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Summary 

The increasing availability of high fidelity, geographically dispersed measurements in power systems 

improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such 

behavior that is garnering increased attention is the presence of forced oscillations. Power system 

engineers are interested in forced oscillations because they are often symptomatic of the malfunction or 

misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root 

cause may be serious. 

In this report, multi-channel forced oscillation detection methods are developed. These methods 

leverage previously developed detection approaches based on the periodogram and spectral-coherence. 

Making use of geographically distributed channels of data is shown to improved detection performance 

and shorten the delay before an oscillation can be detected in the online environment. Results from 

simulated and measured power system data are presented. 
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1.0 Introduction 

In recent years, forced oscillations have become a topic of renewed interest to power system 

operators. This renewed interest is due in large part to the installation of extensive phasor measurement 

unit (PMU) networks that provide high-fidelity, time-synchronized measurements from across the large 

geographical areas that power systems span. Analysis of PMU data has revealed that forced oscillations 

appear in power systems with surprising regularity. Though not a threat to the grid’s stability, forced 

oscillations are often indicative of equipment malfunction or improper operation. Thus, system operators 

are interested in knowing when forced oscillations are occurring so that the root problem can be identified 

and addressed. 

Identifying when forced oscillations are present is challenging because they appear in PMU data with 

a wide range of amplitudes and are not always apparent above ambient noise in time-domain data. 

Considering the large number of PMUs that a system may contain, visual inspection is impractical, even 

in cases where the oscillation amplitude is large. Thus, automated methods of detecting forced oscillations 

are necessary. 

Forced oscillation detection algorithms were proposed in [Follum, 2015], [Zhou, 2013], and [Zhou, 

2014]. All three methods rely on spectral analysis of signals from a single PMU. One of the advantages of 

PMU data is that it is time synchronized across geographical areas. By simultaneously analyzing data 

from multiple PMUs, the performance of detection algorithms can be improved. Increased reliability in 

detecting small oscillations and faster detection of large oscillations can be expected from successful 

multichannel algorithms.  

In this project, the previously mentioned single channel algorithms were expanded to multiple 

channels. The initial algorithms and their subsequent extensions are described in Sections 2 and 3, 

respectively. Results from experiments with simulated and measured power system data are presented in 

Section 4. Concluding remarks and expectations for future work are provided in Section 5. 

 

2.0 Detection Algorithms 

In this section, multi-channel extensions to the algorithms proposed in [Follum, 2015] and [Zhou, 

2014] will be discussed. For both algorithms, the extensions are achieved by combining the test statistics 

from individual channels. A test statistic is a value that is checked against a threshold to determine the 

outcome of a test. In this case, when a test statistic exceeds the threshold, a forced oscillation is detected. 

For any test, the choice of the threshold plays a fundamental role in the test’s performance. If the 

threshold is too low, many false alarms
1
 will occur. If the threshold is too high, many forced oscillations 

will go undetected. Discussion on setting a proper threshold will be provided for each of the algorithms. 

The multi-channel extensions of the periodogram method described in [Follum, 2015] and the spectral-

coherence method described in [Zhou, 2014] will be described in Sections 2.1 and 2.2, respectively. 

                                                      
1
 Throughout this report the term alarm is used in a statistical sense and does not indicate that the user should 

necessarily be notified. Practical detector implementations require higher-level logic to determine what information 

is passed to the user in the event of an alarm. 
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2.1 The Periodogram Method 

As its namesake implies, the periodogram method operates by comparing a combination of 

periodograms to a threshold. Periodograms are simple measures of a signal’s power as it varies with 

frequency. If the periodogram is unusually high at a particular frequency, it indicates that an oscillation is 

present in the signal at that frequency. Using the statistical distributions of the multiple periodograms, the 

threshold for the method is established with relation to probabilities of detection and false alarm. As 

described in this report, the threshold must be adjusted to account for the correlation between 

measurements from different channels. For reference throughout this section, an illustration of the 

method’s operation is provided in Figure 1. 

 
 

Figure 1: Flowchart for the multi-channel periodogram-based detector. 

Because periodograms measure signal power as a function of frequency, one of the challenges in 

applying this approach for power systems is that the power of ambient measurements varies with 

frequency. If this characteristic is not addressed, the detector will perform poorly. This concept is 

illustrated in Figure 2. At frequencies where the signal power is high, the periodogram will often exceed 

the threshold, even when a forced oscillation is not present. Where it is low, the forced oscillation must be 

very large to cross the threshold. This challenge was addressed in detail for a single channel in [Follum, 

2015]. An approach to address the challenge with a multi-channel version of the periodogram algorithm 

can be motivated by first considering a simplified case. 
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Figure 2: Illustration of an ambient noise spectrum and a detection threshold. 

In Section 13.6.6 of [Kay, 1998], the detection of a deterministic signal with unknown parameters in 

circular white Gaussian noise is considered. As shown in Appendix A, in the special case where the noise 

is real and the signal of interest is a sinusoid with unknown amplitude, phase, and frequency, the test 

statistic for the Generalized Likelihood Ratio Test (GLRT) is 

 (1)  

where 

𝜔k =
2𝜋𝑘

𝑁(0)
 , 0 ≤ 𝑘 ≤

𝑁(0)

2
 

is the frequency variable with units of radians per sample, 𝜎2 is the variance of the white noise, and  

𝜙̂𝑥𝑚(𝜔𝑘) =
1

𝑁𝑈
|∑ 𝑥𝑚[𝑛]𝑣[𝑛]𝑒

−𝑗𝜔𝑘𝑛

𝑁−1

𝑛=0

|

2

 

is the periodogram of 𝑥𝑚, the 𝑚𝑡ℎ channel of data containing 𝑁 samples. The periodogram is zero padded 

to length 𝑁(0) and is calculated with a window 𝑣[𝑛] with associated scaling parameter 

𝑈 =
1

𝑁
∑ 𝑣2[𝑛]

𝑁−1

𝑛=0

 

𝑇𝑤(𝜔𝑘) = ∑
2𝜙̂𝑥𝑚(𝜔𝑘)

𝜎2

𝑀

𝑚=1
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Thus, the test operates by comparing the scaled sum of periodograms from each channel to a threshold. 

