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EXECUTIVE SUMMARY 
 

The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal 
Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU).  Recently, the low filter 
flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive 
liquid waste can be treated.  Salt Batch 6 had a lower processing rate and required frequent filter cleaning.  
Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to 
increase ARP/MCU throughput.   
 
One potential method for increasing filter flux is to adjust the axial velocity and transmembrane pressure 
(TMP).  SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity 
and transmembrane pressure on crossflow filter flux.  The objective of the testing was to determine 
whether increasing the axial velocity at the ARP could produce a significant increase in filter flux.  The 
authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 
2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity 
and TMP, and measuring filter flux as a function of time. 
 
The conclusions from this work follow. 
• Filter flux increased with increasing transmembrane pressure, agreeing with the Hagen-Poiseuille 

equation.   
• Filter flux decreased with increasing MST concentration, agreeing with the boundary layer model 

(and other crossflow filtration models). 
• No effect of axial velocity on filter flux was observed during the testing.  The likely reason for this 

result is that the operating conditions were not in the range at which axial velocity would have a 
significant effect on filter flux.   
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1.0 Introduction 
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal 
Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU).  Recently, the low filter 
flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive 
liquid waste can be treated.  Salt Batch 6 had a lower processing rate and required frequent filter 
cleaning.1  There is a desire to understand the causes of the low filter flux and to increase ARP/MCU 
throughput.   

One potential method for increasing filter flux is to adjust the axial velocity and transmembrane pressure 
(TMP).  Increasing the TMP increases the driving force for liquid to move through the filter.  Increasing 
the axial velocity increases the shear stress at the filter surface, which will reduce the resistance to flow 
through the filter.  SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial 
velocity and transmembrane pressure on crossflow filter flux.2  The objective of the testing was to 
determine whether increasing the axial velocity at the ARP could produce a significant increase in filter 
flux.   

The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 
2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity 
and TMP, and measuring filter flux as a function of time. 

2.0 Experimental  
2.1 Equipment 

2.1.1 Crossflow Filter 
SRNL personnel constructed a bench-scale filtration apparatus.  Figure 1 shows the layout of the bench-
scale filtration apparatus.  The apparatus has an approximately 10 gallon feed tank with an impeller to 
mix the tank contents.  The mixing system was not designed to be prototypic of the ARP; it was designed 
to suspend the MST particles in the feed slurry.  A centrifugal pump draws the slurry from the feed tank 
and pumps it into two parallel lines at ~ 6.0 gpm total flow rate (~ 3.0 gpm to each filter).  Each line has a 
heat exchanger to control the temperature of the feed slurry to 25 ± 2 ºC.  The slurry flows past a tee 
where the two lines meet and the inlet pressure transducer is located.  Beyond the tee there is one valve on 
each line which can be used to adjust the flow rate to each filter.  Following each valve is a 0 – 5 gpm ± 
0.1 gpm magnetic flowmeter which is used to measure the flow of slurry into each filter.  The filters are 
located downstream of the flowmeters.  After exiting the filters, the concentrated slurry streams are 
combined and returned to the feed tank.  The concentrate line has a manual backpressure valve and an 
automated backpressure valve connected in parallel.  The outlet from each of these valves returns the 
slurry to the bottom of the feed tank.  All lines are ½” stainless steel (SS) tubing except for the instrument 
lines to the pressure transducers which are ¼” SS tubing, and the filtrate lines, which are 3/8” OD and ¼” 
OD SS tubing. 

The filtrate leaves each filter through 3/8” and ¼” tubing.  Pressure transducers measure the filtrate 
pressure immediately after each filter.  A three way valve is positioned even with the top of a graduated 
tube for each filtrate line.  The filtrate can be directed to the filtrate tank or to the 100 mL ±1 mL 
graduated tube which is used to manually measure the filtrate flowrate.  For these tests, the filtrate flow 
was measured every 15 minutes.  The filtrate flow could also be sent back to the feed tank by moving the 
tygon tubing from the filtrate tank to the feed tank.   
One of the crossflow filters is a 0.1 µm pore size, 3/8 inch ID Mott® porous metal crossflow filter and the 
other is a 0.5 µm pore size, 3/8 inch ID Mott® porous metal crossflow filter.  Both filters are 24 inches in 
length and constructed of sintered stainless steel.  A computer was used to record the pressures, feed flow 
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rates, and feed tank temperature as well as to control the automatic backpressure valve located after the 
filters.  For this testing, only the 0.1 µm filter was used. 

