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Stopping Power for Degenerate Electrons

Robert L Singleton Jr
Los Alamos National Laboratory

Los Alamos, New Mexico 87545, USA

(Dated: 1 January 2016)

Abstract

This is a first attempt at calculating the BPS stopping power with electron degeneracy corrections.
Section I establishes some notation and basic facts. Section II outlines the basics of the calculation,
and in Section III contains some brief notes on how to proceed with the details of the calculation.
The remaining work for the calculation starts with Section III.
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I. STATISTICS

A. The Fugacity as an Expansion Parameter

The plasma electrons are assumed to be degenerate and described by a Fermi-Dirac dis-

tribution,

fFD

e =
1

eβe(Ee−µe) + 1
, (1.1)

where the electron kinetic energy is Ee = p2e/2me, the electron chemical potential is µe, and

βe = 1/Te is the inverse temperature of the electron gas. The ion distribution is assumed to

be Maxwell-Boltzmann, so that

fMB

i = e−βi(Ei−µi) = zi e
−βiEi , (1.2)

where the ion kinetic energy is Ei = p2i /2mi, the ion chemical potential is µi, where βi = 1/Ti

is the inverse temperature of the ion gas, and zi = eβiµi is the ion fugacity parameter. From

here on, we drop the superscripts on fe and fi, and we denote the electron and ion species

by the general index a, so that Ea = p2a/2ma, with the fugacity parameter

za = eβaµa . (1.3)

This quantity measures the degeneracy of species a. The electron fugacity ze will serve as

an expansion expansion parameter (we will work to all orders in ze), as well as the plasma

coupling ga = e2aκa/Ta.

B. Projectiles and the Stopping Power

In computing the stopping power, we will take the projectile to have a δ-function distri-

bution along a straight line trajectory

fp = fp(x,p, t) = Np δ
(ν)(x− vpt) , (1.4)

where vp = p/mp, and Np is a normalization factor. For simplicity, we assume that the

projectile is an ion; for an electron projectile, the associated Fermi blocking terms must be

included. We only consider ionic projectiles for now.
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C. The de Broglie Wavelength and Normalization

The number density of a general species a takes the form

na(x) = ga

∫
dνp

(2π~)ν
fa(x,p) , (1.5)

where ga is the degeneracy factor for the species, which can be a plasma electron (e), a plasma

ion (i), or a projectile (p). We take ge = 2 because there are two electron spin-states, while

we set gi = 1 since the spin states of the classical ions should be counted as distinct states

in Maxwell-Boltzmann statistics. For quantum degenerate electrons, however, this is not

permitted, and we must include the spin degeneracy factor. Similarly, for the projectile we

take gp = 1. Since the ion distribution is a Gaussian, the integrals can easily be performed,

and we find

ni = gi
zi
λνi

(1.6)

λi = ~
(

2πβi
mi

)1/2

. (1.7)

In three dimensions, the ion chemical potential is therefore µi = Ti ln {λ3i ni/gi}.
We can also use (1.5) to calculate the normalization factor in (1.4), since there is only

one projectile in the volume,

1 =

∫
dνxnp(x) =

∫
dνx

∫
dνp

(2π~)ν
Np δ

(ν)(x− vpt) = Vν ·
1

(2π~)ν
Np , (1.8)

or

fp = Np δ
(ν) (x− vpt) (1.9)

Np =
(2π~)ν

Vν

, (1.10)

where Vν is the ν-dimensional volume of a large but finite box containing the system.

Now, let us consider the degenerate electron number density

ne = ge

∫
dνp

(2π~)ν
fe(p) = ge

∫
dνp

(2π~)ν
1

eβe(Ee(p)−µe) + 1
(1.11)

=
ge Ων−1

(2π~)ν

∫ ∞
0

pν−1dp
1

eβe(Ee(p)−µe) + 1
, (1.12)

where the area of a unit hypersphere in ν-dimensions is

Ων−1 =
2πν/2

Γ(ν/2)
, (1.13)
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and Γ(z) is the Gamma function, with Γ(z + 1) = z Γ(z) and Γ(1/2) =
√
π. When z is a

positive integer, then Γ(z + 1) = z! , and otherwise one defines 1

Γ(z) =

∫ ∞
0

du

u
uz e−z . (1.14)

Upon making the change of variables to x = βep
2/2me in (1.12), we can express the electron

number density in terms of dimensionless function F ,

ne =
ge
λνe
Fν(ze) (1.15)

Fν(ze) ≡
1

Γ(ν/2)

∫ ∞
0

dx

x

xν/2

ex + ze
, (1.16)

where the de Broglie wave length of the electron is

λe = ~
(

2πβe
me

)1/2

. (1.17)

We therefore need to solve the following equation for ze,

Fν(ze) = neλ
ν
e/ge . (1.18)

Question: Should I put the factor of ge in the definition of Fν , or show it explicitly? That

is to say, given ne and βe, which determines the RHS of Eq. (1.18), we solve numerically for

ze. From this we can find the chemical potential µe = Te ln ze.

FIG. 1: The Fermi function F (z) vs z. The horizontal line is a hypothetical value for neλ
3
e/2.

todo: plot some real examples, say T ∼ 1 keV or less, and ne ∼ 1025 cm−3 or more.

1 The following asymptotic expansion for small z will eventually be useful, so I record it here:

Γ(z) =
1

z
− γ +

1

2

(
γ2 +

π2

6

)
z +O(z2) ,

where the Euler constant is γ = 0.5772156649015328606065 · · · .
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D. The Debye Wave-number

The Debye wave number can be written

κ2a = βae
2
a

∂na
∂(βaµa)

. (1.19)

For Maxwell-Boltmann ions,

κ2i = βie
2
i · gi

∫
dνp

(2π~)ν
∂fi

∂(βiµi)
= βee

2 · ge
∫

dνp

(2π~)ν
fe = βi e

2
ini , (1.20)

and for degenerate Fermi-Dirac electrons

κ2e = βee
2 · ge

∫
dνp

(2π~)ν
∂fe

∂(βeµe)
= βee

2 · ge
∫

dνp

(2π~)ν
fe

[
1− fe

]
, (1.21)

where I have used

∂fi
∂(βiµi)

= fi (1.22)

∂fe
∂(βeµe)

= fe

[
1− fe

]
. (1.23)

In a similar manner to (1.16), we have

κ2e = βee
2 geze

Γ(ν/2)

∫ ∞
0

dx

x

xν/2ex

(ex + z)2
. (1.24)
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II. SOLUTION ROAD-MAP

The aim of these notes is to calculate the stopping power for a fully ionized plasma with

Fermi degenerate electrons and Maxwell-Boltmann ions, exact to all orders in the electron

fugacity ze = eµe/Te . I will first do the calculation in the extreme quantum limit, also known

as the first Born approximation. Reference [2] performed a similar calculation for the case of

the electron-ion temperature equilibration, and I will base these notes on that work. It might

also pay to perform the classical scattering calculation before attempting the scattering to

all orders in η.

