

ANL-15/16

SchemaOnRead Manual

 Schema-on-read for R

Global Security Sciences

SchemaOnRead

Schema-on-read for R

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne
National Laboratory, or UChicago Argonne, LLC.

http://www.anl.gov/
http://www.osti.gov/scitech/)
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.osti.gov/
mailto:reports@osti.gov

ANL-15/16

SchemaOnRead

Schema-on-read for R

prepared by
Michael J. North
Global Security Sciences, Argonne National Laboratory

September 30, 2015

Introduction

SchemaOnRead provides tools for implementing the schema-on-read technique for R,
including a single function call (e.g., schemaOnRead(“filename”)) that reads text (TXT),
comma separated value (CSV), raster image (BMP, PNG, GIF, TIFF, and JPG), R data
(RDS), HDF5, NetCDF, spreadsheet (XLS, XLSX, ODS, and DIF), Weka Attribute-Relation
File Format (ARFF), Epi Info (REC), Pajek network (PAJ), R network (NET), Hypertext Markup
Language (HTML), SPSS (SAV), Systat (SYS), and Stata (DTA) files. It also recursively reads
folders (e.g., schemaOnRead(“folder”)), returning a nested list of the contained elements.

Example Uses

One way to use SchemaOnRead is to recursively load a folder. The result is a named list of
elements for each entry in the folder’s tree. The element names are converted to valid R
variable names corresponding to the file or folder names. Sub-elements (e.g., files or
subfolders) of a folder can be accessed using the R named list (“$”) operator followed by the
sub-element name.

Another way to use SchemaOnRead is to conveniently load a file without needing to handle
the specifics of the file format. In this case the result is a variable containing the file contents.

An example showing how to read a folder tree starting in “../inst/extdata” is shown below. In
this case, the contents of the “dir1/Data.csv” file within “../inst/extdata” is shown by accessing
results$dir1$Data.csv as needed. The text file is as follows:

Name,Size,Weight
A,Small,1
B,Medium,2
C,Large,3

The results in R are as follows:

library(SchemaOnRead)
results <- schemaOnRead("../inst/extdata")
print(results$dir1$Data.csv)

Name Size Weight
1 A Small 1
2 B Medium 2
3 C Large 3

Individual files can also be easily accessed. An example XML source file in the
“../inst/extdata/data.xml” folder is as follows:

<example>
 <to>A</to>
 <from>B</from>
 <title>Important
 <subtitle>File</subtitle>
 </title>

 <text>Read me.</text>
</example>

The results in R are as follows:

library(SchemaOnRead)
xmlFile <- schemaOnRead("../inst/extdata/data.xml")
print(xmlFile)

$to
[1] "A"

$from
[1] "B"

$title
$title$text
[1] "Important"
$title$subtitle
[1] "File"

$text
[1] "Read me."

The verbose flag can be used to trace a call’s progress or diagnose issues as shown here:

library(SchemaOnRead)
folder <- schemaOnRead("../inst/extdata", verbose = TRUE)

[1] "schemaOnRead processing ../inst/extdata"
[1] "schemaOnRead processing ../inst/extdata/arffexample.arff"
[1] "schemaOnRead processing ../inst/extdata/data.xml"
[1] "schemaOnRead processing ../inst/extdata/dir1"
[1] "schemaOnRead processing ../inst/extdata/dir1/Data.csv"
[1] "schemaOnRead processing ../inst/extdata/dir1/Data1.dif"
[1] "schemaOnRead processing ../inst/extdata/dir1/Data1.xlsx"
[1] "schemaOnRead processing ../inst/extdata/dir1/Data2.xls"
[1] "schemaOnRead processing ../inst/extdata/dir1/dir3"
[1] "schemaOnRead processing ../inst/extdata/dir1/dir3/data.xml"
[1] "schemaOnRead processing ../inst/extdata/dir1/example.txt"
[1] "schemaOnRead processing ../inst/extdata/dir1/spreadsheet.ods" ## [1]
"schemaOnRead processing ../inst/extdata/dir2"
[1] "schemaOnRead processing ../inst/extdata/dir2/data.xml"
[1] "schemaOnRead processing ../inst/extdata/dir2/data1.dif"
[1] "schemaOnRead processing ../inst/extdata/dir2/Example.net"
[1] "schemaOnRead processing ../inst/extdata/dir2/Example.paj"
[1] "schemaOnRead processing ../inst/extdata/dir2/example.rec"
[1] "schemaOnRead processing ../inst/extdata/dir2/index.html"
[1] "schemaOnRead processing ../inst/extdata/example.rds"
[1] "schemaOnRead processing ../inst/extdata/image.gif"
[1] "schemaOnRead processing ../inst/extdata/image.jpg"
[1] "schemaOnRead processing ../inst/extdata/image.png"

[1] "schemaOnRead processing ../inst/extdata/image.tiff"

Implementation

The SchemaOnRead package uses a recursive implementation. The initial user function call
iterates over the given list of processors, invoking each in turn until one returns a non-null
value. Processors are sequentially invoked in the order given by the input list, scanning from
index number one upwards. Processing continues as long as each processor returns null. The
results from the first processor to return a non-null value is stored as the content for the entry
and processing of that entry stops. All of the results are stored in a named list. The order of
the resulting list is given by the processing order. The list names are taken from the entry
names (e.g., file or folder names). List names are converted to valid R variable names by
replacing everything other than non-alphanumeric characters and dots with underscores. If the
resulting variable name is already defined then “_A” is repeatedly appended to the name until
it becomes unique.