Forced oscillations are detected at frequencies where the test statistic exceeds the threshold. These 

frequencies are denoted as 𝜔̂𝐹𝑂 in Figure 1 for the practical implementation of the method, which will 

now be described.  

Adaptation of the test statistic in (1) for use with the colored ambient noise of power systems is 

straight forward. In (1), the frequency-invariant power of the ambient noise is accounted for with the term 

𝜎2. The analogous parameter for colored noise is the Power Spectral Density (PSD). The PSD is the 

theoretical power of the noise as it varies with frequency and is given by 

𝜙𝑐𝑚(𝜔) = lim
𝑁→∞

𝐸 {
1

𝑁
|∑ 𝑐𝑚[𝑛]𝑒

−𝑗𝜔𝑛

𝑁−1

𝑛=0

|

2

} 

where 𝑐𝑚[𝑛] denotes the ambient noise component of the measured signal at channel 𝑚. Using the PSD, 

the test statistic for the multi-channel periodogram-based detector follows from (1) as 

 (2)  

 The PSD is a theoretical term, so for practical implementation of the detector it must be replaced with 

an estimate, a topic that will be discussed later in the report. Its use here leads to expressions for detection 

thresholds with associated probabilities of false alarm (𝑃𝐹𝐴), the probability that the test statistic will 

exceed the threshold even though an oscillation is not present. In detection problems, this parameter is 

often selected by the user. Another parameter of interest, the probability of detection (𝑃𝐷) is the 

probability that an oscillation with given parameters, e.g., amplitude, will cause the test statistic to exceed 

the threshold and be detected. There is an intuitive tradeoff between 𝑃𝐹𝐴 and 𝑃𝐷, with improved detection 

performance being achieved at the cost of more false alarms. Because of this tradeoff, these probabilities 

are fundamental in characterizing the performance of a detector. 

 As shown in [Follum, 2015], theoretical expressions relating the detection threshold to 𝑃𝐹𝐴 and 𝑃𝐷 

can be obtained for the single-channel periodogram method. For the multi-channel extension, such 

expressions do not exist, though an alternative method of relating the threshold to 𝑃𝐹𝐴 will be described 

shortly. An expression for 𝑃𝐷, though, is not possible to obtain with the following method. 

 To relate the detection threshold to 𝑃𝐹𝐴 and 𝑃𝐷, the statistical distribution of the test statistic is 

needed. A challenge in obtaining this distribution arises in that the channels of data are not independent. 

To address this challenge, the distribution is derived for two cases: all channels independent and all 

channels identical. The results are then combined to account for the true relationship between the 

channels, which lies between independent and identical.  

 The case where all channels are independent is considered in Appendix B. The resulting threshold 

that corresponds to a maximum theoretical 𝑃𝐹𝐴 is 

𝑇(𝜔𝑘) = ∑
2𝜙̂𝑥𝑚(𝜔𝑘)

𝜙𝑐𝑚(𝜔𝑘)

𝑀

𝑚=1
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𝛾⊥ = 𝐹𝜒2𝑀2
−1 (1 −

𝑃𝐹𝐴
𝑚𝑎𝑥

𝐵
) 

where 𝐹
𝜒𝑑
′2(𝜆)
−1 (⋅) denotes the inverse Cumulative Distribution Function (CDF) of the chi-squared random 

variable with 𝑑 degrees of freedom and 𝐵 denotes the number of frequency bins, i.e., 𝜔𝑘, that are 

examined. Functions for the calculation of the inverse CDF are readily available in multiple software 

packages. The other extreme, where all channels are identical, is considered in Appendix C. The threshold 

for this case is  

𝛾≡ = 𝑀 × 𝐹𝜒22
−1 (1 −

𝑃𝐹𝐴
𝑚𝑎𝑥

𝐵
) 

 In practice, the threshold that will achieve the specified 𝑃𝐹𝐴
𝑚𝑎𝑥 will be located between 𝛾⊥ and 𝛾≡, with 

values depending on the relationship between the channels. Though there is likely no theoretical way to 

express this threshold, an intuitive approach based on the Generalized Magnitude Squared Coherence 

(GMSC) described in [Ramirez, 2008] has been developed. The GMSC, which is formulated 

mathematically in Appendix D, reflects how linearly correlated multiple time series are as a function of 

frequency. The GMSC takes on values between zero and one, with values near one indicating a linear 

relationship between the channels. With these characteristics, the GMSC can serve as an intuitive basis 

for setting the threshold between 𝛾⊥ and 𝛾≡. At frequencies where the GMSC is near zero, the channels 

are nearly independent and the threshold should be near 𝛾⊥. When the GMSC is near one, the channels 

are highly related and the threshold should be near 𝛾≡. Following this approach, the threshold is given by 

 (4) 

where 𝐺(𝜔) denotes the GMSC estimate. Note that the dependence of 𝛾𝑇(𝜔) on the GMSC necessitates 

that the threshold is also be a function of frequency. A theoretical association between this threshold and 

the specified 𝑃𝐹𝐴
𝑚𝑎𝑥 does not exist, but the empirical results presented in Section 3 demonstrate that its use 

allows the method to approach desired performance much closer than the use of either 𝛾⊥  or 𝛾≡. 

 To implement the detector practically, the PSD used in the test statistic given by (2) and the GMSC 

used to set the threshold in (4) must be estimated. There are multiple ways that these values could be 

estimated, each with their own ramifications. The results in this report were generated by estimating the 

PSD and GMSC in an online fashion, meaning that the same measurements tested for the presence of 

forced oscillations were used to estimate the PSD and GMSC. This counterintuitive approach was made 

possible by the implementation of a novel spectral estimation technique.   