 
Figure 1.  Schematic of Laboratory-Scale Crossflow Filter Unit 

2.2 Test Protocol 
The crossflow filter tests were conducted as follows.  Prior to testing, the apparatus was chemically 
cleaned with 0.5 M oxalic acid and 1 M nitric acid.  Rather than using a prototypic ARP cleaning method, 
the filters were cleaned by draining the feed slurry from the filter system into the feed tank and removing 
the feed slurry from the feed tank.  After the feed slurry was removed from the system, approximately 
3 gallons of 0.5 M oxalic acid was added to the feed tank.  The oxalic acid was recirculated through the 
filter system (on both the feed side and the filtrate side) for at least 1 hour, drained into the feed tank, and 
removed.  After the oxalic acid was removed, approximately 3 gallons of 1 M nitric acid was added to the 
feed tank.  The nitric acid was recirculated through the filter system for at least 1 hour, drained into the 
feed tank, and removed.  The filter system was flushed with deionized water until the pH was greater than 
6.  All filter cleaning was conducted at ambient temperature.  The cleaning protocol was selected to have 
a clean filter rather than to be prototypic.  Following chemical cleaning, the filter system was run with 
deionized water to establish a clean water flux for each of the filters.  Table 1 shows the results. 
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Table 1.  Clean Water Flux Prior to Start of Testing 

Flux 0.1 micron filter 
(gpm/ft2) 

Flux 0.5 micron filter 
(gpm/ft2) 

TMP 
(psi) 

0.64 2.3 40 

 
The simulated salt solution was based on the Salt Batch 6 analysis.3  Table 2 shows the composition of the 
salt solution.  Additional nitrate was added to balance the charges (3.03 M nitrate versus 2.5 M nitrate in 
reference 5).  The salt solution was prepared by dissolving sodium hydroxide in deionized water, then 
adding aluminum nitrate to react with the sodium hydroxide forming sodium aluminate.  The remaining 
components were added in order of increasing solubility.  The solution was filtered with the 0.1 and 0.5 
micron crossflow filters to remove any precipitated salts prior to testing. 
 

Table 2.  Composition of Simulated Salt Solution 
Ion Concentration (M) 
Na+  6.6 
K+  0.01 
OH-  2.22 
NO3

-  3.03 
NO2

-  0.51 
AlO2

-  0.23 
CO3

-2  0.22 
SO4

-2  0.071 
Cl-  0.0085 
PO4

-3  0.0045 
 
Sufficient MST was added to the salt solution to produce a slurry containing 2.5 g MST/L slurry.a  The 
slurry was mixed for 15 minutes and run through the filter at an axial velocity of 10.2 ft/s, a TMP of 30 
psi, and a temperature of 25 ˚C.  For the first hour, the filtrate was returned to the feed tank (recycle 
mode).  After one hour, the filtrate was collected in a separate container and the feed slurry was 
concentrated (concentration mode).  Once the level in the feed tank reached 3 gallons, the filtrate was 
recycled for the remainder of the day.   

The next day, the filtrate was returned to the feed tank and the filter operated for 2 hours in recycle mode 
at each of the conditions in Table 3.  The table includes an ARP axial velocity and a test axial velocity.  
The test filter has an internal diameter of 3/8 inch and the ARP filter has an internal diameter of 5/8 inch.  
Because the SRNL filter and ARP filter have different internal diameters, the authors accounted for these 
differences by matching the wall shear stress.  The wall shear stress as a function of axial velocity was 
calculated for each filter by the Blasius equation.2  Test velocities were selected to match the wall shear 
stress.  
 
Additional tests were conducted with MST concentrations of 10 g/L and 30 g/L.  Based on analysis of 
samples from ARP, these concentrations (2.5, 10 , and 30 g/L) would approximate the start of batch 6, the 
start of batch 44, and the end of batch 44.4  MST was added to the feed tank to reach the target 
concentration. 
 
 
 

                                                      
a The MST particle size was approximately 10 micron as described in SRNL-STI-2015-00158, Revision 0 
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Table 3.  Operating Conditions for Axial Velocity-TMP Tests 

Test ARP Velocity (ft/s) ARP TMP (psi) Test Velocity (ft/s) Test TMP (psi) 
1 11 30 10.2 30 
2 8 25 7.4 25 
3 11 22.9 10.2 22.9 
4 11 30 10.2 30 
5 6.8 30 6.3 30 
6 14 35 13.0 35 
7 11 30 10.2 30 
8 8 35 7.4 35 
9 11 37.1 10.2 37.1 
10 11 30 10.2 30 
11 14 25 13.0 25 
12 15.2 30 14.2 30 
13 11 30 10.2 30 

 

3.0 Results 
 
Figure 2 shows the filter flux as a function of time and operating conditions.  The plot shows filter flux to 
decrease with increasing MST concentration.  The effects of axial velocity and TMP are not obvious from 
the figure. 