A. Boltzmann Equation: Short Distance

1. Temperature Equilibration

The Boltzmann Equation (BE) gives the rate of change of the electron distribution from

scattering, and it is finite in ν > 3 dimensions. The BE with Pauli Blocking is given by (7.1)

of Ref. [2]:

∂f>
e

∂t
=
∑

i

∫
dνp′e

(2π~)ν
dνpi

(2π~)ν
dνp′i

(2π~)ν
∣∣Tei∣∣2 (2π~)ν (2π~) δ(ν)

(
p′e + p′i − pe − pi

)
(2.1)

δ
( p′ 2e

2me

+
p′ 2i
2mi

− p2e
2me

− p2i
2mi

)[
fi(p

′
i)fe(p

′
e)
[
1− fe(pe)

]
− fi(pi)fe(pe)

[
1− fe(p′e)

]]
.

The electron energy density in the plasma is given by

E>

e (x, t) = ge

∫
dνp

(2π~)ν
p2

2me

f>

e (x,p, t) , (2.2)

where ge = 2 is the spin degeneracy of the electron. Using Eq. (2.1), the rate of energy

density exchange between electrons and ions is

dE>
eI

dt
= 2

∫
dνpe

(2π~)ν
p2e

2me

∂f>
e

∂t
, (2.3)

where I have added the subscript “eI” to emphasize the the electron and ion systems are
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exchanging energy. The rate (2.3) can now be written in the form

dE>
eI

dt
= 2

∑
i

∫
dνpe

(2π~)ν
dνp′e

(2π~)ν
dνpi

(2π~)ν
dνp′i

(2π~)ν
∣∣Tei∣∣2 (2π~)ν δ(ν)

(
p′e + p′i − pe − pi

)
(2π~)δ

(
E ′e + E ′i − Ee − Ei

) p2e
2me

[
fi(p

′
i)fe(p

′
e)
[
1− fe(pe)

]
− fi(pi)fe(pe)

[
1− fe(p′e)

]]
,

(2.4)

where E ′a = p′ 2a /2ma and Ea = p2a/2ma.

I We shall exploit the crossing symmetry of the scattering-matrix under pa ↔ p′a. Formally,

crossing symmetry means T (p′e,p
′
i;pe,pi) = T (pe,pi;p

′
e,p

′
i), which is just the interchange of

incoming and outgoing particles in the scattering process. We can combine the two scattering

terms in square brackets, replacing the electron kinetic energy in Eq. (2.4) by

p2e
2me

→ p′ 2e
2me

− p2e
2me

, (2.5)

thereby giving

dE>
eI

dt
= 2

∑
i

∫
dνpe

(2π~)ν
dνp′e

(2π~)ν
dνpi

(2π~)ν
dνp′i

(2π~)ν
∣∣Tei∣∣2 (2π~)ν δ(ν)

(
p′e + p′i − pe − pi

)
(2π~) δ

(
E ′e + E ′i − Ee − Ei

)(p′ 2e − p2e
2me

)
fi(pi) fe(pe)

[
1− fe(p′e)

]
. (2.6)

This is Eq. (7.3) of Ref. [2].

I Next, we perform the p′i-integral in Eq. (2.6), employing the momentum conserving

δ-function to replace p′i = pi + pe − p′e:

dE>
eI

dt
= 2

∑
i

∫
dνpi

(2π~)ν
dνpe

(2π~)ν
dνp′e

(2π~)ν
∣∣Tei∣∣2 (p′ 2e − p2e

2me

)
(2.7)

(2π~) δ
(
E ′e + E ′i − Ee − Ei

)
fi(pi) fe(pe)

[
1− fe(p′e)

]∣∣∣∣∣
p′
i=pi+pe−p′

e

.

We perform a coordinate transformation pe,p
′
e → p̄,q defined by

q = p′e − pe = pi − p′i (2.8)

p̄ =
1

2

[
p′e + pe

]
, (2.9)

and since the Jacobina is uniity, dνpe d
νp′e = dν p̄ dνq, we have
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dE>
eI

dt
= 2

∑
i

∫
dνpi

(2π~)ν
dν p̄

(2π~)ν
dνq

(2π~)ν
∣∣Tei∣∣2 (2π~) δ

(pi · q
mi

− p̄ · q
me

− q2

2mi

)
(2.10)

p̄ · q
me

fi(pi) fe(pe)
[
1− fe(p′e)

]
.

This is (7.7) in Ref. [2]. When the ions all have the same temperature Ti = TI, the rate can

be expressed as

dE>
eI

dt
= −C>

eI

(
Te − TI

)
. (2.11)

This defines C>
eI.

2. The Born Approximation and the Classical Limit

For the general scattering event, p+a→ p′+a′, the matrix T depends upon the momentum

exchange q the center-of-mass energy W , so that T = T (q2,W ). In the extreme quantum

limit, or the first Born approximation, the amplitude is independent of W , and takes the

form

T Born

pa = ~
epea
q2

, (2.12)

where the momentum transfer is q = pa − p′a = p′p − pp.

It will sometime be useful to change variables to the center-of-mass and relative momen-

tum,

p =
mapp −mppa
mp +ma

= mpavpa with vpa = vp − va (2.13)

P =
mppp +mapa
mp +ma

. (2.14)

The Jacobian is unity, and therefore dνpa d
νpp = dνP dνp. The product of the momentum

and energy conserving δ-functions can be expressed as

δ(ν)
(
p′p + p′a − pp − pa

)
δ
( p′ 2p

2mp

+
p′ 2a

2ma

−
p2p

2mp

− p2a
2ma

)
(2.15)

= δ(ν)
(
P′ −P

)
δ

(
p′ 2

2mpa

− p2

2mpa

)
. (2.16)

The cross section dσ is related to the scattering matrix T by∫
dνp′

(2π~)ν

∣∣∣Tpa(q2,W )
∣∣∣2 (2π~) δ

(
p′ 2

2mpa

− p2

2mpa

)
= vpa

∫
dσpa , (2.17)

10
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where vpa = |vp − va| and

q = p′ − p (2.18)

W =
p2

2mpa

. (2.19)

Note that q = p′p−pp = pa−p′a. The classical cross section makes contact with the classical

limit through its relation to the impact parameter b,

dσC

pa = Ων−2 b
ν−1 db . (2.20)

3. Stopping Power

The BE with Pauli Blocking for a projectile distribution fp in the plasma with components

a (ranging over electrons and ions) is

∂f>
p

∂t
=
∑

a

∫
dνp′p

(2π~)ν
dνpa

(2π~)ν
dνp′a

(2π~)ν
∣∣Tpa∣∣2 (2π~)ν δ(ν)

