Figure 5 illustrates the normalized power consumption of a number of 
thermal end uses over a year. The data are sourced from the California Commercial End-use 
Survey (CEUS) [23], which recorded hourly power consumption of commercial loads in 
California throughout 2002. The dependence of the baseline consumption on the ambient 
temperature can be clearly seen in Figure 5. For heating and cooling, this variation in 
consumption is attributable to both the effect of ambient temperature on the performance of the 
appliance, and the reduced use of cooling devices in the winter and heating devices in the 
summer. For refrigeration and hot water, the usage is steady year-round, but the impact of the 
ambient temperature on appliance performance can be seen. It is tempting to conclude that the 
couplings of refrigeration and hot water heating, and of cooling and heating are well suited to act 
together to provide a DR resource with stable availability over the year; however, the significant 
differences in magnitude reduce their complementarity. 
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Figure 5. Normalized consumption of electrical end uses suitable for load shifting 

Data have been smoothed and normalized to facilitate the analysis of the seasonal tendencies 
of each end use without considering their individual magnitudes. Intra-day variations in the power 
consumption profiles cannot be seen in the illustrated data, as they have been averaged out in the 
smoothing process. Normalization is relative to the maximum daily power consumption, the 
proximity of the illustrated profiles to 1 indicates the level of intra-day variations in the data. 

The difference between the baseline power consumption and the maximum possible power 
consumption defines an upper limit on the power that can be drawn from the power system 
during a DR event. Figure 6 illustrates the baseline and maximum power consumption for the 
refrigeration system used in the running example in this work. Due to the characteristics of the 
compressors on the refrigeration system, this maximum power consumption increases during the 
summer. Details on the derivation of the maximum and baseline consumption are provided in 
Section 5.1. It can be seen that the baseline consumption peaks during the summer, indicating an 
increase in capacity available to supply power to the power system. However, the difference 
between the baseline and maximum consumption is minimized during the summer. This means 
there is a reduced ability to recover energy during a DR event, which possibly limits the value 
this DR resource offers the system during the summer months. 
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Figure 6. Variations in available flexibility at the device level, using the example of 

supermarket refrigeration 

The energy required to achieve a given change in temperature also varies over the year for a 
number of thermal end-uses. The coefficient of performance (COP) is a temperature-dependent 
quantity that defines the relationship between power consumption in a thermal appliance and the 
resulting thermal energy. At high COP values, a smaller amount of power consumption will be 
necessary to achieve a given temperature change. This affects the definition of a DR product by 
varying the maximum response and recovery power for a product with a fixed balancing time. 
Figure 7 illustrates the COP of the refrigeration system employed as the running example in this 
work. The COP of this system is maximized during the winter months, indicating less response 
and recovery power will be offered in the DR products during the winter. 

 
Figure 7. Variations in compressor COP over a year 
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4 Mathematical Representation of Demand 
Response Resource 

Though Section 3 described the differences between load-shifting DR and a battery, their 
similarities are sufficient to use a battery or conventional electrical storage formulation to 
represent the load shifting resource in a power system model. This section details the 
theoretically optimal mathematical formulation for this resource, as well as a simplified 
representation suitable for inclusion in commercial production cost modeling software. The 
mathematical formulation describes the constraints on a DR resource offered by a population of 
flexible loads. Each resource offered consists of a maximum amount of power supplied to or 
drawn from the power system, and a period over which the power supply and draw must balance. 
Examples of products are illustrated in Section 3.1.  

4.1 Theoretically Optimal Formulation 
The load-shifting DR event consists of a combination of power supplied to and drawn from the 
power system. At the device level, this is seen as a deviation in power consumption from a time-
varying baseline. Equation (1) describes the power supplied to the power system, Δ𝑃𝑡+, and the 
power drawn from the power system, Δ𝑃𝑡−, as the difference between the baseline power 
consumption of the population of flexible loads, 𝑃𝑡𝐵𝐵𝐵𝐵, and its actual consumption, 𝑃𝑡𝐷𝐷. Both 
Δ𝑃𝑡+ and Δ𝑃𝑡− are positive variables; thus, when the actual consumption of the population of 
flexible loads is less than its baseline, power is supplied to the power system and Δ𝑃𝑡+ is non-
zero. Similarly, when the actual consumption exceeds the baseline, power is drawn from the 
power system and Δ𝑃𝑡− is non-zero. The baseline power consumption is not considered part of 
the load shifting resource; it is assumed to be served as part of the conventional load. 

Δ𝑃𝑡+ − Δ𝑃𝑡− = 𝑃𝑡𝐵𝐵𝐵𝐵 − 𝑃𝑡𝐷𝐷 (1) 

0 ≤ Δ𝑃𝑡− ≤ Δ𝑃𝑡
−,𝑚𝑚𝑚𝑢𝑡 (2) 

0 ≤ Δ𝑃𝑡+ ≤ Δ𝑃𝑡
+,𝑚𝑚𝑚𝑢𝑡 (3) 

Equations (2) and (3) include the binary variable 𝑢𝑡, which is employed to indicate whether a DR 
product is active. The necessity of this variable is clarified below.  
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The storage characteristics of the load shifting resource are described below. 

