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Stopping Power for Degenerate Electrons

Robert L Singleton Jr
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

(Dated: 1 January 2016)

Abstract

This is a first attempt at calculating the BPS stopping power with electron degeneracy corrections.
Section I establishes some notation and basic facts. Section II outlines the basics of the calculation,
and in Section III contains some brief notes on how to proceed with the details of the calculation.
The remaining work for the calculation starts with Section III.
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I. STATISTICS

A. The Fugacity as an Expansion Parameter

The plasma electrons are assumed to be degenerate and described by a Fermi-Dirac dis-

tribution,

1
FD __
€ - eBE(Ee*,U‘e) + 1 ’ (11)

where the electron kinetic energy is £, = p?/2m,., the electron chemical potential is y., and
Be = 1/T, is the inverse temperature of the electron gas. The ion distribution is assumed to

be Maxwell-Boltzmann, so that
B — e BiBi—pm) — 2 e Bili : (1.2)

where the ion kinetic energy is F; = p?/2m;, the ion chemical potential is y;, where 3; = 1/T;
is the inverse temperature of the ion gas, and z; = e%*# is the ion fugacity parameter. From
here on, we drop the superscripts on f. and f;, and we denote the electron and ion species

by the general index a, so that E, = p?/2m,, with the fugacity parameter
2 = ePlatta (1.3)

This quantity measures the degeneracy of species a. The electron fugacity z. will serve as
an expansion expansion parameter (we will work to all orders in z.), as well as the plasma

coupling g, = €2k,/T,.

B. Projectiles and the Stopping Power

In computing the stopping power, we will take the projectile to have a d-function distri-

bution along a straight line trajectory
fo = fo(x,p,t) = N, 6 (x — vt) , (1.4)

where v, = p/m,, and N,, is a normalization factor. For simplicity, we assume that the
projectile is an ion; for an electron projectile, the associated Fermi blocking terms must be

included. We only consider ionic projectiles for now.
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C. The de Broglie Wavelength and Normalization

The number density of a general species a takes the form

) = 8. [ G fu(xp) (1.5

where g, is the degeneracy factor for the species, which can be a plasma electron (e), a plasma
ion (), or a projectile (p). We take g. = 2 because there are two electron spin-states, while
we set g; = 1 since the spin states of the classical ions should be counted as distinct states
in Maxwell-Boltzmann statistics. For quantum degenerate electrons, however, this is not
permitted, and we must include the spin degeneracy factor. Similarly, for the projectile we
take g, = 1. Since the ion distribution is a Gaussian, the integrals can easily be performed,

and we find

Zj
L= gL 1.6
= 9y (1.6)
N\ 1/2
A = h(%ﬁl) . (1.7)
my;

In three dimensions, the ion chemical potential is therefore p; = T; In {\? n;/g;}.
We can also use (1.5) to calculate the normalization factor in (1.4), since there is only

one projectile in the volume,

v 14 dup v 1
1= /d rn,(x) = /d x/ rh) N, 0 (x —v,t) =V, - @k N, , (1.8)
or
fr = N, 6 (x — v,t) (1.9)
N, = (251) , (1.10)

where V, is the v-dimensional volume of a large but finite box containing the system.

Now, let us consider the degenerate electron number density

d“p d’p 1
¢ = % | Qany TP B 111
! g /(27rh)”f(p) g /(27rh)” eBe(Be(p)—pe) 4 1 (1.11)

g1 [T, 1
= d 1.12
(27Th)V /0 p P eﬁe(Ee(p)—.U»e) +1 ! ( )

where the area of a unit hypersphere in v-dimensions is

27TV/2
O, = 1.1
LT T(w/2) (1.13)

5
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and T'(z) is the Gamma function, with I'(z + 1) = z['(2) and I'(1/2) = /7. When z is a

positive integer, then T'(z 4+ 1) = 2!, and otherwise one defines!

I'(z) = /Owdzuuz e’ . (1.14)

Upon making the change of variables to x = 3.p?/2m, in (1.12), we can express the electron

number density in terms of dimensionless function F,

e = %Fy(ze) (1.15)
1 *dg  a/?
F,(z) = —— _— 1.16
(z) ['(v/2) /0 T et + z, ( )
where the de Broglie wave length of the electron is

or8.\ V2

A = h< Wﬁ) . (1.17)
Me

We therefore need to solve the following equation for z.,
F (ze) = neAl/ge - (1.18)

Question: Should I put the factor of g. in the definition of F),, or show it explicitly? That
is to say, given n, and ., which determines the RHS of Eq. (1.18), we solve numerically for

Ze. From this we can find the chemical potential p, = T, In 2.

10F
35/
P T T S S S S S S S S WA SN S ST S S

5 10 15 20

FIG. 1: The Fermi function F(z) vs z. The horizontal line is a hypothetical value for n.\3/2.
todo: plot some real examples, say T~ 1keV or less, and n, ~ 10%° cm™3 or more.

