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1 Summary

Our work in this project is aimed at making fundamental advances in multiscale methods for flow 
and transport in highly heterogeneous porous media. The main thrust of this research is to develop 
a systematic multiscale analysis and efficient coarse-scale models that can capture global effects 
and extend existing multiscale approaches to problems with additional physics and uncertainties. 
A key emphasis is on problems without an apparent scale separation.

Multiscale solution methods are currently under active investigation for the simulation of sub­
surface flow in heterogeneous formations. These procedures capture the effects of fine-scale perme­
ability variations through the calculation of specialized coarse-scale basis functions. Most of the 
multiscale techniques presented to date employ localization approximations in the calculation of 
these basis functions. For some highly correlated (e.g., channelized) formations, however, global 
effects are important and these may need to be incorporated into the multiscale basis functions. 
Other challenging issues facing multiscale simulations are the extension of existing multiscale tech­
niques to problems with additional physics, such as compressibility, capillary effects, etc.

In our project, we explore the improvement of multiscale methods through the incorporation 
of additional (single-phase flow) information and the development of a general multiscale frame­
work for flows in the presence of uncertainties, compressible flow and heterogeneous transport, 
and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multi­
scale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) 
multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element 
methods for high contrast porous media and their generalizations, and (6) multiscale methods for 
geomechanics. Below, we present a brief overview of each of these contributions.
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2 Adaptive local-global multiscale methods

The use of limited global information in multiscale methods provides a better accuracy in the simu­
lations. In this part of our research, we have considered various ways to incorporate limited global 
information in two-phase flows to obtain accurate solutions and develop local-global approaches. 
The limited global information typically consists of single-phase flow information in two-phase flow 
simulations.

An earlier paper [4] on the use of limited global information is developed within the context of 
upscaling [4]. The procedure enables the efficient incorporation of approximate global information, 
determined via coarse-scale simulations, into the multiscale basis functions. The main idea of the 
technique in [13] (see also [17, 22, 21] for local-global and [29]) is to use the multiscale basis functions 
iteratively to obtain more accurate solutions. In particular, multiscale solutions over different 
oversampling regions are used to obtain the next iteration. These solutions can be computed 
efficiently since they rely on local solutions. Moreover, the basis functions can be updated using 
thresholding techniques similar to those developed for upscaling methods. The improvement in 
accuracy is due to the fact that each iteration improves the global information that is incorporated 
into the basis functions. The resulting procedure is formulated as a finite volume element method 
and is applied for a number of single and two-phase flow simulations of channelized two-dimensional 
systems. The level of accuracy of the resulting method is shown to be consistently higher than that 
of the standard finite volume element multiscale technique based on simple localized basis functions.

The global information can also be considered via the use of oversampling techniques as shown 
[23, 14]. Oversampling techniques are often used in porous media simulations to achieve high 
accuracy. The main idea of the oversampling technique is to use regions larger than the target 
coarse block to compute the basis functions. In particular, auxiliary solutions are computed, and 
then their linear combinations are used in setting up the local basis functions. In [10], we compare 
two type of oversampling strategies. The first oversampling approach uses generic global boundary 
conditions that do not reflect the actual flow boundary conditions, while the second oversampling 
approach replaces one of the global oversampling basis functions with the solution of the single-phase 
flow equation. Our numerical results show that the second approach is several times more accurate 
for one of the commonly used boundary conditions. We provide partial theoretical explanation for 
these numerical observations.

Other research in local-global methods (see [17, 22, 21]) focused on the use of local multiscale 
basis functions in constructing global modes, which allow an efficient reduced-order approximation 
of the solution. In these methods, by constructing global modes via local multiscale basis functions, 
we reduce the computational complexity of the problem.

3 Multiscale methods for the transport equation

Developing multiscale methods for transport equation in two-phase systems has been a challenging 
task. In this part, we have developed several robust techniques for convection-dominated problems.

In [15], we propose a multiscale technique for simulation of porous media flows in a flow-based 
coordinate system. A flow-based coordinate system is a coordinate system that depends on single­
phase flow characteristics, such as single-phase pressure and streamline functions. Flow-based 
coordinate systems allow us to simplify the scale interaction and derive the upscaled equations for 
purely hyperbolic transport equations. This is due to the fact that two-phase flow and transport
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properties are smooth functions in flow-based coordinate systems.
The main idea of the proposed method is to study the fine-scale model in a pressure-streamline 

coordinate system. We discuss the upscaling of the transport equation along streamlines as well 
as across streamlines. The upscaling along streamlines can be accomplished by taking harmonic 
averages of the velocity field. The upscaling across streamlines introduces non-local effects, which 
can be modeled using perturbation techniques. The upscaled transport equation is further coupled 
to the pressure equation which is solved using a multiscale finite volume element method on the 
coarse grid.