 
Figure 2.  Filter Flux as a Function of Time and Operating Conditions 
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A statistical analysis of the data was conducted using the JMP® software to evaluate the impact of run 
number, axial velocity, TMP, and MST concentration on filter flux.  In the table, SS is the sum of the 
squares of the deviation from the mean, F is the ratio of the mean square deviation from the model to the 
mean square deviation from the random error, and Prob>F is the probability that the variance is due to 
random errors.8  Prob>F values less than 0.05 indicate that the effect is statistically significant with 95% 
confidence.  According to Table 4, run number, TMP, and concentration effects are statistically 
significant.  Axial velocity is not statistically significant. 
 

Table 4.  Statistical Analysis of Filtration Data 

Source SS F ratio Prob>F 

Run number 0.00006349 41.12 <0.0001 

Axial Velocity 0.00000102 0.66 0.42 

TMP 0.00012763 82.67 <0.0001 

1/Concentration 0.00031309 202.80 <0.0001 

 

Run number having an effect on filter flux is expected.  Previous testing and operating experience has 
shown filter flux to decrease with run time.  As the filter is operating, more particles have the opportunity 
to build a filter cake or become trapped in the filter pores, which increases the resistance to filtration and 
decreases the filter flux.   
 
The Hagen- Poiseuille equation describes laminar flow through a circular tube.  Equation [1] describes the 
equation as it is applied to flow through porous media. 
 

 PA
L32

Pd
J 1

2
p ∆=

∆
=

µ
 [1] 

 
where ∆P is the transmembrane pressure, dp is pore diameter, µ is viscosity, and L is pore length.5  The 
model predicts filter flux to be proportional to transmembrane pressure.  The test data are consistent with 
this model. 
 
Equation [2] and equation [3] describe the boundary layer model for filter flux6   
 

 ( )b
1.75

8
b

w 1/ClnvA
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C

lnk J =







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 w

3/14
p
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d

0.078k τ










=  [3] 

 
where τw is the wall shear stress, Cw is the concentration of solid particles at the filter surface, dp is 
particle diameter, CB is the bulk solids concentration, L is tube length, k is the mass transfer coefficient 
and v is axial velocity.  The model predicts filter flux to increase with increasing axial velocity and to 
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decrease with increasing solid particle concentration.  Other models predict similar results.  The test data 
are not consistent with this model. 
 
The Murkes-Carlsson model combines the effects of axial velocity, TMP, and solid particle concentration.  
Equation [4] describes the Murkes-Carlsson model7   
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where B is Darcy’s permeability constant, ∆P is transmembrane pressure, µ is viscosity, Cb is bulk 
concentration, D is filter tube diameter, ε is porosity, ρ is density, dp is particle size, v is axial velocity, 
and L0 is equivalent cake thickness.  The model predicts filter flux to be a function of transmembrane 
pressure, axial velocity and solids loading.  At large axial velocity, filter flux is a function of TMP, and 
increases with increasing TMP.  At small axial velocity, filter flux is a function of axial velocity and solid 
particle concentration, increasing with increasing axial velocity, and decreasing with increasing 
concentration.  At large TMP, filter flux is a function of axial velocity and solid particle concentration, 
increasing with increasing axial velocity, and decreasing with increasing concentration.  At small TMP, 
filter flux is a function of TMP, and increases with increasing TMP.  At large solid particle concentration, 
filter flux is a function of axial velocity and solid particle concentration, increasing with increasing axial 
velocity, and decreasing with increasing concentration.  At small particle concentration, filter flux is a 
function of TMP, and increases with increasing TMP.   

4.0 Quality Assurance 
  
The plan for this testing is described in TTQAP SRNL-RP-2014-00874.  The M&TE were calibrated 
prior to the start of testing.  Data collected are recorded in Laboratory Notebooks SRNL-NB-2014-00021, 
SRNL-NB-2014-00006, and SRNS-NB-2015-00002. 

5.0 Conclusions 
The conclusions from this work follow. 

• Filter flux increased with increasing transmembrane pressure, agreeing with the Hagen-Poiseuille 
equation.   

• Filter flux decreased with increasing MST concentration, agreeing with the boundary layer model 
(and other crossflow filtration models). 

• No effect of axial velocity on filter flux was observed during the testing.  The likely reason for this 
result is that the operating conditions were not in the range at which axial velocity would have a 
significant effect on filter flux.   
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