St = 𝑆𝑡−1 + �Δ𝑃𝑡− −
Δ𝑃𝑡+

𝜂𝐷𝐷
� .Δ𝑡 (4) 

St ≤ 𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + Δ𝑆+,𝑚𝑚𝑚 (5) 

St ≥ 𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − Δ𝑆−,𝑚𝑚𝑚 (6) 

Δ𝑆+,𝑚𝑚𝑚 = ∑ Δ𝑃−,𝑚𝑚𝑚.Δ𝑡𝑡∈𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,      Δ𝑆−,𝑚𝑚𝑚 = ∑ Δ𝑃+,𝑚𝑚𝑚.Δ𝑡𝑡∈𝐵𝐵𝐵𝐵𝐵𝐵𝐵  (7) 

𝑆𝑡 − 𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤ 𝑀𝑢𝑡 (8) 

𝑆𝑡 − 𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≥  −𝑀𝑢𝑡 (9) 

Equation (4) describes the stored energy, 𝑆𝑡, as a function of the inflow to and outflow from the 
storage device, where Δ𝑡 is the interval. The stored energy has no direct physical relationship 
with the underlying flexible load. The storage analogy is simply employed to indicate that the 
energy level returns to the balance point, 𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵, when the energy supplied and drawn from the 
power system balance. The value of 𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is arbitrary, but must be sufficiently large that 
maximum energy outflow over the balance window does not exceed 𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵. If this is not 
considered, the lower bound on the storage volume (i.e. zero) may become binding. The lower 
and upper bounds on the storage device are given in equations (5), (6), and (8), which describe 
the maximum possible energy deviations from the balance level over the balance window for a 
given DR resource configuration. 

The parameters constraining the behavior of the DR resource, Δ𝑃+,𝑚𝑚𝑚,Δ𝑃−,𝑚𝑚𝑚 and 𝑃𝑡𝐵𝐵𝐵𝐵 are 
time-varying to reflect the change in available DR resource and the variations in the underlying 
flexible load over the year. 

Equations (8) and (9) are coupled constraints used to indicate when the storage level is not at the 
prescribed balance point. When the stored energy deviates from the balance point, the binary 
variable, 𝑢𝑡, becomes non-zero. M is an arbitrarily large number that ensures the constraints are 
non-binding when 𝑢𝑡 is non-zero. 

The load-shifting product is considered to be online when either power is supplied or drawn from 
the power system, or when the stored energy is different from the prescribed balance level. When 
a product is online 𝑢𝑡 = 1. 

� 𝑢𝑡′ ≤ 𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑡+𝑇𝐵𝐵𝑙𝑙𝑙𝑙𝑙

𝑡′=𝑡

,∀𝑡 (10) 
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The constraint that the DR product must balance within the prescribed balance window is 
imposed in equation  (10), which states that a given product may be online for at most the 
balance period, 𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵. This ensures the product goes offline once the balance period is 
exceeded. Requiring that the product be offline consequently imposes that the power supplied to 
and drawn from the grid during the active period of the product are balanced. This constraint is 
comparable to a maximum uptime constraint for a conventional generator.  

The binary variable employed to indicate the online status of a DR configuration, 𝑢𝑡, can also be 
used to ensure a given DR resource is not simultaneously offering two configurations to the 
power system. Each DR configuration allows the maximum use of the resource flexibility, so 
simultaneous dispatch of multiple configurations would result in the dispatch of services that are 
not achievable without violating the temperature constraints of the underlying thermal load. If 
each DR configuration is denoted using the subscript 𝑖, each variable in the above equations 
should be extended to incorporate this additional subscript. The set of DR products is denoted 𝐼. 

The constraint preventing simultaneous dispatch of DR configuration is given as: 

�𝑢𝑡,𝑖 ≤ 1,     ∀𝑡 
𝑖∈𝐼

 (11) 

The use of the binary variable also lends itself to the definition of additional constraints that 
could be imposed if desired by the aggregator, retailer, or other party responsible for control of 
the flexible load. One such constraint is an upper limit on the number of DR product activations 
within a given window: 

𝑆𝑈𝑡 − 𝑆𝐷𝑡 = 𝑢𝑡 − 𝑢𝑡−1 (12) 

� 𝑆𝑈𝑡 ≤ 𝑋
𝑡∈𝑇𝑝𝑝𝑝𝑝𝑝𝑝

 (13) 

Equation (12) defines the startup and shutdown indicators for a given DR product. Equation 
(13) then limits the number of startup instances over a given period, 𝑇𝑝𝑝𝑝𝑝𝑝𝑝, to less than a 
limit 𝑋.  

Constraining the number of DR events dispatched within a given period is a useful construct to 
ensure flexible loads are not inadvertently driven toward unacceptable operating conditions. The 
concept of linking the response and recovery is intended to ensure the operating conditions (e.g., 
temperature) return to their initial states following a DR event. This assumption holds if the 
constant efficiency of the demand response event assumed in the optimization problem 
formulation is accurate. However, as described previously, the efficiency is dependent on the 
magnitude of the response and recovery. Including this dependency in a linear programming 
optimization is not possible, thus a constant value must be selected. By selecting demand 
response products in which the response and recovery are of equal magnitude, it can be assumed 
that 100% efficiency is a reasonable approximation (see Figure 4). However, the DR dispatch 
algorithm has the freedom to select response and recovery magnitudes below the prescribed 
maximum levels, which may not be 100% efficient. In such a case, the operating temperatures 
would not return to their initial levels at the end of the DR event. Initiating a second DR event 

http://www.nrel.gov/publications


 

16 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

from this initial point would possibly lead to unforeseen saturation. Limiting the number of 
events dispatched would allow more time for the flexible load to return to its normal operating 
conditions outside of the DR event. 

The constraints described above have been formulated in an efficient manner for mixed-integer 
programming using insight acquired from [24]. 

4.2 Practically Implementable Formulation Suitable for PLEXOS 
The constraints described in the Section 4.1 represent the ideal control of the DR products; 
however, they are not directly implementable in the selected production cost modeling software, 
PLEXOS. In particular, equation (10) requires the summation of variables over time, which 
cannot be implemented in PLEXOS. 

Equation (10) ensures the DR resource will balance within the prescribed balance period 
following its initialization at an arbitrary time. This can be simplified by instead requiring the 
DR resources to balance at or prior to a set time. For example, a resource with a three-hour 
balancing period can be required to balance at 3 a.m., 6 a.m., 9 a.m., and so on. 

The variable 𝑢𝑡,𝑖 is a custom binary variable that is defined in PLEXOS. Each DR product (𝑖) 
within each population of flexible loads has an associated binary variable 𝑢𝑡,𝑖 for each time 
period (𝑡). The constraints detailed in the previous section ensure 𝑢𝑡,𝑖 is non-zero any time a DR 
product is online, that is, when it is supplying power to the system, drawing power from the 
system, or has a stored energy value not equal to the balanced energy value. 

