
LA-UR-15-26312
Approved for public release; distribution is unlimited.

Title: Payload Communications Interface for CubeSat Platform: Design Review

Author(s): Akins, Alexander Brooks

Intended for: Report

Issued: 2015-08-10

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Payload Communications Interface
for CubeSat Platform: Design Review

July 2015

Contents
 Objectives
 System Overview
 Breakdown of Individual Components
 Tracing Data Path
 Testing
 Special Considerations

Objectives
 Primary Goal: Send important sensor data from payload

to SV following an event trigger as quickly as possible
with high data integrity

 Control a variety of payload functions with reliability
 Reduce likelihood of error states
 Transmit data to SV via UART or I2C serial interface

I2C Protocol
 Two-wire, serial interface consisting of a data line (SDA)

and a clock line (SCK)
 Supports 100 kHz, 400 kHz, 1 MHz clock speeds
 Currently using 400 kHz (faster than SV UART)

 Idle bus is held high by pull-up resistors

Source: www.planetanalog.com

Example I2C bus transaction

Data Types: Read-Only
 Sensor Data
 Output voltages from high and low gain ADC channels in

response to a trigger event
 Packaged with some trigger information (timing, etc.)

 State of Health Data
 Includes voltages from supplies, temperature, etc.
 Occurs every second

 FPGA Version Number
 Constant value indicating flight FPGA serial number

Data Types: Read-Write
 Test Pulse Settings
 Settings to exercise the sensor system
 Includes number, time between pulses, etc.

 DAC Settings
 Configurable discriminator threshold levels realized via DACs

 HV Settings
 Enable bits for high voltage sensor supply

Data Footprint

192

168
16

24

64

8
96

Data Bits

State of Health Data
Sensor Data
FPGA Version
Read-Write Data
Test Pulse Settings
DAC Settings
HV Settings

System Overview

Communications Interface

reset

ZIPCores I2C Slave Serial Interface Core
 Handles all low-level I2C

functionality
 Parses instructions,

acknowledgements,
start/stop conditions

 Data loading/unloading via
two FIFOs

 Uses “valid-ready” pipeline
protocol

Slave Core Controller

CORE
CONTROLLER

data_out

data_out_flag

data_in

data_in_flag

Main Data Handler Operation
 State machine
 States accessed via initial master write
 Operation States
 INTERPRET_INSTRUCTION

 Idle state where system is waiting for an instruction from the master

 SENSOR_DATA
 SOH_DATA
 FPGA_VERSION
 TEST_PULSE_CONFIGURE
 DAC_CONFIGURE
 HV_CONFIGURE

Read-Only

Read-Write

Master Instructions

Register Data Register Address
SOH Data 0x01

Sensor Data 0x02

Test Pulse Settings 0x03

DAC Settings 0x04

HV Settings 0x05

FPGA Version 0x06

Problem: How do we handle ADC data?
 Answer: FIFO loading
 Data is loaded into the FIFO as soon as it becomes

available, forming a queue of information
 At lower DAC discriminator levels, event pileup can

occur, requiring event storage for later read out
 Counter index will let the master know how much data

needs to be read
 Currently one byte (up to 255 events stored), but more bytes

could be included

Tracing Path: Sensor Data
 Start: Event processed by FPGA ADC handling modules

Figure created with MentorGraphics ModelSim

FIFO

Example Master Read Operation

0x02

Tracing Path: Sensor Data

Shift
Register

read_request

Example Master Read Operation

Shift Register

01 BB CC CC DD DD …

data_in

00

data_in_flag

Example Master Read Operation

 After Stopping, the state will return to
INTERPRET_INSTRUCTION

Lowering the Master Flag
 After the sensor read operation, the master_flag signal

will still be high.
 Master should write byte 0x0F on the I2C bus to lower

the flag
 If new events have been counted since the conclusion of

the transfer, this operation will not succeed
 Flag will stay high if new data is ready, and the master

should restart the read process

Reading Data
 Only the sensor data uses the FIFO
 All data piped through shift register
 Shift register is 192 bits wide, since largest data size (state

of health data) is 192 bits
 Other read processes require no GPIO flagging
 Respond to master instruction, write out X bits, done

Writing Data
 Shift register disabled, but shift_counter is not
 Counts with each byte transfer up to however many are

expected and returns to master instruction state

 Test Pulse and HV Settings are written over the I2C bus,
and after the final byte is received, the bytes are
concatenated and stored

 DAC Settings require one more step

Example Master Write operation

To register

DAC Discriminator Threshold Settings

Don’t-Care Bit Value DAC to be Addressed
0b00 DAC 1
0b01 DAC 2
0b10 DAC 3
0b11 DAC 4

Read-Write Data
 When addressing a read-write enabled system, I2C master

can read or write by performing appropriate bus actions
 Test Pulse Settings
 Reads and writes three bytes at a time

 DAC Settings
 Reads 8 bytes at a time
 Write 2 bytes at a time

 HV Settings
 Reads and writes one byte at a time

Read-Write Data
 Read and Write operations cannot be interleaved
 When reading or writing data to Test Pulse, DAC, or HV

register, all operations must be completed fully
 Attempting to perform pieces of both operations will

result in:
 Incomplete read data
 Undesirable writes to registers

 If this does happen, a system reset will revert system to
safe state

Testing and Prototyping
 Code written in VHDL, compiled with Quartus II
 Simulated in MentorGraphics ModelSim
 Synthesized and programmed onto BeMicro Max 10

development board
 Tested with Corelis BusPro-I and I2C Exerciser Software

I2C Exerciser Software

Short pulses occur during control hand-off for acknowledgement signals

Special Conditions
 When too many byte reads occur within a process:
 The interface responds by sending out the appropriate number

of data bytes followed by zero bytes for excess reads

 When too few byte reads occur within a process:
 The interface will remain in current state until all bytes have

been read out. Since bytes are left in shift register, no data is
lost by delaying reads.

 When FIFO is full:
 Counter bit reads FF twice before decrementing

 All other function occurs as intended

Important Considerations
 What will be our flight FPGA?
 Form Factor and Power Considerations
 Ensuring proprietary VHDL core compatablility
 How fast can we reliably drive our serial communication
 1 MHz? 5 MHz?

Questions?

	Payload Communications Interface for CubeSat Platform: Design Review
	Contents
	Objectives
	I2C Protocol
	Data Types: Read-Only
	Data Types: Read-Write
	Data Footprint
	System Overview
	Slide Number 9
	ZIPCores I2C Slave Serial Interface Core
	Slave Core Controller
	Slide Number 12
	Main Data Handler Operation
	Master Instructions
	Problem: How do we handle ADC data?
	Tracing Path: Sensor Data
	Example Master Read Operation
	Tracing Path: Sensor Data
	Example Master Read Operation
	Shift Register
	Example Master Read Operation
	Lowering the Master Flag
	Reading Data
	Writing Data
	Example Master Write operation
	DAC Discriminator Threshold Settings
	Read-Write Data
	Read-Write Data
	Testing and Prototyping
	I2C Exerciser Software
	Special Conditions
	Important Considerations
	Questions?