 The difficulty in estimating the PSD and GMSC in the online environment is that forced oscillations 

present in the measurement data cause sharp peaks in the spectral estimates at the frequencies of the 

oscillations. If the peaks in the PSD estimate are unaccounted for, they remove the corresponding peaks in 

the test statistic needed for the forced oscillation to be detected. Peaks in the GMSC lead to an 

unnecessarily high threshold at the frequency of the forced oscillation that severely impairs detection 

performance. To address this issue, a median filter is applied to estimates of the PSD and GMSC 

calculated with Welch’s method of averaging. Median filters tend to remove narrow peaks in the signal 

𝛾𝑇(𝜔) = 𝛾⊥ (1 − 𝐺(𝜔)) + 𝛾≡𝐺̂(𝜔) 
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they are applied to, making them ideal for this application. Welch’s method of spectral estimation relies 

on partitioning the signal into overlapping windows and averaging periodograms from each window. To 

achieve necessarily narrow peaks at forced oscillation frequencies, the amount of averaging in the Welch 

estimates must be limited. The median filter also helps to smooth the estimates, which tend to be highly 

variable due to the limited averaging. Thus, the approach used here is a combination of Welch’s method 

and an adapted version of the Daniell method, which produces spectral estimates by applying 

conventional filters to simple periodograms [Stoica, 2005].  

 The use of PSD and GMSC estimates, especially ones generated in the online environment, along 

with the need to scale the detection threshold based on the correlation of the signals, causes the detector’s 

performance to vary from theoretical values. The theoretical foundation of the method is still very 

valuable in guiding the setup of the detector for practical use. It may also be possible to use PSD and 

GMSC estimates calculated offline. This approach avoids the difficulty of removing the influence of 

forced oscillations, but removes the detector’s ability to adapt to changing system conditions. Such an 

approach would also require periodic updates of the PSD and GMSC estimates, which requires significant 

expertise. Multiple approaches to estimating the PSD and GMSC exist, and each likely offers advantages 

and disadvantages for specific applications. The scope of this research focused on operation in the online 

environment, leading to the approach just described. 

2.2 The Spectral Coherence Method 

The premise of spectral coherence methods is that signals containing the same forced oscillation will 

demonstrate high spectral coherence at the frequency of the oscillation. The spectral coherence of two 

separate channels of data was examined in [Zhou, 2013]. This method does not account for spectral 

coherence that exists between different channels of power system measurements due to the system’s 

dynamics. This natural coherence can be difficult to distinguish from coherence arising due to forced 

oscillations. This issue is addressed in the self-coherence method proposed in [Zhou, 2014] by 

considering the spectral coherence between a signal and the time-delayed version of the signal. Without 

the delay, the self-coherence would be identical to one, the highest possible value of the coherence 

spectrum, at all frequencies. If the underlying ambient noise was white, a delay of a single sample would 

be sufficient to ensure independence of the two signals. Because the ambient noise of power systems is 

colored by the system’s dynamics, longer delays are necessary. Incorporating a sufficient delay 

significantly reduces the coherence between signals and allows the algorithm to detect persistent forced 

oscillations, which remain correlated regardless of delay. 

The method reported here is an extension of the self-coherence method to multiple delays and 

multiple channels. The algorithm’s operation is illustrated in Figures 3 and 4. Figure 3 demonstrates the 

portion of the algorithm that operates on an individual channel’s measurements. The input signal is first 

delayed 𝐷 times by Δ𝑛 samples. An estimate of the GMSC between the resulting 𝐷 + 1 signals termed 

the self-GMSC is then calculated. The GMSC is a multi-channel extension of the spectral coherence with 

values near zero indicating low coherence and values near one indicating high coherence [Ramirez, 

2008]. The GMSC is described in greater detail in Appendix D. Incorporating multiple delays reduces the 

correlation between the ambient noise components of the measurements, while further highlighting the 

coherence of the forced oscillation components.  
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Figure 3: Flowchart describing the calculation of the self-GMSC for a single channel. 

After the self-GMSCs are calculated for each channel, they are averaged together, as illustrated in Figure 

4. This averaging reduces the variation in the spectrum’s noise floor due to the noise’s stochastic nature, 

making peaks due to forced oscillations more apparent. The output of this averaging serves as the test 

statistic for the multi-channel spectral coherence method. Forced oscillations are detected at frequencies 

where the test statistic, 𝐶(𝜔𝑘), exceeds a threshold. 

 
 

Figure 4: Flowchart describing the calculation of the spectral coherence method’s test statistic. 

An expression for a threshold related to probabilities of detection and false alarm is not available for 

the spectral coherence method. However, the introduction of delays in the self-GMSC portion of the 

algorithm establishes a relatively flat noise floor in the test statistic, so a frequency-dependent threshold is 

not required, as it is for the periodogram method. Several methods for choosing a threshold exist. Because 

the test statistic is limited to the range between 0 and 1, an intuitive threshold such as 0.7 can be set, but 

offers no adaptation for different system conditions, number of channels, etc. A more advanced approach 

could be bootstrapping using measurement based system models, but this approach could be quite 
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complex and difficult to parameterize properly. In this report, the threshold is set based on the median of 

the test statistic across all considered frequency bins. The median is robust against large outlying values at 

forced oscillation frequencies, so it serves as a measure of the noise floor level. The threshold is given by 

𝛾𝑐 = 𝑐 × med
𝜔𝑘∈Ω𝐵

[𝐶(𝜔𝑘)] 

where the test statistic is 

𝐶(𝜔𝑘) =
1

𝑀
∑ 𝐶𝑚(𝜔𝑘)

𝑀

𝑚=1

 

and 𝐶𝑚(𝜔𝑘) denotes the self-GMSC spectrum for the 𝑚𝑡ℎ channel. The scalar 𝑐 provides control over the 

tradeoff between the algorithm’s ability to detect oscillations and the frequency of false alarms.  

 

3.0 Experimental Results 

 After the methods described in this report were developed, experiments were conducted to compare 

their performance and establish best practices for their use. Experiments were conducted with simulated 

power system data to examine the statistical performance of the methods. Analysis of measured PMU 

data provided insight into their performance in real-world conditions.  