4.3 Validation of Approach 
Implementing the DR resource within PLEXOS requires the constraint simplification described 
above; however, prior to doing so, it is important to establish the impact of this simplification on 
the problem solution. 

Validation of the constraint simplification has been achieved by comparing the results of a 
PLEXOS model with simplified DR constraints, and an equivalent model implemented in 
GAMS with the ideal DR constraints. The General Algebraic Modeling System (GAMS) is a 
high-level modeling system for mathematical programming problems [25]. A simple five-bus 
system model in PLEXOS was replicated in GAMS. The models were validated with and 
without DR as described by the simplified constraints. Finally, the ideal DR constraints were 
implemented in GAMS. 

The production cost model dispatches the sample five-bus power system on a day-ahead basis 
over a year. The system contains five thermal generators and no variable renewable generation. 
Both models use a duality gap of 0.01%. PLEXOS uses the XpressMP solver to determine the 
model solution, while GAMS uses the CPLEX solver. 

Table 1 details the total production cost from the GAMS and PLEXOS implementations with and 
without DR, and the GAMS implementation with the ideal DR constraints. Differences between 
the GAMS and PLEXOS solutions are expected due to the different solvers used. A difference of 
0.02% in the total production cost is seen between the GAMS and PLEXOS solutions, both with 
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simplified DR constraints and with thermal generation only. This difference is considered to be 
within the tolerance for validation. The addition of the ideal DR constraints in the GAMS 
formulation reduces the cost of production by a further 0.014% compared to the simplified 
constraints as implemented in GAMS. 

Table 1. Validation of GAMS Model 

Model Total Production Cost ($M) 

PLEXOS  158.282 

GAMS  158.318 

PLEXOS with Simplified DR 157.834 

GAMS with Simplified DR 157.799 

GAMS with Ideal DR 157.775 

The value of DR in this test case is the reduction in total production cost achieved by its 
implementation in the system. The PLEXOS model reports a cost reduction of 0.282%, while the 
GAMS model reports savings of 0.33% with the simplified DR representation. Again, the 
differences can be attributed to differences in the solvers used to generate the solution. The 
implementation of the ideal DR constraints in GAMS results in total cost savings of 0.34%. 
Implementation of the ideal DR constraints results in additional savings of 4.52% compared to 
the simplified DR constraints. While these additional savings are not insignificant, they are 
sufficiently small that the use of the simplified constraints in PLEXOS can be justified. 

In addition to being implementable in PLEXOS, the simplified constraints significantly reduce 
computation time. A yearlong simulation in GAMS with simplified constraints on a five-bus 
system has a run-time of 0:07:59, while a simulation with the ideal constraints has a run-time of 
0:32:06.1 Given that these simulations are conducted using a very simple power system model, 
one would expect the significant difference in computation time to be greatly increased in a 
larger, more complex system.  

                                                 
1 Simulations were run on a Dell laptop running Windows 7 with an Intel(R) Core i7-3520M CPU at 2.9Ghz and 
4GB of RAM. 

http://www.nrel.gov/publications


 

18 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

4.4 Example Operation in a Five-Bus System 
Figure 8 illustrates the results of a small test case run on the five-bus system using PLEXOS. 
Three DR populations of varying sizes were modeled with four possible balancing periods each, 
3-hour, 6-hour, 12-hour, and 24-hour (defined as illustrated in Figure 3). The system was 
simulated over a one-week period at hourly resolution to illustrate the operation of the load 
shifting DR resource. Because the choice of balancing on six-hour intervals was not dispatched 
in the simulated period it is not shown in Figure 8. 

The upper plot in Figure 8 shows the electricity price over the simulation period. The higher 
prices approximately correspond to the periods of peak load during each day. The second plot 
shows the net load reduction of each DR resource, as defined by the balancing period. By 
comparing the first and second plots, it can be seen that the DR resource provides net power to 
the system during periods of higher prices and recovers energy during periods of lower prices. 

The differences between the various balancing periods offered to the system are also evident in 
the second plot of Figure 8, where the 24-hour balancing period is associated with the lowest 
power magnitude but is active for a much longer duration than any other resource configuration. 
The dashed lines represent the power limits on each of the demand response resource 
configurations. The variations of these limits with ambient temperature can be seen; for example 
on January 3, the limits are greater than on the other days due to higher ambient temperatures. 

When the DR event commences with a supply to the grid (e.g., the first DR event in Figure 8), at 
the appliance level the event starts with a shed of load and is followed by a rebound or recovery. 
When the event commences with a draw of power from the grid, the appliance first undertakes a 
pre-heating or pre-cooling cycle that pre-charges the thermal storage resource, and only later 
sheds load to provide energy to the power system. In most cases, the DR event consists of a 
continuous response followed by a continuous recovery; however, in the first instance of use of 
the 12-hour balancing period configuration, the DR event consists of a repeated oscillation 
between supply and draw of power. This is a valid DR behavior that is permitted within the 
defined characteristics of the DR resource as presented to the grid model. 

The impact of the simplified constraints imposed in PLEXOS can also be seen in Figure 8. For 
example, the 24-hour balancing period configuration must balance prior to midnight, but it is 
also possible for the 12-hour balancing period configuration to be active between the time when 
the 24-hour resource balances and its own balancing deadline occurs, which is also midnight in 
this case. This can be seen in the repeated pattern from January 4 to January 7. 

The third plot in Figure 8 illustrates the energy volumes involved in each DR event. Here the 
difference between the DR configurations is again evident, with the longer balancing period 
exhibiting larger volumes of energy storage. The final plot indicates the online status of each of 
the configurations offered, illustrating that while the DR resource is presented to the grid model 
in a multifaceted manner, no two conflicting configurations are ever dispatched simultaneously. 
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Figure 8. DR resource behaviour over a one-week period as simulated on a five-bus power 

system model 
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5 Case Study 
We conducted case studies to demonstrate the DR modeling methodology described above and 
to investigate the impact of DR on the power system. This section details the development of a 
sample population of DR resources, the power system within which the DR resource is 
implemented, and the tests that are performed. 