(
p′p + p′a − pp − pa

)
(2.21)

(2π~) δ
(
E ′p + E ′a − Ep − Ea

)[
fp(p

′
p)fa(p

′
a)− fp(pp)fa(pa)

]
PB

,

where the subscript PB means that the Pauli blocking term is to be included for electrons,

fMB

e (p)→ fFD

e (p)
[
1− fFD

e (p′)
]
. (2.22)

I will parallel the treatment given in Ref. [2] as closely as possible. For a charged projectile

p, the energy of the projectile is given by

E>

p = 2

∫
dνxp

∫
dνpp

(2π~)ν
p2p

2mp

f>

p (xp,pp, t) = 2Vν

∫
dνpp

(2π~)ν
p2p

2mp

f>

p (pp, t) , (2.23)

where we integrate over all spatial locations of the projectile, with the projectile distribution

fp(p, t) being independent of space, and Vν is the volume of space. Recall that the projectile

distribution is normalized by

fp(x,p) =
(2π~)ν

Vν

δ(ν)
(
x− p

mp

t

)
. (2.24)

It will be convenient to rescale the projectile distribution by the volume factor, f̄p = Vν · fp,
and define

f̄p(x,p) = (2π~)ν δ(ν)
(
x− p

mp

t

)
. (2.25)
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Using the BE, the stopping power therefore takes the form

dE>
p

dt
= 2

∑
a

∫
dνpp

(2π~)ν

(
p2p

2mp

) ∫
dνp′p

(2π~)ν
dνpa

(2π~)ν
dνp′a

(2π~)ν
∣∣Tpa∣∣2 (2.26)

(2π~)ν δ(ν)
(
p′p + p′a − pp − pa

)
(2π~) δ

(
E ′p + E ′a − Ep − Ea

)
[
f̄p(p

′
p)fa(p

′
a)− f̄p(pp)fa(pa)

]
PB

.

I Use crossing symmetry to make the replacement(
p2p

2mp

)[
f̄p(p

′
p)fa(p

′
a)− f̄p(pp)fa(pa)

]
PB

→
(
p′ 2p

2mp

−
p2p

2mp

)
f̄p(pp) · fa(pa)

∣∣∣
PB

, (2.27)

which gives,

dE>
p

dt
= 2

∑
a

∫
dνpp

(2π~)ν
dνp′p

(2π~)ν
dνpa

(2π~)ν
dνp′a

(2π~)ν
∣∣Tpb∣∣2 (2.28)

(2π~)ν δ(ν)
(
p′p + p′a − pp − pa

)
(2π~) δ

(
E ′p + E ′a − Ep − Ea

)
(
p′ 2p

2mp

−
p2p

2mp

)
f̄p(pp)fa(pa)

∣∣∣
PB

.

I Integrate pp over the delta-function f̄p:

dE>
p

dt
= 2

∑
a

∫
dνp′p

(2π~)ν
dνpa

(2π~)ν
dνp′a

(2π~)ν
∣∣Tpb∣∣2 ( p′ 2p

2mp

−
p2p

2mp

)
fa(pa)

∣∣∣
PB

(2.29)

(2π~)ν δ(ν)
(
p′p + p′a − pp − pa

)
(2π~) δ

(
E ′p + E ′a − Ep − Ea

)
.

The stopping power is related to the rate by

dE>
p

dx
=

1

vp

dE>
p

dt
. (2.30)

The calculation of the ion contribution from the ionic term goes through just as in Ref. [1],

and we express (2.29) as

dE>
p

dx
=

dEe>
p

dx
+
dEI>

p

dx
, (2.31)

where the ion contribution to the rate is

12
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dEI>
p

dt
= 2

∑
i

∫
dνpi

(2π~)ν
dνp′p

(2π~)ν
dνp′i

(2π~)ν
∣∣Tpb∣∣2 ( p′ 2p

2mp

−
p2p

2mp

)
fi(pi) (2.32)

(2π~)ν δ(ν)
(
p′p + p′i − pp − pi

)
(2π~) δ

(
E ′p + E ′i − Ep − Ei

)
,

and the electron contribution is

dEe>
p

dt
= 2

∫
dνpe

(2π~)ν
dνp′p

(2π~)ν
dνp′e

(2π~)ν
∣∣Tpb∣∣2 ( p′ 2p

2mp

−
p2p

2mp

)
fe(pe)

[
1− fe(p′e)

]
(2.33)

(2π~)ν δ(ν)
(
p′p + p′e − pp − pe

)
(2π~) δ

(
E ′p + E ′e − Ep − Ee

)
.

B. Lenard-Balescu Equation: Long Distance Collective Effects

1. Temperature Equilibration

The Lenard-Balescu equation (LBE) gives the rate of change of the electron distribution

from the long distance collective physics, and it is finite in spatial dimensions n < 3. The

LBE with Paul Blocking is given by (8.1) of Ref. [2],

∂f<
e

∂t
= − ∂

∂pe
·
∑

i

∫
dνpi

(2π~)ν
dνk

(2π)ν
k

∣∣∣∣ eei
k2ε(k,k · vi)

∣∣∣∣2 πδ(k · vi − k · ve
)

(2.34)[
k · ∂fi(pi)

∂pi
fe(pe)

[
1− fe(pe)

]
− k · ∂fe(pe)

∂pe
fi(pi)

]
.

Question: Is the momentum on the Pauli Blocking term correct? Here, the dielectric

function is

k2ε(k, ω) = κ2e + k2 + FI(k/ω) (2.35)

FI(v) = −
∑

i
βie

2
i

∫
dνpi

(2π~)ν
k̂ · vi

v − k̂ · vi + iη
fi(pi) , (2.36)

where κ2e is the square of the electron Debye number,

κ2e = βee
2 ∂ne
∂(βeµe)

. (2.37)

See (A9) and (A7) of Ref. [2].
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The electron energy density in the plasma is given by

E<

e (x, t) = 2

∫
dνp

(2π~)ν
p2

2me

f<

e (x,p, t) , (2.38)

where the factor of 2 arises from the spin degeneracy. Using Eq. (2.34), the rate of energy

exchange between electrons and ions becomes

dE<
eI

dt
= 2

∫
dνpe

(2π~)ν
p2e

2me

∂f<
e

∂t
. (2.39)

From Eq. (2.39) and (2.34)

dE<
eI

dt
= −2

∑
i

∫
dνpe

(2π~)ν
dνpi

(2π~)ν
dνk

(2π)ν

(
p2e

2me

)
∂

∂pe
· k
∣∣∣∣ eei
k2ε(k,k · vi)

∣∣∣∣2 (2.40)

πδ
(
k · vi − k · ve

)[
k · ∂fi(pi)

∂pi
fe(pe)

[
1− fe(pe)

]
− k · ∂fe(pe)

∂pe
fi(pi)

]
.