3.1 Results from Simulated Data 

Simulated data was generated using a simplified model of the Western Electricity Coordinating 

Council (WECC) system known as the miniWECC. A detailed description of the miniWECC is contained 

in [Trudnowski, 2013] and the references therein. Here, a brief overview is provided. To obtain the 

model, generation for many areas is grouped into an equivalent machine and only transmission lines with 

significant length and a rating of at least 230-kV are included. The model contains 34 generators, 115 

lines and high-voltage transformers, 54 generator and load transformers, 19 load buses, and 2 DC lines.  

To generate data, the model is linearized about an operating point and represented in state-space form. 

A small portion of each load is modeled as random. This random perturbation excites the system’s modes. 

Forced oscillations can be modeled by adding square wave inputs at a generator bus to reflect the 

generator entering a stable limit cycle. This approach requires that new data is generated for each forced 

oscillation frequency and amplitude under consideration. For the tests reported here, many frequencies 

and amplitudes were considered, making this modeling approach infeasible. Instead, the model was used 

to generate a base set of ambient data. By analyzing the linear model for a given oscillation fundamental 

frequency, the amplitudes and phases of the oscillation’s harmonics at each output were calculated. With 

this information, the forced oscillations were added to the existing ambient data. The two modeling 

methods were verified to produce identical outputs. 

Using the model, 1000 trials of ambient data were generated. The use of many statistically 

independent trials to analyze a methods performance is known as Monte Carlo analysis. Each trial was 10 

minutes in duration. The full 10 minutes was analyzed by the periodogram method, which requires a 
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relatively large set of data to estimate the noise spectrum and GMSC with sufficiently low variance. The 

spectral-coherence method, however, was implemented with a delay of 10 seconds between 1 minute long 

analysis windows. If larger analysis windows were used, the delay between them would need to increase 

accordingly to ensure small coherence. The increased delay between analysis windows would in turn lead 

to longer detection delays in the online environment. As will be seen in the following sections, the 

amount of analyzed data plays a role in detection performance. 

3.1.1 Results for the Periodogram Method 

The first test of the periodogram method was designed to verify that use of the detection threshold 

given by (4) results in the expected number of false alarms. To do this, 1000 sets of ambient data were 

examined. The test statistic in (2) was calculated for each of the 10 minute datasets. Based on these test 

statistics, the threshold 𝛾𝑇(𝜔𝑘) was selected such that 50 false alarms occurred at frequency bin. Note 

that this does not indicate an overall 𝑃𝐹𝐴 of 0.05 because each bin was considered individually. 

Theoretical thresholds 𝛾⊥ and 𝛾≡ were calculated to achieve the same number of false alarms. With these 

thresholds, 𝛾𝑇(𝜔𝑘) was calculated using the true GMSC. Plots comparing these thresholds are presented 

in Figures 5 and 6 for four channels and eight channels, respectively. Note that in both cases, the scaled 

threshold 𝛾𝑇(𝑓), with the 𝑓 denoting units of Hz, better matches the empirical threshold 𝛾𝑇(𝑓) than either 

𝛾⊥ or 𝛾≡. Though the scaling of 𝛾𝑇(𝑓) is based on reasoning rather than strict theory, there is clearly a 

relationship between 𝛾𝑇(𝑓) and 𝛾𝑇(𝑓) that lends credibility to the way it is calculated. 

 
Figure 5: Comparison of theoretical – 𝛾𝑇(𝑓) – and empirical – 𝛾𝑇(𝑓) –  thresholds for four channels. 



 

10 

 

 
Figure 6: Comparison of theoretical – 𝛾𝑇(𝑓) – and empirical – 𝛾𝑇(𝑓) –  thresholds for eight channels. 

The next test for the multi-channel periodogram method focused on the probability of false alarm. 

The 1000 trials of ambient data were again examined with a desired 𝑃𝐹𝐴 of 0.05. Estimates of the GMSC 

between channels were used to scale the detection threshold between 𝛾⊥ and 𝛾≡. As can be seen in Table 

1, the thresholds that assume the channels are independent or identical perform poorly. The low 𝑃𝐹𝐴 

observed for 𝛾≡ may seem desirable, but it indicates that the threshold will provide poorer detection 

performance than the scaled threshold. The observed probabilities of false alarm for the scaled threshold 

are closest to the specified value, indicating that the scaling approach to setting the threshold is 

reasonable. 

 

Table 1. Observed probabilities of false alarm for various detection thresholds 

𝑴 𝑷𝑭𝑨 Observed 𝑷𝑭𝑨 for 𝜸⊥ Observed 𝑷𝑭𝑨 for 𝜸≡ Observed 𝑷𝑭𝑨 for 𝜸𝑻(𝝎𝒌) 

4 0.05 0.411 0.001 0.011 

8 0.05 0.991 0.001 0.031 



 

11 

 

 After formulating the detection threshold and demonstrating that it provided acceptable performance 

in regard to false alarms, the algorithm was tested to determine the value of analyzing multiple signals. 

These tests consisted of applying the algorithm to 1000 trials of data containing a forced oscillation at 

0.35 Hz. Each trial contained 10 minutes of data, and a 𝑃𝐹𝐴 of 0.001 was used.  

 In the first test, the algorithm was applied to datasets containing from one to eight channels. Several 

forced oscillation amplitudes were considered as well. These amplitudes are expressed in terms of the 

ratio between the amplitude and twice the value of the noise spectrum at the oscillation’s frequency. This 

ratio was shown to be a primary factor in determining the algorithm’s detection performance in [Follum, 

2015] and can be viewed similarly to the more familiar signal-to-noise ratio. Observed detection 

performance over the 1000 trials is plotted in Figure 7. Because the ratio specifying oscillation amplitude 

varies from channel to channel, the maximum over all eight channels was used to form the x-axis. Note 

that the use of multiple channels improves detection performance considerably. 

 
Figure 7: Detection performance of the periodogram method for various numbers of channels and forced 

oscillation amplitudes. 