5.1 Demand Response Resource 
The sample DR resource implemented in these case studies is supermarket refrigeration. DR is 
achieved by altering the compressor operation, which is precipitated by adjusting temperature 
set-points within refrigerated cases. This resource did not include defrost, display case lighting or 
anti-sweat, other potential sources of DR that can be leveraged.  

Supermarket refrigeration exhibits several characteristics that make it ideally suited to being an 
early adopter of load-shifting DR: 

• The thermal mass present in refrigeration display cases facilitates the adjustment of 
power consumption while maintaining acceptable temperatures for foodstuff storage.  

• Supermarkets operate at a low profit margin, incentivizing them to pursue opportunities 
for cost savings. If DR can offer easily accessible cost savings, it can be expected that 
this profit-driven enterprise would adopt an operating paradigm that facilitates load-
shifting DR. This differs from residential DR, where consumers are not rational actors 
and may be driven by many other factors than welfare maximization. 

• The structure of a supermarket chain lends itself to the formation of an aggregator. While 
individual supermarkets are considered large commercial loads, the flexibility they offer 
is likely below the threshold for participation on many electricity markets. By 
aggregating a number of supermarkets and offering their combined flexibility as a single 
product, this threshold can be overcome.  

To represent the load shifting flexibility of supermarket refrigeration accurately, it is necessary to 
establish the saturation characteristics and power consumption limitations of the individual 
supermarkets. A saturation curve for a sample supermarket has been established in previous 
work [18], [19]. A portfolio of tests was conducted at an experimental refrigeration facility, 
mimicking the behavior of a supermarket during a DR event. The data resulting from these tests 
were used to identify a statistical model of the system that was in turn employed to establish the 
saturation curve. In practice, the same saturation curve can be determined directly through 
observing the ability of a supermarket to follow a power reference signal.  

The model employed to establish the saturation curve does not consider the dependence of the 
system on the outdoor ambient temperature due to the limited time extent of the available 
experimental data. This necessitates the consideration of the temperature dependence through an 
external model. 

Three key temperature-dependent quantities have been determined: the baseline power 
consumption, the maximum power consumption, and the COP. These quantities have been 
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identified using an operational supermarket located in Denver, Colorado as a base case. The 
precise location of this supermarket cannot be revealed due to commercial sensitivity.  

The baseline consumption has been obtained from historical data recorded at the supermarket. A 
regression model relating the power consumption to ambient temperature was identified and used 
to simulate the baseline consumption for the case study year, 2006. 

The maximum power consumption is not a measured quantity. The maximum power 
consumption to achieve the required refrigeration cooling is detailed in the data sheets for the 
compressors on the refrigeration system. The specifications of the compressors were employed 
to simulate the maximum power consumption over the study year. 

The COP of the refrigeration system is a well-defined quantity. Its relationship to the ambient 
temperature is detailed in the compressor specifications, and can be described by a non-linear 
regression model. This model facilitated the simulation of the COP over the study year. The 
variations in the COP impact the DR product definition, as the maximum power offered for 
response and recovery vary according to the COP.  

The COP can be incorporated into the saturation curve by considering that a fixed amount of 
thermal energy is required to achieve a given change in temperature, and that the electrical 
energy required to achieve this temperature change will change according to the variation in the 
COP. The saturation curve identified for the test refrigeration system was found from data 
recorded at an ambient temperature of 0°C, a temperature at which the COP is at its maximum 
value. The saturation curve at any other temperature can then be found by scaling the base 
saturation curve along the power axis according to the change in COP. Figure 9 illustrates the 
difference between the saturation curve at maximum and minimum COP values for the 
study year. 

 
Figure 9. Impact of COP variations on the saturation curve 
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Variations in ambient temperature are considered at a daily resolution, as considering hourly 
changes in temperature would require a significant modeling effort to isolate the effect of 
ambient temperature on the baseline power consumption from other factors, including store 
opening hours. Ambient temperature is the only external factor considered for the model, as there 
is a lack of available data on other factors that influence the power consumption. Further work 
could be conducted to acquire data and model the impact of other factors, including opening and 
closing hours, and stocking schedules. 

5.2 Population Building 
The models described above provide a representation of the flexibility of a single, sample 
supermarket. This base model has been used to construct a population of supermarkets 
representing the population of all supermarkets in Colorado. 

The population of supermarkets is divided into three sub-populations: small, medium, and large 
stores. The supermarkets are assumed to be homogeneous within each sub-population. This 
facilitates the calculation of an aggregate saturation curve representing the dynamics of the each 
sub-population. For each sub-population, the saturation curve and power flexibility limits of the 
base model have been scaled appropriately. The average baseline consumption of small, mid-
sized, and large supermarkets is assumed to be 30 kW, 50 kW, and 80 kW, respectively.2 The 
baseline and maximum consumption of the small supermarket has been illustrated in Figure 6 
(above). 

The saturation curve is adjusted for each population by shifting the curves along the power axis. 
This adjustment assumes that larger or smaller supermarkets will contain the same type of 
display cases (which contain the thermal mass providing the storage/flexibility) but will have 
more or fewer of them. Thus, for a given balancing period (e.g., three hours), the power offered 
by the large supermarket sub-population will be greater than that of the mid-size or small 
supermarket sub-population as there are more compressors on the system that will adjust their 
power consumption and achieve the same temperature change in each of the associated display 
cases. 