L The following asymptotic expansion for small z will eventually be useful, so I record it here:

2 w? 2
y —|—€ 24+ 0(z%)

1

1
D(z) = = —
(2) -t

where the Euler constant is v = 0.5772156649015328606065 - - - .
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D. The Debye Wave-number

The Debye wave number can be written

For Maxwell-Boltmann ions,

0fi

2 _ 0,2 o d’p
wi = Piei gz/ (27h)¥ O(Bip:)

and for degenerate Fermi-Dirac electrons

O/

dv
:/6662'96/(—pr :61612712 ;

Kg:ﬁee2'ge/(dp

21h)” O(Befte)

where I have used

a(ﬁiﬂi)

O(Bepte)

0fi

9/

In a similar manner to (1.16), we have

2 2
K, = [Bee

JeZe
T(v/2)

J

2mh)¥

l/p
3 e _dp
e 96/ (2mh)v

:fi

= Ll1-1]

® dr xu/Qex

T (e*+2z)?

AR

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)
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II. SOLUTION ROAD-MAP

The aim of these notes is to calculate the stopping power for a fully ionized plasma with
Fermi degenerate electrons and Maxwell-Boltmann ions, exact to all orders in the electron
fugacity z, = e#</Te. T will first do the calculation in the extreme quantum limit, also known
as the first Born approximation. Reference [2] performed a similar calculation for the case of
the electron-ion temperature equilibration, and I will base these notes on that work. It might
also pay to perform the classical scattering calculation before attempting the scattering to

all orders in 7).

A. Boltzmann Equation: Short Distance

1.  Temperature Equilibration

The Boltzmann Equation (BE) gives the rate of change of the electron distribution from
scattering, and it is finite in v > 3 dimensions. The BE with Pauli Blocking is given by (7.1)
of Ref. [2]:

dpe dpl dpz (v) l /
Z/ onh) (27h) (27h) Tl 2mh)” (22 & (pe+pl‘_p€_p"> (2.1)

2m.  2m;  2m. 2my

5(;9;2 Y/ R )[fi(pé)fe(p’e)[l—fe(pe)] — fi(pi)fe(Pc) [1—fe(p;)}] :

The electron energy density in the plasma is given by

& xt) = 0. [ Gt g 2 xp). 22)

where g, = 2 is the spin degeneracy of the electron. Using Eq. (2.1), the rate of energy

density exchange between electrons and ions is

iy [ e 02 0L
dt (27h)¥ 2m, Ot

(2.3)

where I have added the subscript “el” to emphasize the the electron and ion systems are
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exchanging energy. The rate (2.3) can now be written in the form

d5> d'p.  d'p dp; ap)
_ e L Tez 2 h (5 < e — z>
Z / 2rh)Y (2rh) (2wh)” (2wh)¥ ‘ | T P.+P;=Pc— P

(k)3 (EL + E{ — E. - E,) ;jn [fi(pi-)fe(p’e) 1= u(pe)| = filpa)felpo) 1 - fe<p;>}] ,

(2.4)

where E! = p/?/2m, and E, = p%/2m,,.
» We shall exploit the crossing symmetry of the scattering-matrix under p, <+ p’,. Formally,
crossing symmetry means 7'(p., p.; Pe, Pi) = T(Pe, Pi; PL, P;), which is just the interchange of
incoming and outgoing particles in the scattering process. We can combine the two scattering
terms in square brackets, replacing the electron kinetic energy in Eq. (2.4) by

N A

I 2.5
2m.  2m. 2m. (2.5)

thereby giving

d5> o dv DPe dpe dl/pz d’ pz N
Z/ onh)v (2rh)Y (2wh)Y (27wh)v |TGZ‘ (2mh)” o (pe+pz Pe Pz)

(2nh) 6(EL + E{ - E. - B (%) L) L) [1- L0 . (26)

e

This is Eq. (7.3) of Ref. [2].
» Next, we perform the pl-integral in Eq. (2.6), employing the momentum conserving

0-function to replace p; = p; + p. — p.:

d&> dv av dv / /2 2
5 B Z / Pi De Pe |Tei\2 Pe. — e 2.7)
2wh)v (2wh)Y (2mh)Y 2m.

() 6(EL+ B{ ~ E. ~ B:) fi(po) £.(po)[1 = £e(0))]

P,=pi+pc—D,

We perform a coordinate transformation p., p, — p,q defined by

q=Dp,—P.=Di —P; (2.8)
1
p = §[p’e+pe} , (2.9)

and since the Jacobina is uniity, d"p. d"p., = d"pd”q, we have
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Z/ 27h)V (2mh)” (27rh ‘Tm‘ 5( m; - m. _2mi> (2.10)

(Po) fo(pe) 1= £elp)]

This is (7.7) in Ref. [2]. When the ions all have the same temperature 7; = 7j, the rate can
be expressed as

d&;;

“a - ¢ (Te . TI) . (2.11)

This defines C,.

2. The Born Approximation and the Classical Limit

For the general scattering event, p+a — p’+a’, the matrix 7" depends upon the momentum
exchange q the center-of-mass energy W, so that T = T(¢?,W). In the extreme quantum
limit, or the first Born approximation, the amplitude is independent of W, and takes the
form
€pCa

Born ___
T,,"=h 7

(2.12)

)

where the momentum transfer is q = p, — P, = P, — Pp-
It will sometime be useful to change variables to the center-of-mass and relative momen-

tum,
p = M = mpana with Vpa — Vp — Vg (213)
mp ma
P — MpPp + MaPa ' (2.14)
mp + ma

The Jacobian is unity, and therefore d“p, d”p, = d”P d"p. The product of the momentum

and energy conserving d-functions can be expressed as

p/2 p/2 p2 p2
6(1/)( / r . a) 6( p a _ *p _ Fa )
Pyt Pa =Py = Pe ) O o T o, T 2m,