 A metric of practical importance for forced oscillation detection is the time required to detect 

oscillations in the online environment. Recall that the methods proposed in this report rely on past data to 

operate. When an oscillation begins in the system, it is desirable to detect it quickly. As demonstrated in 

Figure 8, the detection performance of the method increases with the duration of the oscillation within the 

ten-minute analysis window and the number of examined channels. To generate this plot, an oscillation 

with 
𝐴2

2𝜙𝑐(𝜔𝐹𝑂)
 equal to -10 dB was used. In this case, the oscillation can be reliably detected using eight 

channels over a minute earlier than when a single channel is examined. For some applications, this 

difference in detection time may be significant. Detection performance as a function of oscillation 

duration was also examined for 
𝐴2

2𝜙𝑐(𝜔𝐹𝑂)
 equal to 0 dB, and results are presented in Figure 9. The large 
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oscillation amplitude largely removes the advantage of using multiple channels, but these results are 

valuable for comparison with the spectral-coherence method in the next section.  

 
Figure 8: Detection performance of the periodogram method for various numbers of channels and forced 

oscillation durations with 
𝐴2

2𝜙𝑐(𝜔𝐹𝑂)
= −10 𝑑𝐵. 

 
Figure 9: Detection performance of the periodogram method for various numbers of channels and forced 

oscillation durations with 
𝐴2

2𝜙𝑐(𝜔𝐹𝑂)
= 0 𝑑𝐵. 
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3.1.2 Results for the Spectral-Coherence Method 

The spectral-coherence method was tested in much the same way and with the same dataset as for the 

periodogram method. With no theoretical basis for setting the 𝑃𝐹𝐴, the first test was conducted to set 

threshold scaling parameters for later tests of the method’s detection performance. Recall that for the 

spectral-coherence method, the threshold is set by scaling the median of the test statistic by a scalar 𝑐. 
Table 2 lists the threshold scaling parameters needed for a single false alarm out of the 1000 examined 

trials. Note that the scaling parameter tends to decrease as the number of channels increases, particularly 

for the first four channels. These numbers will vary for the considered channels and should not be 

considered general results applicable to any system. They were, however, useful in testing the method’s 

detection performance.  

 

Table 2.  Threshold scaling parameters required to achieve a single false alarm out of 1000 trials for 

various numbers of channels. 

Number of Channels 𝑴 Threshold Scaling Parameter c 

1 9.76 

2 6.52 

3 6.90 

4 5.64 

5 5.64 

6 5.88 

7 5.61 

8 5.58 

 

 To test the method’s ability to detect forced oscillations, the algorithm was applied to simulated 

datasets with the threshold scaling parameters listed in Table 2. Observed detection performance over the 

1000 trials is plotted in Figure 10. The considered forced oscillation amplitudes are again expressed in 

terms of the ratio between the amplitude and twice the value of the noise spectrum at the oscillation’s 

frequency. Note that the use of multiple channels improves detection performance considerably. In 

comparing Figures 7 and 10, it is clear that the periodogram method can reliably detect much smaller 

forced oscillations. Recall, though, that the spectral-coherence method operates on significantly less data.  

 The self-coherence method’s suitability to operation on less data is a disadvantage for detecting 

forced oscillations with small amplitudes, but it is advantageous for the fast detection of large-amplitude 
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oscillations in the online environment. To test the method’s detection delay, it was applied 1000 trials of 

simulation data containing forced oscillations with durations ranging from 10 to 80 seconds. Amplitudes 

were set such that the maximum 
𝐴2

2𝜙𝑐(𝜔𝐹𝑂)
 over all channels was equal to 0 dB. Results are presented in 

Figure 11. Note that the addition of multiple channels dramatically reduces the amount of time required to 

reliably detect the forced oscillation.  

 It is interesting to compare the corresponding results from the periodogram method in Figure 9. Note 

that the forced oscillation must persist for multiple minutes before the periodogram method is able to 

reliably detect it. Though the periodogram method offers better detection of small oscillations, the 

spectral-coherence method is able to detect large oscillations faster in the online environment. These 

results point to the complementary nature of the methods.  

 
Figure 10: Detection performance of the spectral-coherence method for various numbers of channels and 

forced oscillation amplitudes.   
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Figure 11: Detection performance of the spectral-coherence method for various numbers of channels and 

forced oscillation durations with 
𝐴2

2𝜙𝑐(𝜔𝐹𝑂)
= 0 𝑑𝐵. 

3.2 Results from Measured Data 

After testing the performance of the methods with simulation data, they were applied to measured 

PMU data to verify that they can be successfully applied in practical applications. The methods were 

implemented in much the same way as for the simulated data. They were applied to two hours of data 

collected from six channels of data spread throughout the WECC system. Further details on the data are 

omitted to protect the confidentiality of the data. 

Results for the periodogram method are presented in Figure 12 and those for the spectral-coherence 

method are presented in Figure 13. Note that forced oscillations were present for the entirety of the two 

hour dataset. Further examination of the dataset revealed that all oscillations were too small to be visible 

in the time-domain data. To focus on larger oscillations and/or reduce the occurrence of false alarms, the 

𝑃𝐹𝐴 (periodogram method) and threshold scaling parameter (spectral-coherence method) could be 

increased. However, even oscillations with small amplitudes can indicate misoperation of equipment, so 

the ability of the methods to detect these small oscillations is valuable. 

From Figures 12 and 13, it is clear that the methods detect several of the same oscillations. The 

periodogram method, being better suited to low-amplitude oscillations, detects oscillations at frequencies 

that the spectral-coherence method misses. The periodogram method also offers higher frequency 

resolution of the forced oscillation frequencies due to its longer analysis window. With its shorter analysis 

windows, the spectral-coherence method appears to detect the low-frequency oscillation beginning 

between minutes 40 and 60 faster. Thus, the strengths and weaknesses of each method are demonstrated 

with these measurement results.  
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Figure 12: Detected forced oscillations in two hours of measurement data using the periodogram method. 