When the ions all have the same temperature Ti = TI, the rate can be expressed as

dE<
eI

dt
= −C<

eI

(
Te − TI

)
. (2.41)

This defines C<
eI, and the regularized three dimensional rate, to leading and next-to-leading

order in the number density, is

CBPS

eI = lim
ν→3

[
C>

eI + C<

eI

]
. (2.42)

2. Stopping Power

For a projectile p, the LB equation is

∂f<
p

∂t
= − ∂

∂pp
·
∑

a

∫
dνpa

(2π~)ν
dνk

(2π)ν
k

∣∣∣∣ epea
k2ε(k,k · va)

∣∣∣∣2 πδ(k · va − k · vp
)

(2.43)[
k · ∂fa(pa)

∂pa
fp(pp)− k · ∂fp(pp)

∂pp
fa(pa)

]
PB

,

As in the last section, I will parallel the treatment given in Ref. [2]. Similarly to (2.23), the

energy of the projectile is given by

E<

p = 2Vν

∫
dνpp

(2π~)ν
p2p

2mp

f<

p (pp, t) , (2.44)

14
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where Vν is the volume of space. Equations (2.44) and (2.43)

dE<
p

dt
= 2Vν

∫
dνpp

(2π~)ν
p2p

2mp

∂f<
p (pp, t)

∂t
(2.45)

= −2
∑

a

∫
dνpp

(2π~)ν
dνpa

(2π~)ν
dνk

(2π)ν

(
p2p

2mp

)
∂

∂pp
· k
∣∣∣∣ epea
k2ε(k,k · va)

∣∣∣∣2 (2.46)

πδ
(
k · va − k · vp

)[
k · ∂fa(pa)

∂pa
f̄p(pp)− k · ∂f̄p(pp)

∂pp
fa(pa)

]
PB

, (2.47)

where f̄p = (2π~)νδ(ν)(x− vpt).

I Perform the pp-integration. We integrate by parts twice, removing the derivatives from

the distribution function f̄p. The first integration gives,

dE<
p

dt
= 2

∑
a

∫
dνpp

(2π~)ν
dνpa

(2π~)ν
dνk

(2π)ν
∂

∂p`p

(
p2p

2mp

)
· k`

∣∣∣∣ epea
k2ε(k,k · va)

∣∣∣∣2
πδ
(
k · va − k · vp

)[
k · ∂fa(pa)

∂pa
f̄p(pp)− k · ∂f̄p(pp)

∂pp
fa(pa)

]
PB

. (2.48)

We next move the differentiation from the second term in square brackets,

dE<
p

dt
= 2

∑
a

∫
dνpa

(2π~)ν
dνk

(2π)ν
dνpp

(2π~)ν
f̄p(pp)

[
k · ∂fa(pa)

∂pa
+ fa(pa)k ·

∂

∂pp

]
PB

∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epea
k2ε(k,k · va)

∣∣∣∣2 πδ(k · va − k · vp
)

(2.49)

or

dE<
p

dt
= 2

∑
a

∫
dνpa

(2π~)ν
dνk

(2π)ν

[
k · ∂fa(pa)

∂pa
+ fa(pa)k ·

∂

∂pp

]
PB

∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epea
k2ε(k,k · vp)

∣∣∣∣2 πδ(k · va − k · vp
)

(2.50)

Where we have made the substitution k · va → k · vp in the dielectric function because of

the delta-function. As before, we write

dE<
p

dx
=

dEe<
p

dx
+
dEI<

p

dx
, (2.51)

where the ion contribution becomes

15
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dEI<
p

dt
= 2

∑
i

∫
dνpi

(2π~)ν
dνk

(2π)ν

[
k · ∂fi(pi)

∂pi
+ fi(pi)k ·

∂

∂pp

]
∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epei
k2ε(k,k · vp)

∣∣∣∣2 πδ(k · vi − k · vp
)
, (2.52)

and the electron contribution is

dEe<
p

dt
= 2

∫
dνpe

(2π~)ν
dνk

(2π)ν

[
k · ∂fe(pe)

∂pe
+ fe(pe)

[
1− fe(pe)

]
k · ∂

∂pp

]
∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epee
k2ε(k,k · vp)

∣∣∣∣2 πδ(k · ve − k · vp
)
. (2.53)

Finally, the stopping power to leading and next-to-leading order (in three dimensions) is

then given by

dEBPS
p

dx
= lim

ν→3

[
dE>

p

dx
+
dE<

p

dx

]
. (2.54)
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III. CALCULATIONAL DETAILS

A. Ion Temperature Equilibration

This was calculated in Ref. [1].

1. BE

dE>
eI

dt
= 2

∑
i

∫
dνpe

(2π~)ν
dνp′e

(2π~)ν
dνpi

(2π~)ν
∣∣Tei∣∣2 (2π~) δ

(
pi · q
mi

− p̄ · q
me

− q2

2mi

)
(3.1)

p̄ · q
me

fe(pe)fi(pi)
[
1− fe(p′e)

]
.

I Perform the pi-integration using (E1), in which we integrate perpendicular and parallel

to to q. See Ref. [2] in (7.13),∫
dνpi

(2π~)ν
fi(pi) (2π~)δ

(
pi · q
mi

− p̄ · q
me

− q2

2mi

)
(3.2)

=
niλimi

q
exp

{
− βi

2miq2

(
mi

me

p̄ · q +
q2

2

)2
}

2. LBE

dE<
eI

dt
= −2

∑
i

∫
dνpe

(2π~)ν
dνpi

(2π~)ν
dνk

(2π)ν

(
p2e

2me

)
∂

∂pe
· k
∣∣∣∣ eei
k2ε(k,k · vi)

∣∣∣∣2 (3.3)

πδ
(
k · ve − k · vi

)[
k · ∂fi(pi)

∂pi
fe(pe)

[
1− fe(pe)

]
− k · ∂fe(pe)

∂pe
fi(pi)

]
.