The structure of each of the sub-populations was informed by a combination of data from the 
Commercial Building Energy Consumption Survey (CBECS) [26] and the County Business 
Patterns (CBP) data set [27]. CBECS provides detailed energy micro-data on a small population 
of commercial businesses across the United States. The CBECS data set only considers a small 
set of supermarkets, with locations indicated at the resolution of census regions. A census region 
is typically a group of states. Using the CBECS data, it was possible to determine a link between 
the floor size of a supermarket and the number of employees. The CBP data set contains less 
information on each supermarket, but includes all supermarkets and information on the number 
of employees in each, with their location indicated at the county level. Taking the number of 
employees as a proxy for store size, it was possible to determine the number of small, medium, 
and large supermarkets in each county in Colorado. 

                                                 
2 The size of the sample supermarket within each sub-category has been informed by discussions with industry 
experts and analysis of power consumption data from a number of supermarkets located around the United States. 
The data employed to determine the power consumption characteristics of each sub-population cannot be shared 
directly as they are commercially sensitive. 
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As the overall flexibility resource in each population is quite small, it was decided to consider a 
single population encompassing all supermarkets in Colorado, divided into the aforementioned 
sub-populations. The population is comprised of 482 small supermarkets, 178 mid-size 
supermarkets and 140 large supermarkets. 

5.3 Test System Description 
To analyze the impact of DR on power systems, it is necessary to employ a model that is large 
enough to be realistic, but small enough to facilitate repeated simulations and sensitivity studies 
with reasonable run times. The test system employed in this work was developed for previous 
integration studies conducted at the National Renewable Energy Laboratory (NREL) [4], [28], 
[29]. It is based on a subset of the U.S. Western Interconnection consisting of two balancing 
areas located in and around Colorado: the Public Service Company of Colorado (PSC) and the 
Western Area Colorado Missouri (WACM). This test system was derived from a database 
constructed by the Western Electricity Coordinating Council (WECC) Transmission Expansion 
Policy Planning Committee (TEPPC) and from other publicly available data sets. The system is 
modeled zonally; PSC and WACM are individually modeled as copper plates, with transmission 
linking the two regions. The system is simulated using projected values for load and renewable 
resources in the year 2020. The system is a summer-peaking system with a peak load of 
13.7 GW, and annual demand of 79 TWh. The region modeled is primarily comprised of 
vertically integrated utilities, whose interactions and behaviors are complex and difficult to 
model. For simplicity, it is assumed that the system as a whole is dispatched for a least-cost 
solution. Further information on the test system employed in these studies can be found in [29]. 

The DR resource represents a very small proportion of the test system, though determining its 
precise capacity is complicated. The amount of power supply available to the power system can 
be easily calculated; however, the need to balance the energy supplied to the system within a 
given time often limits the amount of power that can feasibly be supplied to the system. Figure 
10 plots the penetration of the available load reduction from the DR resource as a percentage of 
the rest of the generation capacity on the system. It is clear that the population of DR resources 
representing all supermarkets across Colorado makes a very small contribution to the overall 
power system, never exceeding a capacity share of 0.25%. Determining an accurate capacity 
value for DR is complicated, and other works have attempted to establish this metric [3]. 

Figure 11 illustrates the available DR flexibility. It can be observed that when the power supply 
is at its peak, the available power draw is at its minimum point. This supports the theory that the 
requirement to balance power supply and draw within the balance window may limit the power 
supplied to the power system. The power supply corresponds to the baseline consumption of the 
flexible population; this quantity can be shed, effectively supplying power to the power system. 
The power draw corresponds to the difference between the baseline consumption and the 
maximum possible consumption. This quantity is the additional power that can be consumed by 
the flexible load (i.e., drawn from the power system) to recover energy during a DR event. 
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Figure 10. DR generation share of system capacity 

 
Figure 11. Available DR flexibility in the study year (2020)  
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5.4 System Dispatch Framework 
In the case studies, we assess the value of DR for providing flexibility through real-time load 
shifting. Flexibility is the ability of the power system as a whole to react to forecast errors for 
base load and variable generation from renewable resources. The ability to react to contingency 
events (e.g. the failure of a generator or transmission line) is managed through the reserves. The 
ability of DR to provide reserves is not considered in this work. 

To assess the value of DR for providing flexibility, the system is initially committed on a day-
ahead basis, using day-ahead forecasts of load and renewables. The day-ahead commitment 
determines the level of generation from each generator at an hourly resolution for the coming 
24 hours, and uses a look ahead for a further 24 hours at three-hour resolution to facilitate the 
scheduling of storage units and inflexible generators. 

Load-shifting DR can be dispatched either day-ahead or close to real-time. In this work, the 
decision was made to focus on DR as a real-time flexibility resource. Thus, in the models 
considered here, DR is only dispatched at real-time, when forecast errors for load and variable 
generation are revealed. Demand response is not included in the day-ahead commitment process. 

The system is re-dispatched close to real-time using updated forecasts for load and variable 
renewable generation, and including the DR resource. The real-time dispatch occurs every hour 
with 15-minute resolution, with a 24-hour look ahead at 3-hour resolution. The look ahead is 
necessary to ensure the DR products can balance by the prescribed time. The commit status of 
inflexible generators, including coal and combined cycle plants is held from the day-ahead 
commitment. The inflexible generators are permitted to deviate from their day-ahead power 
dispatch, though any deviation in excess of 10% on either side of the day-ahead dispatch is 
penalized. This structure is intended to approximately replicate real-time competitive electricity 
markets, where inflexible generators can only offer a limited amount of their capacity for real-
time dispatch. The inflexible generators account for approximately 50% of the generating 
capacity on the system. 

As the objective of these case studies is to establish the value that DR offers to the power system, 
DR is priced as a zero-marginal cost resource. Thus, the generation it provides to the power 
system generates revenue at the system price, and power that is drawn from the power system is 
priced at the system price and must be purchased. This is not intended to reflect the true cost of 
DR but to facilitate the assessment of its value to the system, which can then be used as a 
benchmark to justify, or otherwise evaluate, the investment required to establish and operate DR 
as a power system resource. 