(2.15)

mp

:(5(”)<P’—P)5( LA ) . (2.16)

2Mpq  2My,

The cross section do is related to the scattering matrix 7' by

/(QCZ;Z)V Tpa(cf,W))2 (27rh)5( A ) . /d%’ 217

2mp,  2Myg

10
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where v, = |v, — v,| and

q=p -p (2.18)
2
p
W = . 2.19
G (2.19)

Note that q = p;, —Pp = Po — P, The classical cross section makes contact with the classical

limit through its relation to the impact parameter b,

doS, = Q, 20" 1 db . (2.20)

pa

3. Stopping Power

The BE with Pauli Blocking for a projectile distribution f, in the plasma with components

a (ranging over electrons and ions) is

af> d”Pp dpa dpa
=2 / onh) (2mh)” (2mh)” T3l (270) 6 (B, + Pl By — ) (221)

(27h) 5(E;, +E —E, - E)

fp(p;;)fa<piz) - fp(pp>fa(pa)] )

PB

where the subscript PB means that the Pauli blocking term is to be included for electrons,

1250) = FW)1 - £ (2:22)

[ will parallel the treatment given in Ref. [2] as closely as possible. For a charged projectile

p, the energy of the projectile is given by

_ v dypp pp > _ d“py pp >
2/(1 / f (Xp, Ppr t) = 2sz/ (2rh) 2m f (Pp,t) ,  (2.23)

where we integrate over all spatial locations of the projectile, with the projectile distribution

f»(p,t) being independent of space, and V,, is the volume of space. Recall that the projectile

distribution is normalized by

£ p) = T 50 (x _r t) | (2.24)

mp

It will be convenient to rescale the projectile distribution by the volume factor, fp =V, fp
and define

Fo(x,p) = (27h)” 6®) <x P t) . (2.25)

mp

11
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Using the BE, the stopping power therefore takes the form

dE; dv o, dvp,  dp
Z / Pp / pp dp Pa T, (2.26)
2mh)v 2mp (2wh)¥ (2mh)¥ (2mh)¥

(2rh)* 6 (B}, + P, = P, — Pu) (271)6(E} + E, — E, - E, )

[fp(p;;)fa(p;) - fp(pp)fa(pa)]

PB

» Use crossing symmetry to make the replacement

— (pf . )fp(pp) fa(Pa)| .+ (2:27)

2m,  2m,

(21::%) [fp(p;)fa(p;) - fp(pp)fa(pa)]

which gives,

dE> d pp pp dl/pa dyp/ 9
vl Lt 2.
Z / 2rh)Y (2rh) (2rh)” (2wh)Y ‘ pb‘ (2.28)

(2rh)” 5 <p; +p, —p,— pa> (27h) 5<E; B B, E)

/2 2
(32 = 22) Fo )|,

2m,, P

» Integrate p, over the delta-function f,:

dE> d p d p p/2 p2

Py . . L 2.2

Z / 2rh)v (2mh)v (2wh)¥ ‘ pb‘ (Qmp 2mp) Ja(Po) PB (2.29)
(2rh)” (pp +p,—p,— pa> (2hh) 5(E;, v E B, - E) .
The stopping power is related to the rate by
dE> 1 dE>

e 2.30

dx v, dt ( )

The calculation of the ion contribution from the ionic term goes through just as in Ref. [1],

and we express (2.29) as

aB; _ B> dBy

— 2.31
dz dz dr (2.31)

where the ion contribution to the rate is

12
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dE,” d'p;  d’p,  d'p) s (P D
DOWE v IT,] ( 3 )fz(pz) (2.32)

2rh)v (2mh)v (2wh)Y 2m,  2m,

(2rn)” 5 (b}, + 0, — by — B1) (278) 8( B} + E| — B, — ;) .

and the electron contribution is

2

dES> d’p. d’p, d'p 2 (D) P
Py e CPp Cbe po2 (B P ) e o0 pon)] (@
it / @nhy @)y ehy | (Qmp om, ) (bo)[1 = fu(pl)] (233

(2rh)” 8 (pp +pl—p,— pe) (2rh) 5(E; v E B - E) .

B. Lenard-Balescu Equation: Long Distance Collective Effects

1. Temperature Equilibration

The Lenard-Balescu equation (LBE) gives the rate of change of the electron distribution
from the long distance collective physics, and it is finite in spatial dimensions n < 3. The

LBE with Paul Blocking is given by (8.1) of Ref. [2],
k2e(k,k - v;)

3f< Z / d ]]ZLZ
2T
Ofe(pe) F(p z)} |

|:k ’ aj;ii%) fe(pe) [1 - fe(pe)} —k- ap

2
€e;

ms(k vi— k- ve) (2.34)

Question: Is the momentum on the Pauli Blocking term correct? Here, the dielectric

function is

e(k,w) = k2 + kK + F(k/w) (2.35)

d Di lA{ © Vi
F(v) = — i€ ~ \Pi) , 2.36
@) = et [ o e (2.36)

where k2 is the square of the electron Debye number,
on

K2 = B.e? - 2.37
D(Bon) (237

See (A9) and (A7) of Ref. [2].