17
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B. Ion Stopping Power

1. BE

Recall that the BE gives the rate (2.29):

dE>
p

dt
= 2

∑
a

∫
dνp′p

(2π~)ν
dνpa

(2π~)ν
dνp′a

(2π~)ν
∣∣Tpb∣∣2 ( p′ 2p

2mp

−
p2p

2mp

)
fa(pa)

∣∣∣
PB

(3.4)

(2π~)ν δ(ν)
(
p′p + p′a − pp − pa

)
(2π~) δ

(
E ′p + E ′a − Ep − Ea

)
,

or the ion and electron contributions are

dEI>
p

dt
= 2

∑
i

∫
dνpi

(2π~)ν
dνp′p

(2π~)ν
dνp′i

(2π~)ν
∣∣Tpb∣∣2 ( p′ 2p

2mp

−
p2p

2mp

)
fi(pi) (3.5)

(2π~)ν δ(ν)
(
p′p + p′i − pp − pi

)
(2π~) δ

(
E ′p + E ′i − Ep − Ei

)
,

and

dEe>
p

dt
= 2

∫
dνpe

(2π~)ν
dνp′p

(2π~)ν
dνp′e

(2π~)ν
∣∣Tpb∣∣2 ( p′ 2p

2mp

−
p2p

2mp

)
fe(pe)

[
1− fe(p′e)

]
(3.6)

(2π~)ν δ(ν)
(
p′p + p′e − pp − pe

)
(2π~) δ

(
E ′p + E ′e − Ep − Ee

)
.

I We perform the p′p-integral, employing the momentum conserving delta-function, to find

dE>
p

dt
= 2

∑
a

∫
dνpa

(2π~)ν
dνp′a

(2π~)ν
∣∣Tpb∣∣2 (3.7)

(2π~) δ
(
E ′p + E ′a − Ep − Ea

)( p′ 2p
2mp

−
p2p

2mp

)
fa(pa)

∣∣∣∣PB

p′
p=pp+pa−p′

a

.

Or: it might be better to change variables to p̄ and q.
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2. LBE

From (2.50):

dE<
p

dt
= 2

∑
a

∫
dνpa

(2π~)ν
dνk

(2π)ν

[
k · ∂fa(pa)

∂pa
+ fa(pa)k ·

∂

∂pp

]
PB

∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epea
k2ε(k,k · vp)

∣∣∣∣2 πδ(k · va − k · vp
)

(3.8)

or in terms of the ion and electron contribution

dEI<
p

dt
= 2

∑
i

∫
dνpi

(2π~)ν
dνk

(2π)ν

[
k · ∂fi(pi)

∂pi
+ fi(pi)k ·

∂

∂pp

]
∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epei
k2ε(k,k · vp)

∣∣∣∣2 πδ(k · vi − k · vp
)
, (3.9)

and

dEe<
p

dt
= 2

∫
dνpe

(2π~)ν
dνk

(2π)ν

[
k · ∂fe(pe)

∂pe
+ fe(pe)

[
1− fe(pe)

]
k · ∂

∂pp

]
∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epee
k2ε(k,k · vp)

∣∣∣∣2 πδ(k · ve − k · vp
)
. (3.10)

I Do the dνpi integral and keep the other variables fixed. Use fi = zi exp{−βip2i /2mi}, and

∂fi/∂pi = βivi fi, to write

dEI<
p

dt
= 2

∑
i

∫
dνk

(2π)ν
dνpi

(2π~)ν

fi(pi)
[
βi k·vi−k· ∂

∂pp

]︷ ︸︸ ︷[
βi k · vi fi(pi)− fi(pi)k ·

∂

∂pp

]
∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epei
k2ε(k,k · vi)

∣∣∣∣2 πδ(k · vi − k · vp
)
, (3.11)

and using the delta-function to make the replacements k · vi → k · vp in the integrand, we

find

dE<
p I

dt
= 2

∑
i

∫
dνk

(2π)ν
dνpi

(2π~)ν
fi(pi)

[
βi k · vp − k · ∂

∂pp

]
∂

∂p`p

(
p2p

2mp

)
·

k`
∣∣∣∣ epei
k2ε(k,k · vp)

∣∣∣∣2 πδ(k · vi − k · vp
)
. (3.12)
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The pp-derivatives act on everything to their right.

I Perform the pi-integration. We perform the Gaussian integrals dν−1p⊥, and integrate

dp‖ = mi dv‖ over the δ-function. The subscript i has been suppressed in the expressions on

the right-hand-side. To perform the integral, we decomposed vi along the direction defined

by k,

vi = v‖k̂ + v⊥ , (3.13)

and we write the δ-function as

δ
(
k̂ · vi − ωp/k

)
= δ
(
v‖ − vp cos θ

)
. (3.14)

The notes algebra long distance 1.0.tex does this calculation in detail for a MB plasma,

which for the ions becomes

dE<
p I

dt
= 2

∑
i
e2p

∫
dνk

(2π)ν

[
βi k · vp − k · ∂

∂pp

]
∂

∂p`p

p2p
2mp

πk`

|k2ε(k,k · vp)|2
exp

{
−1

2
βimiv

2
p cos2 θ

}
. (3.15)

and upon dividing by the projectile velocity (or is it k̂`?),

dE<
p I

dx
= 2

∑
i

e2p
vp

∫
dνk

(2π)ν

[
βi k · vp − k · ∂

∂pp

]
∂

∂p`p

p2p
2mp

πk`

|k2ε(k,k · vp)|2
exp

{
−1

2
βimiv

2
p cos2 θ

}
. (3.16)
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Appendix A: Non-degenerate BPS Results

The work of BPS in Ref. [1] assumed Maxwell-Boltmann electrons, and broken the calcula-

tion into classical and quantum components, with the quantum being considered a correction

to the classical. 2 This section provides some of the salient results.

1. Classical

In § 3.1 of Ref. [1], the classical stopping power is broken into short distance and long

distance contributions,

dEC
a

dx
=

dE>

b,S

dx
+
dE<

b,R

dx
, (A1)

where

dE>

b,S

dx
=

e2p
4π

κ2a
mpvp

(
ma

2πβa

)1/2 ∫ 1

0

du u1/2 exp

{
−1

2
βamav

2
p

}
(A2){[

− ln

(
βa
epeaK

4π

ma

mpa

u

1− u

)
+ 2− 2γ

] [
βaMpav

2
p −

1

u

]
+

2

u

}

dE<

b,R

dx
=

e2p
4π

i

2π

∫ 1

−1
d cos θ

ρa(vp cos θ)

ρtot(vp cos θ)
F (vp cos θ) ln

(
F (vp cos θ)

K2

)
(A3)

−
e2p
4π

,
i

2π

1

βamav2p

ρa(vp cos θ)

ρtot(vp cos θ)

[
F (vp) ln

(
F (vp)

K2

)
− F ∗(vp) ln

(
F ∗(vp)

K2

)]
.