 
Figure 13: Detected forced oscillations in two hours of measurement data using the spectral-coherence 

method. 
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4.0 Conclusions 

Forced oscillations are a growing concern for power system engineers. These oscillations are often 

associated with the malfunction or misoperation of power system equipment and can hinder the operation 

of the grid. Detecting forced oscillations is the first step in addressing the problem leading to the 

oscillation. In this report, multi-channel extensions to the previously developed periodogram and spectral-

coherence methods of forced oscillation detection were developed and shown to improve upon their 

single channel counterparts. 

The multi-channel methods described in this report both operate by comparing frequency domain test 

statistics to thresholds, but they differ significantly from each other in several other ways. A primary 

advantage of the periodogram method is that the relationship between the detection threshold and the 

probabilities of detection and false alarm can be expressed formulaically. The method’s primary weakness 

is its dependence on estimates of the ambient noise spectra and the GMSC spectrum, which can be 

difficult to obtain reliably. The self-coherence method is relatively straightforward to implement, but a 

theoretical association between its threshold and probabilities of detection and false alarm does not exist. 

The periodogram method was shown to provide superior detection of small oscillations. However, 

because the spectral-coherence method must operate on smaller windows of data, it is able to detect large-

amplitude forced oscillations faster in the online environment. With each method possessing strengths and 

weaknesses, the selection of a method should be based on the application. Many benefits, including 

verification, could be obtained by implementing the methods in parallel.  

Future development work with the reported methods will focus on using their outputs to identify the 

sources of oscillations and exploring efficient implementations of the GMSC. Opportunities to implement 

the methods with large sets of archived PMU data and in the online environment will also be sought. 

Power system engineers have only recently recognized the prevalence of forced oscillations, providing an 

excellent opportunity to implement multi-channel forced oscillation detection methods to improve grid 

operation.  
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Appendix A 
 

Derivation of the Test Statistic for the Linear Model of a 
Sinusoid Embedded in Gaussian White Noise 

 

The detector and test statistic proposed in this report were inspired by the detector for the simplified 

case of sinusoids with unknown parameters embedded in Gaussian white noise at several measurement 

locations. In this appendix, the theory for this simplified case is developed based on the detector for a 

deterministic signal with unknown parameters in complex white Gaussian noise described in Section 

3.6.6 of [Kay, 1998]. The case considered here is a special case where the deterministic signal is a 

sinusoid and the noise is not complex. The resulting test and test statistic are closely related to those 

proposed for the detection of forced oscillations in this report.  

For the 𝑚𝑡ℎ channel, the data model is  

𝑥𝑚[𝑛] = 𝑤𝑚[𝑛] + 𝑠𝑚[𝑛] 

where 𝑤𝑚[𝑛] is zero-mean white Gaussian noise and the signal model is 

𝑠𝑚[𝑛] = 𝐴𝑚 cos(𝜔𝐹𝑂𝑛 + 𝜁𝑚) 

It is advantageous to write the signal model as a linear function of the unknown amplitude and phase. The 

unknown frequency will be addressed separately at the end of the derivation. Through trigonometry, 

𝑠𝑚[𝑛] = [𝐵𝑚 cos(𝜔𝐹𝑂𝑛) − 𝐶𝑚 sin(𝜔𝐹𝑂𝑛)] 

where 

𝐴𝑚 = √𝐵𝑚
2 + 𝐶𝑚

2  

 

𝜁𝑚 = tan
−1 (

𝐶𝑚
𝐵𝑚
) 

 

𝐵𝑚 = 𝐴𝑚 cos(𝜁𝑚) 
 

𝐶𝑚 = 𝐴𝑚 sin(𝜁𝑚) 
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Letting 𝒔̃[𝑛] denote the vector of signal models from the 𝑀 channels at sample 𝑛, the collection of signal 

models for 𝑁 samples is given by 

𝑠 = [

𝑠[0]
𝑠[1]
⋮

𝑠[𝑁 − 1]

] 

Using the previously described parameterization of 𝑠𝑚[𝑛], the full signal model can be written as 

𝑠 = [

ℎ1[0] ℎ2[0] ⋯ ℎ2𝑀[0]
ℎ1[1] ℎ2[1] ⋯ ℎ2𝑀[1]
⋮ ⋮ ⋱ ⋮

ℎ1[𝑁 − 1] ℎ2[𝑁 − 1] ⋯ ℎ2𝑀[𝑁 − 1]

]

⏟                            
𝐻

𝜃 

where each ℎ𝑖[𝑛] is an 𝑀 element vector and 

𝜃 = [𝐵1 𝐶1 𝐵2 𝐶2 ⋯ 𝐵𝑀 𝐶𝑀]
𝑇 

For odd 𝑖, all elements of ℎ𝑖[𝑛] are zero except for element 
𝑖+1

2
, which is cos(𝜔𝐹𝑂 × 𝑛). For even 𝑖, all 

elements of ℎ𝑖[𝑛] are zero except for element 
𝑖

2
, which is −sin(𝜔𝐹𝑂 × 𝑛). As shown in [Kay, 1998], a 

GLRT can be applied based on this linear model with the test statistic 

 

𝑇𝑤 =
𝜃1
𝑇𝐻𝑇𝐻𝜃1
𝜎2

=
𝑠̂𝑇𝑥

𝜎2
 

 

where 

 

𝜃1 = (𝐻
𝑇𝐻)−1𝐻𝑇𝑥 

 

𝑥 = [

𝑥[0]
𝑥[1]
⋮

𝑥[𝑁 − 1]

] 

 

𝑠̂ = 𝐻𝜃1 

 

The subscript 𝑤 denotes that this test statistic is derived for white Gaussian noise. Note that 

 

𝐻𝑇𝐻 = [

𝐻1 0 ⋯ 0
0 𝐻2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐻𝑀

] 

 

where 

 



 

3 

𝐻𝑚 =

[
 
 
 
 
 

∑ cos2(𝜔𝐹𝑂 × 𝑛)

𝑁−1

𝑛=0

−∑ cos(𝜔𝐹𝑂 × 𝑛) × sin(𝜔𝐹𝑂 × 𝑛)