13
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The electron energy density in the plasma is given by

ES(x,t) = 2/ (2671:71) = (x,p,t), (2.38)

where the factor of 2 arises from the spin degeneracy. Using Eq. (2.34), the rate of energy

exchange between electrons and ions becomes

d&s d'p.  p: OfF
< =2 - < . 2.
dt / (2mh)¥ 2m,. Ot (2.39)
From Eq. (2.39) and (2.34)
d8< d’p.  d'p; &'k [ p?\ O ee; |
= — £ -k 2.40
Z / 2rh)v (2mh)v (2m)Y <2me op. k2e(k,k - v;) (2.40)
afi(pi) 0. 9fe(pe)
775<k'vi_k've> {k'a—mfe(pe)[l_fe(pe)} - ap fz( z) :
When the ions all have the same temperature T; = T}, the rate can be expressed as
A&
—a = (Te . TI) . (2.41)

This defines C=

5, and the regularized three dimensional rate, to leading and next-to-leading

order in the number density, is

e = 1im €5+ €3] (2.42)

2. Stopping Power

For a projectile p, the LB equation is

2

3f< d’p, €pCa
Z / T e 7T(5<k-va—k~vp> (2.43)
3fa(pa) 8fp(Pp)
{k. o) )~k P g )|

As in the last section, I will parallel the treatment given in Ref. [2]. Similarly to (2.23), the
energy of the projectile is given by

< _ dpp pp <

14
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where V,, is the volume of space. Equations (2.44) and (2.43)

dE; ’p, Py 0f5(Ppt)
P _ P p p
a2 / (2wh) 2m, Ot (2:45)
o d'p, d'p, d’k s 0 €pq ?
N 22 /27rh (2mh)” (27)¥ (2mp op, k k2e(k,k - v,) (2:46)
0fa(Pa) 7 afp(pp)
k-v. — k- k. —Lees — k. 2= 24
il v ey ) i 2ol ) e 2R )|

where f, = (21h)"0W) (x — v,t).

» Perform the p,-integration. We integrate by parts twice, removing the derivatives from

the distribution function f,. The first integration gives,

dEs Z/dpp dpa Ak 0 ([ Py y
2rh)v (2mh)v (2m)Y Oph \ 2m,,

woficve kv, ) [l 2P ) ag;ﬂ fa<pa>LB. (2.18)

2
€pCa

k2e(k,k - v,)

We next move the differentiation from the second term in square brackets,

dES &pa de d P f.(pa) 0 o (p
Z /27Th wh)Y fp( )[ Ipa T falpa) ke G_I)I,LBa_pp(Qmp).

2

) (k v, — k- Vp> (2.49)

€pCa

EC |2t
k2e(k,k - vq)

or

dE< &'pe A’k dfa(pa) 0 o (
P _ 9 k. —— k- — -~ r :
dt Za / (27Th>y (27T)V |: 8pa " fa(pa> app PB apﬁ 2mp

2

7r§<k vy —k- vp) (2.50)

€pa

k2e(k, K - v,)

Where we have made the substitution k - v, — k - v,, in the dielectric function because of
the delta-function. As before, we write
dE; dE;<  dELS

dr  dr + de (2.51)

where the ion contribution becomes

15
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dEL< d’p; vk ofi(pi) o ) pg
Z / 27h) {k op; + fi(pi) k "o, 0t \2m, )
2

7r5<k v~k vp) , (2.52)

€p€i

I
k2e(k, K - v,)

and the electron contribution is

dES< d'p.  d’k Ofe(Pe) 01 0 /1
di - 2/(27TFL)V (27T)V |:k ape +fe(pe) [1 — fe(pe)] k- 8—pp:| (‘3_]3]!; <2T;p) .

2

7r5<k ve — k- Vp) : (2.53)

€pCe

k| —
k2e(k,k - v,)

Finally, the stopping power to leading and next-to-leading order (in three dimensions) is

then given by

(2.54)

=1
dz ulgil& dx + dx

dEP™S {dE; dE;]'

16
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III. CALCULATIONAL DETAILS

A. Ion Temperature Equilibration

This was calculated in Ref. [1].

BE

‘qa P-q

Me

| 8J;
my;

d’p;
(27Th

d’pl,
(2mh)¥

d€> B d’pe

2mh)¥

T (2

o

9t fitpa)[1 = 18] -

-2/

e

» Perform the p;-integration using (E1), in which we integrate perpendicular and parallel
to to q. See Ref. [2] in (7.13),

v

d’p; Pi-4 P-4 ¢
/(27rh)” fi(ps) (27Th)5( m; | m, 2mi) (3.2)
. nl)\z m; Bz m; _ q2 2
T TP o (Ee q+5)
2. LBE
& Epe d'pi Ak () O cei |’
dat Z / omh)v (2rh) (2m)Y <2me> op.  |k2e(k.k-v;) 59
7T5<k * Ve — k- Vz‘) |:k . ];E)Ijl) fe(pe) [1 - fe(pe)} - ];I()I)E) fz( z):| .