Reference [1] uses the notation dEC
b,S/dx instead of dE<

b,S/dx, and ep and ea are positive

absolute values of the charges. We also have

κ2a = βae
2
ana (A4)

F (u) =

∫ ∞
−∞

du
ρB(v)

v − u− iη
, (A5)

where

ρa(v) = κ2a v

(
βama

2π

)1/2

exp

{
−1

2
βamav

2

}
(A6)

ρB(v) =
∑

a
ρa(v) . (A7)

2 I think it’s better to think in terms of the quantum regime, and we should then express the stopping
power in terms of a classical “correction” to the quantum stopping power. This is the opposite of how
most people write the stopping power, which is classical plus quantum correction.
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Also, we define the mass combinations

Mpa = mp +ma (A8)

1

mpa

=
1

mp

+
1

ma

. (A9)

2. Quantum Corrections

In § 3.2 of Ref. [1], the stopping power is written as the classical piece plus a quantum

correction,

dEa
dx

=
dEC

a

dx
+
dEQ

a

dx
, (A10)

where

dEQ
a

dx
=

e2p
4π

κ2a
2βampv2p

(
βama

2π

)1/2 ∫ ∞
0

dvpa

[
2Reψ(1 + iηpa)− ln η2pa

]
(A11){[

1 +
Mpa

ma

vp
vpa

(
1

βamavpvpa
− 1

)]
exp

{
−1

2
βama (vp − vpa)2

}
−

[
1− Mpa

ma

vp
vpa

(
1

βamavpvpa
+ 1

)]
exp

{
−1

2
βama (vp + vpa)

2

}}
,

with

ηpa =
epea

4π~vpa
(A12)

vpa = |vp − va| (A13)

Reψ(1 + iη) =
∞∑
k=1

1

k

η2

k2 + η2
− γ . (A14)

The quantum correction involves only short-distance physics, while the classical contribution

captures both short- and long-distance physics.

3. Extreme Quantum Limit

The extreme quantum limit, or the Born approximation, is given by η � 1, which from

§ 3.4 of BPS is given by

dEBorn
a

dx
=

dE>

b,B

dx
+
dE<

b,R

dx
, (A15)
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where dE<

b,R/dx is unchanged from the last section, and the Born approximation gives

dE>

b,B

dx
=

e2p
4π

κ2a
mpvp

(
ma

2πβa

)1/2 ∫ ∞
0

du exp

{
−1

2
βamav

2
p u

}
(A16){[

− 1

2
ln

(
βa~2K2 ma

m2
pa

u

1− u

)
+ 1− γ

2

][
βaMpav

2
p u

1/2 − u−1/2
]

+ u−1/2

}

Appendix B: Carlson’s Theorem

One of the most fundamental mathematical underpinnings of the BPS calculation is Carl-

son’s Theorem, which roughly states that if two functions agree on the natural numbers, and

their difference is not exponentially large, then the functions are the same. This is the means

by which dimensional continuation is defined, and the ν → 3 limit is to be understood. The

following is from Wikipedia. Give generously.

Theorem 1 (Carlson’s Theorem) Suppose f(z) is an analytic function on C satisfying the

following three conditions:

(1) f is an entire function of exponential type, meaning∣∣∣f(z)
∣∣∣ ≤ C eτ |z| for z ∈ C

for some C, τ ∈ R+.

(2) There exists c < π such that ∣∣∣f(iy)
∣∣∣ ≤ C ec|y| for y ∈ R

(3) f(n) = 0 for all n ∈ N

Then the function vanishes, i.e. f = 0.

Note: The function f(z) = sin πz satisfies (3) and (1), but note (2); therefore, it does not

violate Carlson’s Theorem. This is why condition (2) is necessary. The theorem follows from

the Phragmen-Lindelof theorem, which itself follows from the maximum-modulus theorem.

See Wikipedia for details.

We can use Carlson’s Theorem to prove that the gamma function Γ(z) defined by (1.14)

is the unique analytic continuation to the complex plane of the factorial function n! on the

natural numbers N. Suppose Γ̃(z) is another such function on C that takes the values n!

on N. Then Γ(z) − Γ̃(z) vanishes on the natural numbers (and it can be shown that the

function difference doesn’t diverge more than exponentially); therefore, Γ(z)− Γ̃(z) = 0, i.e.

Γ̃(z) = Γ(z), i.e. Γ(z) as defined by (1.14) is the unique analytic continuation of the factorial

function. Note: Γ(n+1) = n!. Note: It seems that (2) is a restriction on the Riemann sheet.
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Appendix C: Kinetic Equations

1. The Fokker-Planck Equation from the Boltzmann Equation

Taken from Chapter 11, § 21 p 89 of Ref. [3]. Let w(p,q)d3q denote the probability of

scattering from p→ p− q, so that the distribution function f satisfies

∂f(p, t)

∂t
=

∫
d3q
[
w(p + q,q)f(p + q, t)− w(p,q)f(p, t)

]
. (C1)

We assume that small angle collisions are dominant, i.e. collisions change the momentum

only on a much smaller scale than the value of the momentum itself. This means that w(p,q)

is a sharply peaked function of small p, and we can expand

w(p + q,q)f(p + q, t) = w(p,q)f(p, t) + q · ∂
∂p

w(p,q)f(p, t) + (C2)

1

2
q`qm

∂2

∂p`∂pm
w(p,q)f(p, t) +O(q3) .

The transport equation then becomes

∂f(p, t)

∂t
=

∂

∂p`

[
B` f +

∂

∂pm

(
C`mf

)]
, (C3)

where

B`(p) ≡
∫
d3q q`w(p,q) (C4)

C`m(p) ≡ 1

2

∫
d3q q`qmw(p,q) . (C5)

By writing

A` ≡ B` +
∂C`m

∂pm
, (C6)

we arrive at the form

∂f(p, t)

∂t
=

∂

∂p`

[
A` f + C`m ∂f

∂pm

]
. (C7)

The time derivative vanishes in equilibrium, when f = f0:

f0(p) = z e−βp
2/2m , (C8)

where β is the inverse temperature, m the mass of the particle described by the distribution

f , and z = nλ3 is the fugacity, with n being the number density and λ the de Broglie wave

length. Then

∂f0
∂pm

= −βp
m

m
f0 = −βvm f0 , (C9)
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and therefore

0 = A` f0 + C`m ∂f0
∂pm

=
[
A` − βvmC`m

]
f0 ⇒ A` = βvmC`m . (C10)

Thus, Eq. (C7) becomes

∂f(p, t)

∂t
=

∂

∂p`
C`m

[
βpm

m
+

∂

∂pm

]
f , (C11)

which is the Fokker-Planck equation (FPE).

2. The Lenard-Balescu Equation from the Boltzmann Equation

This is an exposition of Appendix C of BPS [1]. We start with the Boltzmann scattering

kernel (B.1):

Cab(pa) =

∫
dνp′b

(2π~)ν
dνp′a

(2π~)ν
dνpb

(2π~)ν
|Tab|2 (2π~)νδ(ν)

(
p′b + p′a − pb − pa

)
(C12)

(2π~)δ(E ′b + E ′a − Eb − Ea)
[
fb(p

′
b)fa(p

′
a)− fb(pb)fa(pa)

]
.