Several special processors are defined. These include processors for nonexistent entries,
directories, and entries of unknown types.

The schemaOnReadProcessEntryDoesNotExist processor returns null if the given entry exists
and returns the value “Entry Does Not Exist” if entry file does not. It is meant to be the initial
processor in most processor lists to intercept nonexistent entries before they waste execution
time in other processors. In rare cases, special processing may need to be done on
nonexistent entries so these unusual processors would run first.

The schemaOnReadProcessDirectory processor handles directories recursively as previously
discussed. It is intended to be the second processor to run in normal lists.

The schemaOnReadProcessDefaultFile processor accepts all entries that exist. It returns the
value “File Type Unknown” as a string when it succeeds. It is meant to be last processor to
run to provide a default value for file types that are not otherwise recognized.

SchemaOnRead itself includes two processing lists. The predefined processor functions used
in both lists and list assignments are shown in Table 1. The default list from
schemaOnReadDefaultProcessors() is used for standard SchemaOnRead entry processing.
The simple processing list from schemaOnReadSimpleProcessors() provides an easy to use
starting point for fully customized user processor lists.

Function List or
Lists

Purpose

schemaOnReadProcessDirectory(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default
and
Simple

Recursively Read
Folders

schemaOnReadProcessCSVFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Comma
Separated Value
Files

schemaOnReadProcessTextFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =

Default Read Text Files

FALSE)
schemaOnReadProcessRDSFile(path = “.”, processors =

schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read R Data Files

schemaOnReadProcessXMLFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Extensible
Markup Language
Files

schemaOnReadProcessXLSandXLSXFile(path = “.”,
processors = schemaOnReadDefaultProcessors(),
verbose = FALSE)

Simple Read Microsoft
Excel Files

schemaOnReadProcessDIFFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Data
Interchange Format
Files

schemaOnReadProcessODSFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Open
Document
Spreadsheet Files

schemaOnReadProcessStata13File(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Stata Files

schemaOnReadProcessBitmapsFile(path = “.”, processors
= schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Bitmap Files

schemaOnReadProcessGIFFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Graphics
Interchange Format
Files

schemaOnReadProcessTIFFFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read TIFF Files

schemaOnReadProcessNetCDandH5FFile(path = “.”,
processors = schemaOnReadDefaultProcessors(),
verbose = FALSE)

Simple Read NetCDF and
HDF5 Files

schemaOnReadProcessPajekFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Pajek Network
Files

schemaOnReadProcessHTMLFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read HTML Files

schemaOnReadProcessARFFFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Weka ARFF
Files

schemaOnReadProcessEPIINFOFile(path = “.”, processors
= schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read Epi Info REC
Files

schemaOnReadProcessSPSSFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default Read SPSS Files

schemaOnReadProcessEntryDoesNotExist(path = “.”,
processors = schemaOnReadDefaultProcessors(),

Default
and

Accepts All
Nonexistent Files

verbose = FALSE) Simple and Returns “Entry
Does Not Exist”

schemaOnReadProcessDefaultFile(path = “.”, processors =
schemaOnReadDefaultProcessors(), verbose =
FALSE)

Default
and
Simple

Accepts All Existing
Files and Returns
“File Type
Unknown”

Table 1: SchemaOnRead Predefined Processors

User-Defined Processors

New processors can be defined to support user-specified work. New processors are normally
prepended to the front of the default list to let them to take precedence while still allowing the
standard processors to work, if needed. Alternatively, a list of processors that just recursively
scans folders can be found by calling the schemaOnReadSimpleProcessors function. User-
specified processors can be added to this list to create a fully customized tool chain. An
example showing how to define a new processor follows.

Cite the needed library.
library(SchemaOnRead)

Define a new processor.
newProcessor <- function(path, processors, verbose) {

 ## Check the given path.
 if ((file.exists(path)) &&
 (tolower(tools::file_ext(path)) == "tbd")) {

 ## Return a new result...
 return("Put Code for Processing TBD Files Here...")

 } else {

 ## Note that the file does not exist.
 return("Entry Does Not Exist")

 }

}

Define a new processors list.
newProcessors <- c(newProcessor, schemaOnReadDefaultProcessors())

Use the new processors list.
schemaOnRead(path = "../inst/extdata", processors = newProcessors)

Summary

SchemaOnRead provides tools for implementing the schema-on-read technique for R,
including a single function call that reads a wide range of file types. It also recursively reads
folders (e.g., schemaOnRead(“folder”)), returning a nested list of the contained elements.

Acknowledgements

Argonne National Laboratory’s work was supported under U.S. Department of Energy contract
DE-AC02-06CH11357.

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Global Security Sciences
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 221
Argonne, IL 60439

www.anl.gov

	About Argonne National Laboratory
	Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI):
	Introduction
	Example Uses
	Implementation
	User-Defined Processors
	Summary
	Acknowledgements