17
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B. Ion Stopping Power

1. BE

Recall that the BE gives the rate (2.29):

dE; d’p,  d'p o [ D) p
P a a T p p (Pa 3.4
=2, / onh)” (2rh) (2nh)” T <2mp 2mp>f Pa)],, B4
(2nh)” 6 (B}, + B, = Py — Pu) (271)6(E) + B} — B, — E, ) |
or the ion and electron contributions are
dEL> dp; AP, dp 2 (P D
: L \T L _ P ) fi(p, 3.5
=2, / onh)” (2rh) (2wh)” 7] <2mp 2mp)f (p:) (3:5)
(2nh)” 6 (o}, + B} — By — B: ) (270) 0 (B, + | — E, — E;) ,
and
dEe > dyp de, dyp, 5 p/ 2 p2
P9 e CP P b ) po)[1- £0h)] (36
[ Tl (52 - 52 ) fwa[L - £60)] )

dt 2h)v (2wh)¥ (2mh)¥

(2rh)” 8 (pp +pl—p,— pe) (2h) 5(E;, +E — B, - E) .

» We perform the p-integral, employing the momentum conserving delta-function, to find

dE> a” Da d” pa 2
Z / 27h)v (2mh)¥ }prl

(2rh)6( By + E} - B, - E,) (

2 PB

P D
2m,  2m,,

) fa(Pa)

PL=pp+Pa i

Or: it might be better to change variables to p and gq.

18

(3.7)




stopping_power_degen_1.2.tex

2. LBE
From (2.50):
dE; dp ”k: 0 fa(Pa) 0 o (v
a k . a a : " k_ L _ P .
Z / 2rh)v [ OPpa * fa(Pa) OPp | oy OP5 \ 2,
2
' €p€a
B k-v. — k- .
g k2e(k.k - v,) 7r(5< Va Vp) (38)

or in terms of the ion and electron contribution

dE!< &p;  d'k of;(p:) 01 0 (0
=22, / 2rh)” {k op; TPk a_p,,} a_pf;( )
2

o <k v, — k- Vp> , (3.9)

€p€;

k|
k2e(k,k - v,)

and

AEST [ dne dk [ 0filp) 21 0 (1
di - 2/(277h)l/ (27.[.),, |:k ape +fe(pe) [1 — fe(pe)] k- 8—pp:| a_pf; <2T;p) .

2

W5<k-Ve—k'Vp> : (3.10)

€pCe

k| ——
k2e(k,k - v,)

» Do the d”p; integral and keep the other variables fixed. Use f; = z; exp{— szz /2m;}, and
Jfi/0p; = Biv; fi, to write

fi(ps) [5i k-v,—k- %]

A

EI< dl/ up' 8 o 8 p2
< ikevi filpi) = filp) k- —— | 57 B
D e R e e
2
el %% vi—k-

e kv W&(k v, — k Vp>, (3.11)
and using the delta-function to make the replacements k - v; — k - v,, in the integrand, we
find

dE;, 'k d 071 0 (1
= Z/ <p2)|:57,k Vp :|_( p)'
8pp opt, \ 2my,
2
Bl as(kovi—k-v,) . 12
Re(kk-v,)| " (lvi-kow,) (3.12)
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The p,-derivatives act on everything to their right.

» Perform the p;-integration. We perform the Gaussian integrals d”~!p,, and integrate
dp, = m; dv, over the -function. The subscript ¢ has been suppressed in the expressions on
the right-hand-side. To perform the integral, we decomposed v; along the direction defined
by k,

vi=uvk+v,, (3.13)
and we write the d-function as
5<l;-vz~—wp/k‘> :5(0” —vpcosﬁ> . (3.14)

The notes algebra_long_distance_1.0.tex does this calculation in detail for a MB plasma,

which for the ions becomes

dE= d’k o1 & »
PL _— 9 2/_ kv, — k. — | — P
dt 2.4 P KR apl, 2m,
k¢ 1 5 o }

exp < —= B;m;v:cos“6 p . 3.15

T L (319)

and upon dividing by the projectile velocity (or is it l%f?),

dE; e [ dk 01 d p
L ] _P/_ kv, —k- _—__p
dx Zz v, J (2m)Y bik v opy | Opl, 2m,,
mk’ 1 5 o }

exp s —= Bym;vicos 6 . 3.16

e P 2 (3:10)
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Appendix A: Non-degenerate BPS Results

The work of BPS in Ref. [1] assumed Maxwell-Boltmann electrons, and broken the calcula-
tion into classical and quantum components, with the quantum being considered a correction

to the classical.? This section provides some of the salient results.

1. Classical

In §3.1 of Ref. [1], the classical stopping power is broken into short distance and long

distance contributions,

dEg _ 4B, | 4B,

Al
dz dx de (A1)
where
dE;, €2 k2 m, \? [, 1
08 TP a a /2 - 2 A2
dz 4 myv, (27?5(1) /0 duu exp{ 25amaﬂp} (A2)
e,e X m U 1 2
—1 re = 22 M2 — = + =
RO )RR | R
dE; . e i ! pa(v, cosB) F(v,cosf)
— = = dcosh 22—~ | Nin| —2—~ A
dx 41 27 /_1 €08 Prot (vp cos ) (vp cos0) n< K? > (A3)

e i1 pa@pcose)) [F(vp) m(F(“p)) ~ F*(v,) IH(M)}

4721 Bamav? prot(vp cos O K2 K2

Reference [1] uses the notation dEy/dx instead of dE; /dxr, and e, and e, are positive

absolute values of the charges. We also have

Ko = BaCina (A4)
_ = (V)
where
1/2
u(w) = b (Z20) " exp {3 g (A6)

pal0) = 3 palv) (A7)