We define the average momentum p̄b and the momentum exchange q by

p̄b =
1

2

[
pb + p′b

]
(C13)

q = pb − p′b (C14)

When we impose momentum conservation, then we can also write q = p′a−pa, which is the

reason we do not put a subscript on the momentum transfer. We will (i) change variables

from p′b-pb to p̄b-q (the Jacobian is unity),

pb = p̄b +
1

2
q (C15)

p′b = p̄b −
1

2
q , (C16)

and (ii) integrate the momentum delta-function over p′a, i.e. make the substitution

p′a = pa + pb − p′b = pa + q . (C17)

Expression (C12) then becomes

Cab(pa) =

∫
dν p̄b

(2π~)ν
dνq

(2π~)ν
|Tab|2 (2π~)δ

(
pa · q
ma

− p̄b · q
mb

+
q2

2ma

)
(C18)

[
fb

(
p̄b −

1

2
q

)
fa(pa + q)− fb

(
p̄b +

1

2
q

)
fa(pa)

]
.
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We now expand (C18) in powers of the momentum exchange, working to second order in q.

The distribution functions in square brackets become

fb

(
p̄b −

1

2
q

)
· fa(pa + q)− fb

(
p̄b +

1

2
q

)
· fa(pa) (C19)

=

[
1 +

1

2
q · ∂

∂pa

] [
q · ∂

∂pa
− q · ∂

∂p̄b

]
fa(pa)fb(p̄b) +O(q3) , (C20)

and the delta-function becomes

δ

(
pa · q
ma

− p̄b · q
mb

+
q2

2ma

)
=

[
1 +

1

2
q · ∂

∂pa

]
δ

(
pa · q
ma

− p̄b · q
mb

)
. (C21)

For a Galilean invariant theory, the scattering matrix is a function of the square of the

momentum exchange and the center-of-mass energy, T = T (q2,W ), where

W =
1

2
mab (va − vb)

2 =
1

2
mab (v′a − v′b)

2
(C22)

=
1

2
mab

(
va − v̄b −

q

2mb

)2

. (C23)

The first order term in q reads

− 1

2mb

q · ∂W
∂va

= −mab

2mb

(
va · q− vb · q

)
+O(q2) ; (C24)

however, this term does not contribute because of the delta-function, and we can replace W

by

W̄ =
1

2
mab (va − v̄b)

2 . (C25)

When considering the Lenard-Balescu limit and plasma screening, the background plasma

breaks Galilean invariance. Rotational invariance is still a good symmetry. Recall that

q = ~k:

Tab(W̄ , k2, (va + q/2ma) · k) =

[
1 +

1

2
q · ∂

∂pa

]
T (W̄ , k2,va · k) +O(q2) . (C26)

Summary: upon dropping the bar from p̄b we have

Cab(pa) =

∫
dνpb

(2π~)ν
dνq

(2π~)ν
|Tab|2 (2π~)δ

(
pa · q
ma

− pb · q
mb

+
q2

2ma

)
(C27)

[
fb

(
pb −

1

2
q

)
fa(pa + q)− fb

(
pb +

1

2
q

)
fa(pa)

]
,
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with

δ
(
· · ·
)

=

[
1 +

1

2
q · ∂

∂pa

]
δ

(
pa · q
ma

− pb · q
mb

)
(C28)

[
· · ·
]

=

[
1 +

1

2
q · ∂

∂pa

] [
q · ∂

∂pa
− q · ∂

∂pb

]
fa(pa)fb(pb) (C29)

T =

[
1 +

1

2
q · ∂

∂pa

]
T (W̄ , k2,va · k) . (C30)

This gives

Cab(pa) = − ∂

∂pa
·
∫

dνpb
(2π~)ν

dνk

(2π)ν
k |~Tab(W,k2,va · k)|2 π δ

(
va · q− vb · q

)
(C31)[

k · ∂

∂pa
− k · ∂

∂pb

]
fa(pa)fb(pb) ,

which is the LBE when we make the identification

|~Tab|2 =
eaeb

k2ε(k2,va · k)
. (C32)

3. Convergent Kinetic Equations

This is an exposition of Appendix B on p. 323 of Ref. [1]. This appendix concentrates on

the kinetic equation of Gould and DeWitt (GD) [6], although Refs. [6–9] are also relevant.

As in the previous Appendix, we start with the Boltzmann scattering kernel (B.1):

Cab(pa) =

∫
dνp′b

(2π~)ν
dνp′a

(2π~)ν
dνpb

(2π~)ν
|Tab|2 (2π~)νδ(ν)

(
p′b + p′a − pb − pa

)
(C33)

(2π~)δ(E ′b + E ′a − Eb − Ea)
[
fb(p

′
b)fa(p

′
a)− fb(pb)fa(pa)

]
.

Working in ν = 3 spatial dimensions, we break the scattering kernel into hard and soft

contributions,

Cconverge

ab (pa) = Chard

ab (pa) + Csoft

ab (pa) , (C34)

where the hard and soft collision terms have the generic form of scattering kernel (C34).

The first term Chard
ab accounts for Coulomb scattering to all orders, with the first Born ap-

proximation subtracted out to avoid double counting, as the Born term is included in Csoft
ab .

The Born approximation agrees exactly with the classical approximation in ν = 3, and this

is the reason for the subtraction.
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Gould and DeWitt (GD) define the hard scattering amplitude by

|T hard

ab |2 ≡ |TD|2 − |T (1)

D |2 , (C35)

where TD is the scattering amplitude for the Debye screened Coulomb potential, and T (1)

D is

the corresponding first Born approximation for that potential. The amplitude TD is asymp-

totic to the exact scattering amplitude T at large momentum transfer

q = p′a − pa = pb − p′b , (C36)

but TD misses the correct small-q physics involving screening. Debye screening renders each

term in T hard separately finite at large distances. Furthermore, the subtraction of the two

terms in T hard renders this amplitude finite (at large distances) in the limit κD → 0. Finally,

GD define the soft scattering amplitude to include screening effects,

T soft

ab ≡ ~
eaeb

q2 ε(q/~,∆E/~)
, (C37)

where

∆E =
p′ 2a

2ma

− p2a
2ma

=
p2b

2mb

− p′ 2b
2mb

. (C38)

We now have

|T converge

ab |2 = |TD|2 − |T (1)

D |2 + |T soft

ab |2 . (C39)

Converting to wave number using q = ~k, and defining ω = ∆E/~, we can write

T soft

ab =
1

~
eaeb

k2 ε(k, ω)
. (C40)
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4. The Stopping Power and Other Rates from the Fokker-Planck Equation

The Fokker-Planck equation is given by (4.1) in BPS [p 267]:[
∂

∂t
+ v ·∇

]
f(x,p, t) =

∑
a

∂

∂p`
C`m
a (x,p, t)

[
βav

m +
∂

∂pm

]
f(x,p, t) . (C41)