5.5 Base and Sensitivity Studies 
The case study is conducted primarily to determine the impact of DR on the operation of the 
power system and the value it offers. In the base case, the peak generation available from DR is 
63.5MW, and the penetration of variable renewable generation is 16% on an annual energy basis. 
As the DR resource represents a very small proportion of the power system, it is unlikely that 
any significant impact on system dispatch will be visible. As such, sensitivity studies are 
conducted to assess the impact of this resource as its system share grows. 
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The DR resource included in the base studies represents the flexibility of all supermarkets across 
Colorado, but it does not include other similar resources, such as refrigerated warehouses. 
Additionally, the representation of the DR resources in the form of storage configurations with 
different balancing periods is sufficiently generic that it could reasonably be used to represent the 
flexibility of a much wider range of loads offering load shifting, for example air conditioning and 
water heating. Thus, it is reasonable to conduct sensitivities on the size of the DR resource, 
though an upper bound on potential resource has not been evaluated. Sensitivities are conducted 
considering that the DR resource is scaled by multiples of 5, 10, and 25. 

Sensitivity studies on the penetration of variable renewable generation (wind and solar PV) are 
also conducted. Previous studies have highlighted the increasing value of storage with increasing 
penetrations of variable renewables [28]. As DR exhibits several characteristics in common with 
conventional energy storage, increases in the penetration of renewables are expected to similarly 
increase the value of DR to the power system. Following the convention used in previous studies 
conducted with this test system, the penetration (by energy) of wind and solar PV is increased 
from approximately 16% (base case penetration) to 35%, 45%, and 55%. A ratio of 5:1 wind to 
solar PV is maintained in all cases.  
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6 Results 
6.1 Base Case 
The value of DR is defined by the amount by which it reduces the cost of serving the system 
load. In the case studies considered here, DR is only dispatched at real-time and therefore 
contributes toward the balancing of forecast errors in load and renewable power generation. The 
metric employed here to define the value of DR is the difference between the cost of system 
dispatch adjustment at real time, with and without DR. In general, the cost of real-time system 
dispatch adjustment can be interpreted as the cost of having uncertainty in the system forecasts. 
By adding free DR resources, we can determine the maximum possible amount by which DR 
might be able to reduce these (partially unavoidable) costs. 

In the base case, DR reduces this cost of uncertainty by 4.8%. The cost of uncertainty accounts 
for 3.1% of total system costs without DR, and 2.9% with DR. In absolute terms, the base case 
DR resource is found to reduce operational costs by $2.089 million in the test year. This 
corresponds to $32.85/kW-year, the value per unit of DR load reduction capacity available, or 
0.014% of total system operation costs without DR. Thus, this base DR resource offers a very 
limited benefit to the power system, but this is expected given that the resource is very small. 
Section 6.2 details the change in DR value at varying resource sizes. 

Figure 12 illustrates the profile of the value of DR over the study year, 2020. As expected, the 
seasonal availability of the DR resource is reflected in this profile. Refrigeration DR offers 
greater potential capacity to the power system during the summer months, but its ability to draw 
additional power to recharge its thermal storage resource is limited. Therefore, it is expected that 
the overall ability of the DR resource to support system operation will be reduced during the 
summer months. This can be observed in Figure 12 where the value of DR is at its minimum 
point during the summer months of July and August. 

 
Figure 12. Monthly value of DR over the study year 
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The reduction in system costs brought about through the introduction of DR can be attributed to 
the reduced dependence on higher cost generation and the reduction in renewable generation 
curtailment that occurs at real-time dispatch. Curtailment occurs due to an excess of non-
dispatchable renewable generation and the inability of the system to adjust the output of 
inflexible generators in close to real-time. Figure 13 illustrates the amount of wind curtailment 
that is avoided by DR per month. The total avoided curtailment over 2020 is 693MWh, 
representing a reduction in curtailment of 7.2% versus the real-time dispatch without DR. 

 
Figure 13. Monthly avoided curtailment of renewables achieved through the implementation of DR 

The DR resource is comprised of three populations corresponding to different supermarket sizes. 
Each population offers four mutually exclusive storage configurations, demarked by balancing 
period length, for dispatch. Figure 14 illustrates the distribution of net revenue of the DR 
resource across the offered configurations. The net revenue is comprised of the income generated 
from the sale of power to the power system and the cost of recovering energy; both are priced at 
the system price. For the purpose of this case study, no operational costs are modeled for the DR 
resource, neither in the offering of its services into the system nor in the revenue calculation. The 
24-hour balancing period configuration generates the greatest net revenue in this case. This is 
due to its ability to arbitrage over an entire day, taking advantage of the full range of diurnally 
varying system prices. It is more difficult to generate revenue over shorter balancing periods, as 
they rely on price differences over a smaller window. This is reflected in Figure 14 where the 
three-hour and six-hour balancing period configurations generate the least net revenue. The price 
on the test system is primarily determined by fuel costs; on other systems where the price 
includes other factors such as carbon costs, there may be a greater opportunity to arbitrage across 
greater price differences, resulting in increased revenue for DR. 
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Figure 14. Revenue breakdown by DR resource definition offered for dispatch 

Net revenue is indicated by the black dots. 

Figure 15 illustrates the profile of net revenue for the entire DR resource over the year. 
Comparing Figure 15 to Figure 12, we can see that the profile of net revenue does not exhibit the 
same clearly understandable seasonal variation as the profile of the value of DR. In fact, 
although the value of the DR to the system is at its minimum point in July (see Figure 12), the 
net revenue generated in July is one of the highest, and is greater than the revenue generated in 
any of the winter months during which the available DR resource is greatest. Net revenue does 
not exhibit the same dependence on the availability of the resource as the value of DR to the 
power system, as it has greater dependence on price variations. 