21 think it’s better to think in terms of the quantum regime, and we should then express the stopping
power in terms of a classical “correction” to the quantum stopping power. This is the opposite of how
most people write the stopping power, which is classical plus quantum correction.
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Also, we define the mass combinations

Mpa = my + myq (AS)
1 1 1
= — 4. (A9)
Mpa My My

2. Quantum Corrections

In §3.2 of Ref. [1], the stopping power is written as the classical piece plus a quantum

correction,
dFE, dES dES
2 = a a A10
dz dz + dr '’ (A10)
where
dE° 612) K2 6 m 1/2 oo .
a _ P a a'lla da|:2R 1 a_l 2:| All
dx 47 QBampU;g 27 /0 o V(1 ) e ( )
I M,, v 1 ) 1
1 pe _p - 1 S a a - a 2 -
{ L " Mg Upa <6amavpvpa )_ eXp{ 2B " (Up Up) }
i M,, v 1 ] 1
1 - Pz - 1 — A Mallta a 2
1o ()| { )
with
€pCa
. = —2% Al12
Tlp 47rhvpa ( )
U = [V — vl (A13)
. =1
Rey(1+in) = Z T (A14)
k=1 N

The quantum correction involves only short-distance physics, while the classical contribution

captures both short- and long-distance physics.

3. Extreme Quantum Limit

The extreme quantum limit, or the Born approximation, is given by n < 1, which from
§ 3.4 of BPS is given by
dEBo™ dEbf 5 dEbfR
de dx + de '’

(A15)
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where dEy, /dx is unchanged from the last section, and the Born approximation gives

dEb>B 6227 K2 m 12 oo 1
B _ M a d — = Bymgv? Al16
dx AT myv, (QWBQ) /0 Y exp{ 2 Bam Up u} ( )

1 m, U ¥ _ _
{ [ 5w (ﬁarﬁm Lo 2 u) 1= 2 [AuMyer? w? — a2 + 1/2}
pa

Appendix B: Carlson’s Theorem

One of the most fundamental mathematical underpinnings of the BPS calculation is Carl-
son’s Theorem, which roughly states that if two functions agree on the natural numbers, and
their difference is not exponentially large, then the functions are the same. This is the means
by which dimensional continuation is defined, and the » — 3 limit is to be understood. The

following is from Wikipedia. Give generously.

Theorem 1 (Carlson’s Theorem) Suppose f(z) is an analytic function on C satisfying the

following three conditions:

(1) f is an entire function of exponential type, meaning

7(2)

<CeFl for zeC

for some C,7 € RT.
(2) There exists ¢ < w such that

’f(iy)‘ <Cel for yeR
(3) f(n) =0 foralln € N

Then the function vanishes, i.e. f = 0.

Note: The function f(z) = sinwz satisfies (3) and (1), but note (2); therefore, it does not
violate Carlson’s Theorem. This is why condition (2) is necessary. The theorem follows from
the Phragmen-Lindelof theorem, which itself follows from the maximum-modulus theorem.
See Wikipedia for details.

We can use Carlson’s Theorem to prove that the gamma function I'(2) defined by (1.14)
is the unique analytic continuation to the complex plane of the factorial function n! on the
natural numbers N. Suppose I'(z) is another such function on C that takes the values n!
on N. Then I'(z) — T'(z) vanishes on the natural numbers (and it can be shown that the
function difference doesn’t diverge more than exponentially); therefore, I'(z) — f‘(z) =0, i.e.
['(z) =T(2), i.e. T(2) as defined by (1.14) is the unique analytic continuation of the factorial

function. Note: I'(n+1) = nl. Note: It seems that (2) is a restriction on the Riemann sheet.
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Appendix C: Kinetic Equations

1. The Fokker-Planck Equation from the Boltzmann Equation

Taken from Chapter 11, §21 p 89 of Ref. [3]. Let w(p, q)d®q denote the probability of
scattering from p — p — q, so that the distribution function f satisfies

f (p,t)
ot

We assume that small angle collisions are dominant, 7.e. collisions change the momentum

z/d?’q[w(p+q,Q)f(p+q7t)—w(p’q)f(p,t) : (C1)

only on a much smaller scale than the value of the momentum itself. This means that w(p, q)

is a sharply peaked function of small p, and we can expand

0
w(p+9q,9)f(p+at) =wp,q)f(pt) +q- o w(p,q)f(p,t) + (C2)
L w(p.a)f (1) + O
The transport equation then becomes
of(p,t) _ 0 [ 0 ¢
AR 7 R — m
o oy |BT T am ()] (C3)
where
B'(p) = / d*qq"w(p, q) (C4)
Im — 1 3. L. m
™ (p) = §/d 14 ¢"w(p,q) . (C5)
By writing
acém
A= B
+ o (C6)
we arrive at the form
of(p,t) _ 0 [ om OFf
=—|A el B
5 oy f+C pm (CT7)
The time derivative vanishes in equilibrium, when f = fj:
folp) = ze=/2m (C8)

where [ is the inverse temperature, m the mass of the particle described by the distribution
f, and z = nA? is the fugacity, with n being the number density and A the de Broglie wave
length. Then

a m
oo == o= =g (C9)
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and therefore

0=A"fo+C™ gp% = [AZ — Bo™ Cfm} fo = A'=pumom. (C10)
Thus, Eq. (C7) becomes
Ofp.t) _ 9w [BP" | O
o oy C —+ o I, (C11)

which is the Fokker-Planck equation (FPE).