𝑁−1

𝑛=0

−∑ cos(𝜔𝐹𝑂 × 𝑛) × sin(𝜔𝐹𝑂 × 𝑛)

𝑁−1

𝑛=0

∑sin2(𝜔𝐹𝑂 × 𝑛)

𝑁−1

𝑛=0 ]
 
 
 
 
 

≈
𝑁

2
× 𝑰 

 

Thus, 

 

(𝐻𝑇𝐻)−1 ≈
2

𝑁
× 𝐼 

 

Plugging this expression into the expression for 𝜃1 leads to 

 

𝜃1 ≈
2

𝑁
× 𝐼𝐻𝑇𝑥̃ =

2

𝑁
∑

[
 
 
 
 
 
 
 
𝑥1[𝑛] cos(𝜔𝐹𝑂 × 𝑛)

−𝑥1[𝑛] sin(𝜔𝐹𝑂 × 𝑛)

𝑥2[𝑛] cos(𝜔𝐹𝑂 × 𝑛)

−𝑥2[𝑛] sin(𝜔𝐹𝑂 × 𝑛)
⋮

𝑥𝑀[𝑛] cos(𝜔𝐹𝑂 × 𝑛)

−𝑥𝑀[𝑛] sin(𝜔𝐹𝑂 × 𝑛)]
 
 
 
 
 
 
 

𝑁−1

𝑛=0

 

 

The test statistic then becomes 

 

𝑇𝑤 =
𝑠̂𝑇𝑥

𝜎2
=
𝜃1
𝑇 ×𝐻𝑇𝑥

𝜎2
=
𝜃1
𝑇 ×

𝑁
2
𝜃1

𝜎2
 

 

=
1

𝜎2
×
4

𝑁2
×
𝑁

2
× ∑ [(∑ 𝑥𝑚[𝑛] cos(𝜔𝐹𝑂 × 𝑛)

𝑁−1

𝑛=0

)

2

+ (−∑ 𝑥𝑀[𝑛] sin(𝜔𝐹𝑂 × 𝑛)

𝑁−1

𝑛=0

)

2

]

𝑀

𝑚=1

 

 

=
2

𝑁𝜎2
∑ |∑ 𝑥𝑚[𝑛](cos(𝜔𝐹𝑂 × 𝑛) − 𝑗 sin(𝜔𝐹𝑂 × 𝑛))

𝑁−1

𝑛=0

|

2𝑀

𝑚=1

 

 

=
2

𝜎2
∑

1

𝑁
|∑ 𝑥𝑚[𝑛]𝑒

−𝑗𝜔𝐹𝑂𝑛

𝑁−1

𝑛=0

|

2𝑀

𝑚=1

 

 

= ∑
2𝜙̂𝑥𝑚(𝜔𝐹𝑂)

𝜎2

𝑀

𝑚=1

 

 

Thus, the test statistic is the sum of the periodograms for each sensor scaled by two divided by the 

variance.  

 

 Note that the test statistic is evaluated at the frequency of the forced oscillation, which is unknown. 

As suggested in Section 7.6.3 of [Kay, 1998], when the frequency of the sinusoids is unknown, the test 

statistic is calculated for a variety of frequencies. The detector decides that a sinusoid is present if the 
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peak value of the scaled sum of periodograms exceeds a threshold, and if so, the frequency location of 

that peak is the Maximum Likelihood Estimate (MLE) of the frequency. In this application though, forced 

oscillations often appear with harmonics, so the number of sinusoids is unknown. Thus, the statistic must 

be evaluated at a range of frequencies. Any frequency where the test statistic crosses the threshold serves 

as the frequency estimate for a detected forced oscillation. The test statistic is then written as 

 

𝑇𝑤(𝜔𝑘) = ∑
2𝜙̂𝑥𝑚(𝜔𝑘)

𝜎2

𝑀

𝑚=1

 

 

Here the frequency parameter has been discretized as 

 

𝜔k =
2𝜋𝑘

𝑁(0)
 , 0 ≤ 𝑘 ≤

𝑁(0)

2
 

 

where 𝑁(0) is the zero padded length of the periodogram. 
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Appendix B 
 

Derivation of the Detection Threshold for Independent 
Channels 

In this appendix, the test statistic’s distribution and the associated 𝑃𝐹𝐴 are derived for the case where 

all channels are independent. The test statistic for the proposed detector is  

𝑇(𝜔𝑘) = ∑
2𝜙̂𝑥𝑚(𝜔𝑘)

𝜙𝑐𝑚(𝜔𝑘)

𝑀

𝑚=1

 

To determine the 𝑃𝐹𝐴, the case where the system is in ambient conditions, i.e., no forced oscillations are 

present, must be considered. For the remainder of this appendix, this case is assumed. From [Follum, 

2015], 

(B1) 

as 𝑁 → ∞ where χ2
2 denotes a chi-squared random variable with two degrees of freedom. The sum of 

independent chi-squared random variables is distributed as a chi-squared random variable with degrees of 

freedom equal to the sum of the individual degrees of freedom [Johnson, 1995]. Thus, 

𝑇(𝜔𝑘) ∼ χ2𝑀
2  

 Let Ω𝐵 denote the length 𝐵 set of frequency bins 𝜔𝑘 that are examined for forced oscillations. Then 

for the detection threshold 𝛾⊥, 

𝑃𝐹𝐴 = 𝑃(max(𝑇(𝜔𝑘)) > 𝛾⊥) 

= 1 − 𝑃(max(𝑇(𝜔𝑘)) ≤ 𝛾⊥) 

= 1 − 𝑃( ⋂ [𝑇(𝜔𝑘) ≤ 𝛾⊥]

𝜔𝑘∈Ω𝐵

) 

2𝜙̂𝑥𝑚(𝜔𝑘)

𝜙𝑐𝑚(𝜔𝑘)
∼ χ2

2 
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≤ 𝐵 − ∑ 𝑃(𝑇(𝜔𝑘) ≤ 𝛾⊥)