 
Figure 15. Monthly net revenue of the entire DR resource over the study year 
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6.2 DR Capacity Sensitivities 
In the following analyses, the impact of DR is often termed relative to the enabled DR capacity, 
or on a per-supermarket basis. The base DR resource is considered to have a load reduction 
capacity of 63.5 MW. This corresponds to the maximum theoretical amount of power by which 
its load could be reduced. This maximum occurs when the underlying refrigeration systems are 
operating at their upper power consumption limit and shed their entire load (turn off completely). 
Note that in this case it would not be possible for the supermarket to recover this lost energy. The 
sensitivity studies consider increases in the DR resource by factors of 5, 10, and 25, 
corresponding to enabled DR capacities of 318 MW, 635 MW, and 1,587 MW. The capacities of 
individual small, medium, and large supermarkets are 56 kW, 93 kW, and 149 kW, respectively. 

Figure 16 illustrates the value of DR per enabled megawatt of capacity. The marginal value can 
be seen to decrease as the capacity increases. This indicates that the early adopters of load-
shifting DR represent a significant additional value to the system, but as more supermarkets enter 
the DR market, the added value of each additional supermarket is less. At the lowest penetrations 
of DR, a large supermarket has a value of $4,890 per year; however, this decreases (following 
the trend shown in Figure 16) to only $1,030 per supermarket at the highest investigated 
penetrations of DR. A small supermarket offers an annual value of approximately $500 at that 
penetration level. 

The manner in which the DR capacity sensitivities are conducted here is quite naïve, assuming 
that all of the flexible loads exhibit the same characteristics as the base DR portfolio. In reality, a 
larger DR resource will incorporate a diverse range of flexible loads. The diversity of a realistic 
DR portfolio will likely contribute to alleviating the steep decrease in the value of DR that is 
exhibited in our naïve sensitivity studies. 

 
Figure 16. Annual value of DR per MW of installed DR capacity 
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Figure 17 illustrates the decrease in the net revenue per enabled megawatt of DR capacity, while 
Figure 18 illustrates the same quantity on a per-supermarket basis. The revenue per supermarket 
is of a similar magnitude to the value it offers to the system. Further research is necessary to 
determine the capital and operational cost of this DR resource, as this must be subtracted from 
the net revenue presented here to determine the actual net revenue to the supermarket operator. 
Additionally, the system operator may offer incentives to support demand response, which can 
also be considered when assessing expected net revenue. It can be anticipated that any incentives 
will not exceed the value that DR offers to the system. 

 
Figure 17. Annual DR revenue per MW of installed DR capacity 

 
Figure 18. Annual net revenue per participating supermarket 
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Figure 19 illustrates the change in the generation dispatch at different levels of DR as compared 
to the real-time system dispatch without DR, where each column represents one of the DR 
sensitivity studies, e.g. x5DR is the case with five times the base DR capacity. Demand response 
is seen to displace generation from less efficient gas combustion turbines (CT), while increasing 
generation from the more efficient but less flexible combined cycle (CC) gas generators and coal 
(similar to the findings of [28]). Additionally, DR can be seen to support greater levels of 
generation from renewable resources, including wind, solar PV, and dispatchable hydropower 
generation. 

 
Figure 19. Impact of DR on the generation portfolio 

Figure 20 illustrates the price duration curve for each of the levels of DR capacity considered and 
the case without DR. It is difficult to identify the base case price curve, as it overlaps with that of 
many of the DR sensitivities for many hours. Between intervals 10,000 and 20,000, the lowest 
line (in red) is the price duration curve without DR. The introduction of DR increases the price 
and extends the number of hours during which the price is high, as can be seen by the shift to the 
right between intervals 25,000 and 30,000. Despite the visible impact on lower priced hours, 
there is a very limited impact on peak prices. This is an unexpected result, as conventional 
storage typically mitigates price fluctuations by reducing peak prices and increasing the price 
during lower priced hours [28]. The impact of this change in the price duration curve can be seen 
in Figure 17 where the marginal revenue decreases at higher penetrations of DR. This can be 
attributed to the higher prices during relatively low priced hours, which increases the cost of 
recovering energy (which usually occurs during low price hours) and consequently reduces the 
net revenue. 
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Figure 20. Price duration curves at different levels of installed DR capacity 

6.3 Renewable Energy Sensitivities 
Further sensitivity studies investigate the impact of larger penetrations of renewable resources on 
the power system with the base DR resource (63.5MW). Figure 21 demonstrates that the value of 
DR increases with increasing levels of renewable generation, however, the rate of increase slows 
substantially upon reaching moderate levels of penetration (around 35-45%) and appears to 
saturate. This result differs somewhat from the findings of [28], which found a more constant 
increase in the value of conventional energy storage with increased renewable generation, but 
does not seem unreasonable based on a) that earlier study also found a deceleration in value in 
the high (2x) gas price case and b) the studies offer energy storage into different markets (i.e. 
day-ahead versus 15-minute markets). At high penetrations of renewables and with the day-
ahead unit commitment already in place, it is possible for the system to operate primarily on 
renewable and already-committed base load generators for long periods of time, a situation in 
which the short-term energy storage provided by the DR resource becomes less valuable. 
Longer-term storage solutions could still be of interest in this particular situation, and it could be 
worthwhile in future work to explore initially scheduling DR alongside the day-ahead unit 
commitment decisions. This scheduling framework may provide greater system value than 
scheduling solely in real-time, particularly in high renewable penetration scenarios. 
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Figure 21. Annual value of DR per MW of installed capacity with increasing penetrations 

of renewable energy 

Figure 22 illustrates the real-time dispatch curve for January 2020, where it can be seen that 
generation is primarily comprised of renewables and coal. As coal is an inflexible resource, it is 
expensive to adjust away from its day-ahead dispatch points, so given the choice of displacing 
coal or renewables, DR will not be dispatched unless the forecast error for renewables is negative 
and additional generation is required. Figure 23 shows the curtailed renewable generation during 
this time (January 2020), and clearly demonstrates that the forecast error of renewables is not 
generally negative. Overall, there is a long-term excess of generation and consequently no need 
for DR. Offering the DR in the day-ahead market or adjusting the renewables mix toward more 
solar and less wind could possibly mitigate this situation for this system and this level of 
renewable generation; however, for most systems we would expect there to be some renewable 
generation threshold beyond which the main problem is week- or season-long over-supply of 
(renewable) generation, as depicted in the figures. 