2. The Lenard-Balescu Equation from the Boltzmann Equation

This is an exposition of Appendix C of BPS[1]. We start with the Boltzmann scattering
kernel (B.1):

d'p, d'p, d’py 9
(Do) = a Topl” (27h s (pl +p. —py — a 12
Cav(Pa) / (2wh)¥ (2rh)v (2mh)¥ I Tow | (2h) (pb Po =Py =P ) (C12)

(27h)3(Ey + By — By — Eo) [ fs04) fa(P}) = folpr) fu(pa)]

We define the average momentum p, and the momentum exchange q by

_ 1 /
Py = 5 [Pb + pb] (C13)
94 =P~ P, (C14)

When we impose momentum conservation, then we can also write q = p}, — p,, which is the
reason we do not put a subscript on the momentum transfer. We will (i) change variables

from pj-py to pp-q (the Jacobian is unity),

1
Py = I_)b+§q (C15)
1
P, = Py =59, (C16)

and (ii) integrate the momentum delta-function over p/, i.e. make the substitution
P, = Pa+Pv— Py =DPat4q- (C17)

Expression (C12) then becomes

[ d'py g 2 Po-d Pr-qd, ¢
Conpa) = [ 3o e Tl 2rt)s (P - P9y )y

[fb (pb - %Q) fa(Pa+a) = fi (Pb + %Q> fa(pa)i| :
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We now expand (C18) in powers of the momentum exchange, working to second order in q.

The distribution functions in square brackets become

1 1
fo <I3b —3 Q> - fa(Pa +4) — [ (I_Jb +3 Q) * fa(Pa) (C19)
1 0 0 0
S R ) _a. Y _ 3 9
{ +54 apa} {q op. @ apb} fa(Pa) fo(Ps) + O(¢°) (C20)
and the delta-function becomes
. N . 2 . N .
5<paq_pb a_ . q ):[1—1—1q- 8}5(paq_pb q)' (C21)
Mg mp 2m,, 2 Opa Mg my

For a Galilean invariant theory, the scattering matrix is a function of the square of the

momentum exchange and the center-of-mass energy, T' = T'(¢>, W), where

1 , 1

W = 5 Mab (Vo —vp)" = 5 Mab (v —vi)? (C22)
1 o] 2
= 5 Meap <Va — Vp — 2_77’Lb> . (C23)

The first order term in q reads

1 8W . Mab 2\ |
—2mbq'aVa——me(va~q—vb-q)—|—0(q), (C24)

however, this term does not contribute because of the delta-function, and we can replace W
by

1
W= S ma (Ve = ) . (C25)

When considering the Lenard-Balescu limit and plasma screening, the background plasma
breaks Galilean invariance. Rotational invariance is still a good symmetry. Recall that
q = hk:

Tow(W, k2, (Vo + q/2m4) - K) = {1+ %q- af) }T(W, K, va-k)+0O(d) . (C26)

Summary: upon dropping the bar from p, we have

2

d’py d’q 2 Po-4d Py-q q
= [ 2mh — + 2
Cab(pa) / (27rh)” (27T7i)l’ | ab| ( )5 Mg my 2mg, (C 7)

[fb (pb - %q) fa(Pa+a) = fo (pb + %q) fa(pa)} ,
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with
Cf, .t 9] (Para Pv-dq
5() B _1+_q‘8pa_5( me My ) (C28)
I 1 0 | 0 0
ol = 1+2qg- . —q- — 2
[ ] _ +54 op. | {q T apb} fa(Pa) fo(Py) (C29)
T = _1+1 : a-T(WkZV-k) (C30)
- I 2q apa_ I y va .
This gives

9 d'py Ak , , B
Cap(Pa) = Ty /(27rh)” (27T>Vk|hTab(VV,/€ Vo K)Pm8(ve-q—vy-q) (C31)

0 0
[k. 5o~k | Fupu) )

which is the LBE when we make the identification

(T = 55t (C32)

2¢(k2,v, - K)
3. Convergent Kinetic Equations

This is an exposition of Appendix B on p. 323 of Ref. [1]. This appendix concentrates on
the kinetic equation of Gould and DeWitt (GD) [6], although Refs. [6-9] are also relevant.

As in the previous Appendix, we start with the Boltzmann scattering kernel (B.1):

— dl}pg de:l dl/pb 2 vs(v) [/ /

(27RO (B} + B} — By — Ea) [ fy(05) fa(Py) = folpo) falpa)]

Working in v = 3 spatial dimensions, we break the scattering kernel into hard and soft

contributions,

C«;vaerge (pa) — 2Zrd (pa) + Z?)ft (pa) 7 (034)

where the hard and soft collision terms have the generic form of scattering kernel (C34).
The first term CP3** accounts for Coulomb scattering to all orders, with the first Born ap-
proximation subtracted out to avoid double counting, as the Born term is included in C53".
The Born approximation agrees exactly with the classical approximation in ¥ = 3, and this

is the reason for the subtraction.
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Gould and DeWitt (GD) define the hard scattering amplitude by

o5 * = | Tol® = 1571 (C35)

where T}, is the scattering amplitude for the Debye screened Coulomb potential, and 73" is
the corresponding first Born approximation for that potential. The amplitude T}, is asymp-

totic to the exact scattering amplitude 7" at large momentum transfer
q=P,~Pa=Ps— Py (C36)

but T}, misses the correct small-q physics involving screening. Debye screening renders each
term in T™*¢ separately finite at large distances. Furthermore, the subtraction of the two
terms in 7" renders this amplitude finite (at large distances) in the limit x;, — 0. Finally,

