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Statistical Modeling Efforts For Headspace Gas

Brian Weaver, CCS-6

March 15, 2016

The purpose of this document is to describe the statistical modeling effort for gas con-
centrations in WIPP storage containers. The work was performed primarily by Brian
Weaver of CCS-6 (Statistical Sciences) and included input from Joanne Wendelberger
(CCS-6), Bruce Robinson (ADEP), David Funk (ADEP), and Eric Heatwole (M-6).

Headspace Gas Data

Figure 1 shows the concentration (in ppm) of CO2 in the headspace volume of standard
waste box (SWB) 68685. The different colors represent the temperature that the mea-
surement was taken where red denotes higher temperatures (in Celsius) and blue denotes
lower temperatures. The data spans from May 19, 2014, to February 3, 2015. The goal
of this analysis is to utilize the information within this data, along with current physics
knowledge, to predict what future concentrations levels will be.

Figure 1: CO2 gas concentration as a function of time and temperature (represented by
color)
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Modeling Efforts

Physical Model

Let C(t, T ) denote the concentration of a particular gas at time t (in days) in a headspace
container at temperature T . Then the concentration changes according to the following
model:

VHSG
dC

dt
= −QoutC(t, T ) +QinCin +M(t, T ), (1)

where

Qout = Qin +Qgen,

Qgen =
M(t, T )R1T

PHSGXg
,

M(t, T ) = χ(T )e−βt,

χ(T ) = Ae−Ea/R2T .

The first term −QoutC(t, T ) describes how the gas flows out of the SWB into the atmo-
sphere, QinCin describes the flow of gas from the outside atmosphere into the SWB, and
M(t, T ) describes how gas is generated by the substances of interest within the SWB for
temperature T . C(t, T ) is given as the solution to the differential equation in Equation (1)
and must be solved using numerical methods.

In this model, the unknown parameters, denoted by the vector θ, are θ = (Qin, A,Ea, β)
and are to be estimated using the data collected from the headspace volume. The remaining
parameters are known and their values are given in Table 1.

Quantity Value

PHSG 1
R1 0.08206
R2 1.987×10−3

Xg 0.429
Cin 400 (for CO2)

Table 1: Known quantities and their values in Equation (1)

Data Model

Let Y (t, T ) represent the random variable associated with the measured concentration at
time t for temperature T and let y be an observation of Y . Then our statistical model is

Y (t, T ) = C(t, T ) + ε (2)
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where ε represents random deviations from the physical model. Initially we assume that
ε ∼ N(0, σ2) independently. Here σ > 0 is the standard deviation of the random deviations.
σ is also an unknown quantity and so it is estimated and added to our vector θ.

Bayesian Statistical Model

We use a Bayesian approach for estimating θ. The posterior distribution, p(θ|y1, . . . , yn),
is obtained using

p(θ|y1, . . . , yn) ∝ L(θ; y1, . . . , yn)p(θ)

where L(θ; y1, . . . , yn) denotes the likelihood function and is derived using Equation (3)
and p(θ) is the prior distribution for θ. The purpose of the likelihood is to describe which
values of θ are most plausible (in some sense) given the observed data. p(θ) represents our
current state of knowledge about θ (before observing any data) in the form of a probability
distribution function. The posterior distribution is then a reweighting of p(θ) based on the
information in the data through the likelihood. For this effort we assume uniform (flat)
priors for our unknown parameters. Table 2 gives the upper and lower bound for these
distributions for each parameter.

Quantity Lower Bound Upper Bound

Qin 0 1
A 0 1,000,000
Ea 0 100
β 0 100
σ 0 100

Table 2: Upper and lower bounds for the uniform prior distributions assigned to the
unknown parameters θ

Data Analysis

An adaptive Metropolis-Hastings algorithm was used to obtain draws from the posterior
distribution for θ. Table 3 gives the posterior point estimates for θ along with the upper
and lower values for their corresponding 95% credible intervals.

The posterior estimate of C(t, T ), along with its 95% credible interval is given in Figure
2. Notice that the physics model tends to capture the general trend of the data but is
discrepant in some specific features. For example, the main peak for the data tends to
occur earlier than described by our model.
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Quantity Estimate Lower Bound Upper Bound

Qin 0.0014 0.00094 0.0095
A 378829.3 24395.5 516189.4
Ea 15.315 15.061 15.550
β 2.44×10−8 2.26×10−8 2.62×10−8

σ 2254.2 2119.7 2426.1

Table 3: Posterior summaries for the unknown parameters θ

Figure 2: Posterior estimate of CO2 gas concentration as a function of time and tempera-
ture along with its corresponding 95% credible interval (gray ribbon)

Figure 3 displays the residuals for the model fit, i.e., Y (t, T ) − Ĉ(t, T ) where Ĉ(t, T )
is the estimate for the gas concentration as a function of both time (along the x-axis) and
temperature (again indicated by color). The most striking feature is the large variability for
earlier times. Additionally, it appears that the model is predicting higher gas concentrations
for later times (say times larger than 350 days) than what is observed in the data.
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Figure 3: Model residuals as a function of time (x-axis) and temperature (color)

Lastly, Figure 4 displays concentration predictions for the last seven observations which
were not used in the parameter estimation. The black points represent the posterior pre-
diction and the vertical bars represent a 95% prediction interval. The actual observation
is given as a red point. In all of these cases, the model has predicted the observation well
because each of the red dots resides within the prediction interval.

Figure 4: Posterior predicted gas concentrations (black dots) with corresponding 95%
prediction intervals. The actual observations are given by red dots.
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Potential Model Enhancements and Proposed Areas for Fu-
ture Work

Figures 2 and 3 indicate various discrepancies associated with our full statistical model
given in Equation (3). First, recall that in Figure 3 the variability in the residuals decreases
as a function of time. This is a clear violation of our constant variance assumption in
Equation (3). It is believed this change in variability is due to the researcher making the
gas concentration measurements getting better at making the measurements with time.
One potential improvement to our statistical model would be to incorporate this time
dependence into the measurement error portion of the statistical model:

Y (t, T ) = C(t, T ) + f(t)σε (3)

for some appropriate function of time f(t) and where ε ∼ N(0, 1).
One assumption to the physics model in Equation (1) is that gas flow is only occurring

between the SWB and the surrounding atmosphere. It is observed in Figure 2 that physics
model seems to be missing the peak concentration by about two weeks. This could in part
be due to the additional flow of gas from the drum within the SWB and the atmosphere
in the SWB. In total, gas can flow between the drum and the SWB and then between the
SWB and the surrounding atmosphere. By accounting for the additional avenue of gas
flow might help shift the peak concentration predicted by the model to what is observed
in the data. A potential physics model could take the following form:

dC2

dt
= Ae−Ea/RT eβt −Qout,2C2 +QinC1 (4)

dC1

dt
= QinC2 −Qout,1C1 +QatmCatm (5)

where C2 and C1 are the gas concentrations in the drum and SWB, respectively, Ae−Ea/RT eβt

describes the gas being added to the drum from chemical reactions, Qout,2C2 describes the
gas leaving the drum and entering the SWB, QinC1 describes the flow of gas from the
SWB into the drum, QinC2 describes the flow of gas from the drum to the SWB, Qout,1C1

describes the flow of gas from the SWB to the atmosphere, and QatmCatm describes the
flow of gas from the atmosphere into the SWB.
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