 
Figure 22. Real-time system dispatch for January 2020 
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Figure 23. Curtailed renewable generation during January 2020 

Figure 24 illustrates the amount of load reduction provided by the DR resource for each of the 
considered scenarios for renewable energy source (RES) penetration. A significant difference 
can be observed between the highest-penetration scenario and all other scenarios, particularly 
during the earlier and latter parts of the year. These periods are also the periods with the greatest 
amount of generation from renewables. This indicates that the short-term DR modeled here is not 
as valuable to the system during periods of very high generation from variable renewables, at 
which times a longer-term source of storage would be more beneficial. 

 
Figure 24. Monthly DR load reduction for each renewable energy penetration scenario 
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Figure 25 illustrates the impact of DR on the generation portfolio with increasing penetrations of 
renewable generation. It can be seen that gas CT is consistently displaced across all scenarios, 
while DR supports increased generation from renewable generation sources as the penetration of 
renewables increases. At lower penetrations of renewables it appears that DR may induce 
increased emissions due to its support of additional coal generation. At higher penetrations of 
renewables, this trend is mitigated as DR begins to reduce renewable curtailments more than it 
supports generation from coal plants. 

Figure 25. Impact of DR on generation with increasing penetrations of renewable generation  
[15%, 35%, 45% and 55%] 

Figures 26, 27, and 28 demonstrate the impact of increased penetrations of renewables on 
avoided renewables curtailment, the value of DR per supermarket, and the net revenue per 
supermarket respectively. In all cases, the increase in renewables improves the case for DR until 
the penetration of renewables exceeds 45%, at which point the benefit of DR exhibits no 
further significant increase. 

e
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Figure 26. Annual avoided curtailment of renewable generation per MW of enabled DR capacity 

with increasing penetration of renewable energy 

 
Figure 27. Annual value of DR per participating supermarket with increasing penetrations of 

renewable energy 

 
Figure 28. Annual net revenue per supermarket with increasing penetrations of renewable energy 
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The trend exhibited by the net revenue of DR with increasing penetrations of renewables is seen 
to reverse at the highest penetration of renewables considered in these sensitivity studies. This 
contrasts with the trend of the value of DR, which appears to saturate but not reverse. At 
increasing penetrations of renewables, peak prices are suppressed, and there is higher incidence 
of zero-price hours, as shown by the price duration curves in Figure 29. This would indicate that 
DR could generate greater revenue due to the opportunity to recover energy from the system at 
no cost. The impact of a greater number of zero-price hours can be seen in Figure 30 where the 
cost of energy recovery decreases continually with increasing penetrations of renewables. 
However, as the DR resource is dispatched less frequently (as shown in Figure 24), it has less 
opportunity to generate revenue through the sale of power. Thus, despite the ability to recover 
more energy for free, the overall revenue achieved is reduced. 

 
Figure 29. Price duration curve with increasing penetration of renewable energy and  

the base case DR resource 

 
Figure 30. Breakdown of annual DR revenue for each scenario of renewables 

penetration considered. Net revenue is indicated by the black dots. 
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7 Conclusions 
A methodological framework for the modeling of load-shifting DR using a bottom-up approach 
has been developed in this work. The modeling methodology is generic and can be applied to a 
range of thermal-electric loads that are suitable for the provision of load-shifting DR. The model 
is capable of incorporating the dependency of the resource flexibility on external factors such as 
ambient temperature and building occupancy, though further work is necessary to fully represent 
diurnal variations. The methodology developed differs from existing bottom-up DR modeling 
approaches in that the resulting model is suitable for inclusion in large-scale power system 
studies of long duration. This facilitates an assessment of the power system operational cost 
reductions offered by DR over a year.  

The modeling methodology is demonstrated using the example of supermarket refrigeration DR 
resource adjusting compressor power consumption. The flexibility and dynamics of refrigeration 
are characterized by a saturation curve that relates change in power to the amount of time for 
which the change can be sustained. Multiple storage configurations, distinguished by different 
saturation times, are offered for dispatch in the power system as implemented in a commercial 
production cost modeling tool. The impact of the daily average ambient temperature on the 
flexibility offered by refrigeration is also characterized and incorporated into the model.  

A model representing the load-shifting DR of the population of supermarkets in Colorado is 
implemented in a production cost model of a test system representing the power system of 
Colorado. This DR resource is found to have a value of $32.85/kW-year when it provides an 
energy service in a 15-minute, real-time market. This value corresponds to the production costs 
savings achieved by implementing DR and are primarily due to the displacement of gas-fired 
combustion turbine (CT) plants and through avoided curtailment of renewable generation. The 
capacity of the population of supermarkets modeled is very small, representing a maximum of 
0.24% of the generation capacity on the system. Consequently, the absolute value it offers per 
year is very low, at $2.089 million, or $4,890 for each large supermarket providing DR.  

Sensitivity studies revealed the per-unit value of DR decreases as the capacity of the resource 
increases. The net revenue accrued per supermarket is also found to decrease as the penetration 
of DR on the system increases. This indicates that the business case for supermarkets or other 
DR resources to provide DR weakens as the resource grows. It should be noted that prices on the 
test system are largely driven by fuel costs, and thus the revenue generated by DR is sensitive to 
the portfolio of generators on the system and their fuel costs. On systems with higher fuel cost 
differentials and other price components such as carbon costs, it is possible that DR could 
generate greater revenue.  

The framework developed in this work is applicable to a range of flexible loads capable of 
providing load-shifting DR. An important continuation of this work is an extension of the 
modelling framework to incorporate DR participation in other power system markets such as 
capacity and ancillary services. Future work should also consider the application of this 
methodology to a portfolio of suitable loads, so that a full integration study on load-shifting DR 
can be conducted. Other key areas of interest for the continuation of this research agenda include 
the potential synergies between complementary resources such as heating and cooling and the 
impact of diurnal variations in flexibility on the value of DR.   
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