𝜔𝑘∈Ω𝐵

 

= 𝐵 − 𝐵 × 𝐹𝜒2𝑀
2 (𝛾⊥) 

where the inequality is necessary because the frequency bins of the periodograms are not independent due 

to zero padding (see [Follum, 2015] for details) and 𝐹𝜒𝑑
2(⋅) denotes the CDF of the chi-squared random 

variable with 𝑑 degrees of freedom. This equation can be rearranged to obtain an expression for the 

detection threshold for which the probability of false alarm will not exceed 𝑃𝐹𝐴
𝑚𝑎𝑥 as 

𝛾⊥ = 𝐹𝜒2M2
−1 (1 −

𝑃𝐹𝐴
𝑚𝑎𝑥

𝐵
) 

where 𝐹
𝜒𝑑
2
−1(⋅) denotes the inverse CDF. 
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Appendix C 
 

Derivation of the Detection Threshold for Identical Channels 

In this appendix, an expression relating the test statistic to 𝑃𝐹𝐴 is derived for the case where all 

channels are identical. When all channels are identical, the test statistic for the proposed detector can be 

written as 

𝑇(𝜔𝑘) = ∑
2𝜙̂𝑥𝑚(𝜔𝑘)

𝜙𝑐𝑚(𝜔𝑘)

𝑀

𝑚=1

= 𝑀
2𝜙̂𝑥𝑚(𝜔𝑘)

𝜙𝑐𝑚(𝜔𝑘)
 

To determine the 𝑃𝐹𝐴, the case where the system is in ambient conditions, i.e., no forced oscillations are 

present, must be considered. For the remainder of this appendix, this case is assumed. From [Follum, 

2015], 

(B1) 

as 𝑁 → ∞ where χ2
2 denotes a chi-squared random variable with two degrees of freedom. Let Ω𝐵 denote 

the length 𝐵 set of frequency bins 𝜔𝑘 that are examined for forced oscillations. Then for the detection 

threshold 𝛾≡, 

𝑃𝐹𝐴 = 𝑃(max(𝑇(𝜔𝑘)) > 𝛾≡) 

= 1 − 𝑃(max(𝑇(𝜔𝑘)) ≤ 𝛾≡) 

= 1 − 𝑃( ⋂ [𝑇(𝜔𝑘) ≤ 𝛾≡]

𝜔𝑘∈Ω𝐵

) 

≤ 𝐵 − ∑ 𝑃(𝑇(𝜔𝑘) ≤ 𝛾≡)

𝜔𝑘∈Ω𝐵

 

2𝜙̂𝑥𝑚(𝜔𝑘)

𝜙𝑐𝑚(𝜔𝑘)
∼ χ2

2 
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= 𝐵 − 𝐵 × 𝑃 (
2𝜙̂𝑥𝑚(𝜔𝑘)

𝜙𝑐𝑚(𝜔𝑘)
≤
1

𝑀
𝛾≡) 

= 𝐵 − 𝐵 × 𝐹𝜒22 (
1

𝑀
𝛾≡) 

where the inequality is necessary because the frequency bins of the periodograms are not independent due 

to zero padding (see [Follum, 2015] for details) and 𝐹𝜒𝑑
2(⋅) denotes the CDF of the chi-squared random 

variable with 𝑑 degrees of freedom. This equation can be rearranged to obtain an expression for the 

detection threshold for which the probability of false alarm will not exceed 𝑃𝐹𝐴
𝑚𝑎𝑥 as 

𝛾≡ = 𝑀 × 𝐹𝜒22
−1 (1 −

𝑃𝐹𝐴
𝑚𝑎𝑥

𝐵
) 

where 𝐹
𝜒𝑑
2
−1(⋅) denotes the inverse CDF. 
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Appendix D 
 

Generalized Magnitude Squared Coherence 

The Generalized Magnitude Squared Coherence (GMSC) is, as its name implies, a generalization of 

the Magnitude Squared Coherence (MSC). The MSC is a well-established, frequency-dependent measure 

of the linear relationship between two signals. It is described in [Stoica, 2005], as well as many other 

texts. The GMSC extends the MSC to more than two channels. For a complete description of the GMSC, 

see [Ramirez, 2008]. Here, a brief mathematical overview is provided. 

The complex coherence spectrum is defined as 

𝐶𝑥𝑖𝑥𝑗(𝜔) =
𝜙𝑥𝑖𝑥𝑗(𝜔)

√𝜙𝑥𝑖(𝜔) × 𝜙𝑥𝑗(𝜔)
 , ∀  𝑖, 𝑗 = 1,… ,𝑀 

where 𝑀 is the number of channels, 𝜙𝑥𝑖𝑥𝑗(𝜔) is the cross-spectrum, and 𝜙𝑥𝑖(𝜔) is the PSD [Stoica, 

2005]. The complex coherence spectra are arranged in a matrix such that 

Σ𝑥(𝜔) =

[
 
 
 
 

1 𝐶𝑥1𝑥2(𝜔) ⋮ 𝐶𝑥1𝑥𝑀(𝜔)

𝐶𝑥2𝑥1(𝜔) 1 ⋮ 𝐶𝑥2𝑥𝑀(𝜔)

⋮ ⋮ ⋱ ⋮
𝐶𝑥𝑀𝑥1(𝜔) 𝐶𝑥𝑀𝑥2(𝜔) ⋮ 1 ]

 
 
 
 

 

Then the GMSC is defined as 

𝐺(𝜔) =
1

(𝑀 − 1)2
(𝜆𝑀𝐴𝑋(Σ𝑥(𝜔)) − 1) 

where 𝜆𝑀𝐴𝑋(Σ𝑥(𝜔)) denotes the largest eigenvalue of the matrix Σ𝑥(𝜔). As shown in [Ramirez, 2008], 

the GMSC is bounded between zero and one. To estimate the GMSC, the true cross-spectra and PSDs are 

replaced with estimates. Several methods of obtaining these estimates are described in [Stoica, 2005], 

including Welch’s method averaging, which was utilized for the results presented in this report.
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