Consider a kinetic quantity q(x,p), and define

Q(x, t) =

∫
dνp

(2π~)ν
q(x,p)f(x,p, t) (C42)

Fk(x, t) =

∫
dνp

(2π~)ν
q(x,p) vkf(x,p, t) , (C43)

where vk = pk/m. This gives,

∂Q
∂t

+ ∇ · F =
∑

a

∫
dνp

(2π~)ν
q(p)

∂

∂p`
C`m
a

[
βav

m +
∂

∂pm

]
f , (C44)

and upon integrating by parts, we can express

∂Q
∂t

+ ∇ · F = −
∑

a

∫
dνp

(2π~)ν
dQa

dt
f , (C45)

where

dQa

dt
=

[
βav

m − ∂

∂pm

]
C`m
a

∂q

∂p`
. (C46)

When the distribution f is a δ-function over the trajectory, then the integral may be per-

formed and we have

∂Q
∂t

+ ∇ · F = −
∑

a

dQa

dt
. (C47)

Appendix D: Numerical Constants and Quantities

1. Constants

Euler’s constant is

γ = 0.5772156649015328606065 · · · . (D1)
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Terms involving ~ and c:

c = 2.997 ∗ ×108 cm/s (D2)

~ = 6.582× 10−16 eV s = 6.582× 10−19 keV s (D3)

~c = 1974 eV Å = 1.974× 10−8 keVcm (D4)

a0 = 0.5292 Å = 5.292 × 10−9 cm (D5)

Be =
e2

4π · 2a0
= 13.6 eV (D6)

We shall never require the numerical value of the electric charge e for any calculation, so I

won’t bother to record its value. Instead, I will express the square of the charge e2 in terms

of the binding energy of the hydrogen atom and the Bohr radius: e2 =
(
e2/a0

)
·a0. Everyone

remembers that the binding energy of hydrogen is 13.6 eV, and that the radius of a hydrogen

atom is about 0.5 Å (0.5292). For example, the ion Debye wave number can be written

κ2i = βie
2
ini = βi

Z2
i e

2

8πa0
(8πa0)ni =

Z2
i Be

Ti
(8πnia0) . (D7)

Note that the units are trivially correct. Some masses:

me = 511.00 keV/c2 (D8)

mp = 938.28 MeV/c2 (D9)

mn = 939.57 MeV/c2 (D10)

mAMU = 931.50 MeV/c2 (D11)

We define NAmAMU = 1 g, where NA = 6.02× 1023
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2. Physical Quantities

For a plasma of inverse temperature β = 1/T , the de Broglie wave length λ of a particle

of mass m is defined by

λ = ~
(

2πβ

m

)1/2

. (D12)

For the electron and protons at inverse temperature β,

λe = 2.1889× 10−9 β1/2 cm = 0.356954 · a0β1/2 (D13)

λe = 5.10823× 10−11 β1/2 cm = 9.65275× 10−3 · a0β1/2 (D14)

with βe in inverse keV.

FIG. 2: λe/a0 (blue) and λp/a0 vs T = 1/β in keV. The ions are always classical, and the electrons
are quantum

The Debye wave number is:

κ2 = βe2n =
Be

T
(8πna0) . (D15)

Note that the units are correct.

Appendix E: Some Algebra

1. The pi Integration

We will often require the integration of a Gaussian with a delta-function along a transverse

direction, and it is convenient to give the integral in two alternative forms:
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∫
dνpi

(2π~)ν
fi(pi) (2π~) δ

(
vi · k̂− V

)
= niλimi exp

{
−1

2
βimi V

2

}
(E1)

∫
dνpi

(2π~)ν
e−βip

2
i /2mi (2π~) δ

(
vi · k̂− V

)
=

mi

λν−1i

exp

{
−1

2
βimi V

2

}
(E2)

where fi = zi e
−p2i /2mi is the Maxwell-Boltzmann distribution. To perform the integral, we

decomposed vi along the direction defined by k̂,

vi = v‖k̂ + v⊥ , (E3)

and since pi = mivi, we shall write p2i = p2⊥ +m2
i v

2
‖ . We now do the integrals in the normal

and parallel directions,

zi

∫
dνp⊥

(2π~)ν−1
e−βip

2
⊥/2mi ·mi

∫
dv‖e

− 1
2
βimi v

2
‖ δ (v‖ − V ) (E4)

=
zi

λν−1i

·mi exp

{
−1

2
βimiV

2

}
= nimiλi exp

{
−1

2
βimiV

2

}
, (E5)

where we have used

ni =
zi
λνi

. (E6)
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2. Fermi Function

In three dimensions, we define the Fermi function

F (z) ≡ 2z√
π

∫ ∞
0

dx
x1/2

ex + z
, (E7)

which satisfies

neλ
3
e

2
= F (ze) , (E8)

or

ze = F−1(neλ
3
e/2) . (E9)

Express F as a series:

1

ex + z
= e−x

1

1 + ze−x
= e−x

∞∑
`=0

(−1)` z`e−`z , (E10)

where |z| < 1.

F (z) =
2z√
π

∫ ∞
0

dx x1/2e−x
∞∑
`=0

(−1)` z`e−`z (E11)

=
2√
π

∞∑
`=0

(−1)` z`+1

∫ ∞
0

dx x1/2e−(`+1)z (E12)

= − 2√
π

∞∑
`=1

(−1)`+1 z`
∫ ∞
0

dx x1/2e−`z (E13)

For the Debye wave number: In three dimensions, we define

D(z) ≡ 2z√
π

∫ ∞
0

dx
x1/2 ex

(ex + z)2
(E14)

To do: large and small z limits, and write python module for F and F−1.

33



stopping power degen 1.2.tex

[1] L.S. Brown, D.L. Preston, and R.S. Singleton Jr, Charged Particle Motion in a Highly Ionized

Plasma, Phys. Rep. 410 (2005) 237.

[2] L.S. Brown and R.L. Singleton Jr, Temperature Equilibration Rate with Fermi-Dirac Statistics,

Phys. Rev E 76 (2007) 066404.

[3] E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Butterworth-Heinemann, Oxford 1981.

[4] R.L. Singleton Jr, BPS Explained I: Temperature Relaxation in a Plasma, or How to Find the

Coulomb Logarithm Exactly, arXiv: 0706.2680.

[5] R.L. Singleton Jr, BPS Explained II: Calculating the Equilibration Rate in the Extreme Quantum

Limit, arXiv: 0712.0639.

[6] H.A. Gould and H.E. DeWitt, Phys. Rev. 155 (1996) 68.

[7] E.A. Friemann, D.L. Book, Phys. Fluids 6 (1963) 1700.

[8] J. Weinstock, Phys. Rev. 133 (1966) A673.

[9] S. Aono, Phys. Fluids 11 (1968) 341.

34