GD define the soft scattering amplitude to include screening effects,

; €aCp
wt=h C37
i =N e/ AT (90
where
A A A
AE =to  _ fa _ — ) C38
2m,  2m,  2my  2my ( )
We now have
T = ITo 2~ T + [T (C30)
Converting to wave number using q = hk, and defining w = AFE/h, we can write
1 eqep
T = — ———— C40
@R k2e(k,w) (C40)
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4. The Stopping Power and Other Rates from the Fokker-Planck Equation

The Fokker-Planck equation is given by (4.1) in BPS [p 267]:

0 0 0
{Gt +v- V:| f(X,p,t) = W Cﬁm(x’ pat) |i6avm + (%7} f(X> pat) : (C41)

Consider a kinetic quantity ¢(x, p), and define

Qx.t) = [ Gralxp) (.t (1)
Filxt) = [ s abxop) vt (13

where v¥ = p*/m. This gives,

= TV F= Z/ 0 {5 +apm}f, (C44)
and upon integrating by parts, we can express
09 B d'p  dQ,
o TVt = Za/(%h)” a ! (C45)

where

an — |i5avm _ i:| C«aem aq

I pm o (C46)

When the distribution f is a d-function over the trajectory, then the integral may be per-

formed and we have

0Q dQa

W+V F=- - (C47)
Appendix D: Numerical Constants and Quantities
1. Constants
Euler’s constant is
v = 0.5772156649015328606065 - - - . (D1)
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Terms involving A and c¢:

c = 2.997 % x10% cm/s (D2)
h = 6.582 x 107'%eVs = 6.582 x 107" keV's (D3)
(D4)
(D5)

he = 1974eV A = 1.974 x 10~ 8 keVem D4
ap = 0.5292 A =5292 x 107% cm D5
62
B, = =13. D
T 3.6eV (D6)

We shall never require the numerical value of the electric charge e for any calculation, so I
won’t bother to record its value. Instead, I will express the square of the charge €? in terms
of the binding energy of the hydrogen atom and the Bohr radius: e? = (62 / ao) -ag. Everyone
remembers that the binding energy of hydrogen is 13.6 eV, and that the radius of a hydrogen

atom is about 0.5 A (0.5292). For example, the ion Debye wave number can be written

/‘%2 = Bie?ni = f3;

722 72B
i = ZiTe (8rniap) . D
e (8mag)n; T (8mn;ap) (D7)

Note that the units are trivially correct. Some masses:

me = 511.00keV /c? (D8)
m, = 938.28 MeV/c? (D9)
m, = 939.57 MeV /c? (D10)
Mas = 931.50 MeV /c? (D11)

We define Nymau = 1g, where N, = 6.02 x 10
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2. Physical Quantities

For a plasma of inverse temperature § = 1/T, the de Broglie wave length A of a particle

of mass m is defined by

9 1/2
A=h (Lﬁ) . (D12)
m
For the electron and protons at inverse temperature f3,
Ae = 21889 x 107282 cm = 0.356954 - ap3"/? (D13)
Ae = 5.10823 x 107! 12 cm = 9.65275 x 1072 - ao /2 (D14)

with ., in inverse keV.

0BF

06F

02 B

0 -' 2 3 . s
FIG. 2: A./ag (blue) and \,/ag vs T =1/ in keV. The ions are always classical, and the electrons
are quantum

The Debye wave number is:

K? = pe*n = =% (8mnay) . (D15)

Note that the units are correct.

Appendix E: Some Algebra

1. The p; Integration

We will often require the integration of a Gaussian with a delta-function along a transverse

direction, and it is convenient to give the integral in two alternative forms:
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d”p; - 1
dypi —ﬁip2,/2mi P i 1 2

where f; = z; e~Pi/2mi is the Maxwell-Boltzmann distribution. To perform the integral, we

~

decomposed v; along the direction defined by k,
Vi:v”f{+vL : (E3)

and since p; = m;Vv;, we shall write p? = p? + m7v;. We now do the integrals in the normal

and parallel directions,

dyp —B;p? /2m; —18m;v?
/ G € A me [duye” =6 (0 = V) (B4)
Zi 1 2 1 2

where we have used
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2. Fermi Function

In three dimensions, we define the Fermi function

92 [e%} 1/2
Fiz)= 2 | de 2| (E7)
ﬁ 0 et + z

which satisfies

meXe Pz, (E8)
or
Ze = F 1 (n,A3/2) . (E9)
Express F' as a series:
e 1+ 2 % = ;HV et (E10)
where |z| < 1.
F(z) = 2—? /Ooodxwl/Qe_”i(—l)é 2ot (E11)
=0

2 — o
— _Z(_l)éze+1/ d 71/2e—(tH1)z (E12)

2 [o¢]
= ——— —1)¢ ze/ do x'/?e " E13
TONCILR| (©13)

For the Debye wave number: In three dimensions, we define

2z [ pl/2er

To do: large and small z limits, and write python module for F' and F~!.
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