In [28], we have developed an adaptive multiscale finite-volume (MSFV) method for the trans­
port equation of nonlinear two-phase flow in heterogeneous domains. The objective is to develop an 
adaptive reconstruction strategy. The method can be described using prolongation and restriction 
operators as in a two-level multigrid scheme. The restriction operator is defined as the volume 
average of the fine-scale saturations in a coarse block. Three adaptive prolongation operators are 
defined according to the saturation distribution, in which the physical domain is divided into three 
regions: (1) Region 1 where the injection fluid has not arrived, (2) Region 2, where steep saturation 
gradients are present, and (3) Region 3 where saturations change slowly in the wake of advancing 
fronts. To identify the transition between the regions, specific norm-based criteria are proposed. In 
Region 1, the transport equation can be completely skipped, whereas in the Regions 2 the local fine- 
scale transport equations are solved iteratively on a coarse grid (this is referred as Prolongation 
Operator I). In Regions 3, we developed two approximate prolongation operators: Prolongation 
Operator II that reconstructs the fine-scale velocity and is locally conservative on the fine grid, 
and Prolongation Operator III that interpolates saturation changes to yield a locally conservative 
scheme, but only on the coarse grid. The proposed adaptive multiscale method has been tested with 
various models, including systems with strong permeability heterogeneity. An example using the 
SPE 10 top layer demonstrates that the multi-scale results with adaptive transport calculations are 
in excellent agreement with the fine-scale reference solutions. Furthermore, the adaptive scheme for 
coupled flow and transport equations yields solutions that are much more computationally efficient 
than conventional finite difference methods.

In [3], we study a stabilization of multiscale methods for convection-dominated problems. In 
particular, we develop a Petrov-Galerkin stabilization method for multiscale convection-diffusion 
transport systems. Existing stabilization techniques add a limited number of degrees of freedom in 
the form of bubble functions or a modified diffusion, which may not be sufficient to stabilize multi­
scale systems. We seek a local reduced-order model for this kind of multiscale transport problems 
and develop a systematic approach for finding reduced-order approximations of the solution. We 
start from a Petrov-Galerkin framework using optimal weighting functions. We introduce an auxil­
iary variable to a mixed formulation of the problem. The auxiliary variable stands for the optimal 
weighting function. The problem reduces to finding a test space (a dimensionally reduced space 
for this auxiliary variable), which guarantees that the error in the primal variable (representing the 
solution) is close to the projection error of the full solution on the dimensionally reduced space that 
approximates the solution. We introduce snapshots and local spectral problems that appropriately 
define local weight and trial spaces. In particular, we use energy minimizing snapshots and local 
spectral decompositions in the natural norm associated with the auxiliary variable. The resulting 
spectral decomposition adaptively identifies and builds the optimal multiscale space to stabilize the 
system. We present several numerical examples, including a transport equation in highly hetero­
geneous porous media and show that one needs a few test functions to achieve an error similar to 
the projection error in the primal variable irrespective of the Peclet number.
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4 Operator-based multiscale methods and solvers

Using multiscale methods as solvers has been investigated in the works [33, 35, 34, 31, 30], where a 
general Algebraic Multiscale Solver (AMS) for the pressure equation was developed. We analyzed 
the role of the Correction Function (CF) in the context of AMS, and we showed that the CF can 
be seen as an independent local stage. As a local preconditioner, CF helps to capture some of 
the high-frequency errors, especially in the source terms, and accelerates the overall convergence 
rate. However, - on average - the gain in convergence rate of using CF does not compensate for 
the additional computational cost. Simple preconditioners, such as ILU, are found to be more 
efficient than CF. Note that AMS with any combination of local- and global-stage solvers al- lows 
for the reconstruction of a conservative velocity field, if an MSFV stage is applied as the last 
step. Overall, the best AMS strategy is multiscale finite element with reduced boundary conditions 
along with ILU. Our results indicate that the performance of AMS is comparable to advanced 
algebraic multigrid solvers. Our results show that AMS is quite efficient, especially if it is used as 
a multiscale approximate (but conservative) solver for time-dependent subsurface flow problems. 
We have extended the existing multiscale methods to compressible multi-phase flows.

5 Multiscale methods for stochastic porous media flow equations

In this part, we have developed multiscale methods for stochastic flow equations, where the uncer­
tainties are due to permeability variations. The latter is important for many realistic flows.

In this paper [12], we study multiscale finite element methods for stochastic porous media flow 
equations as well as applications to uncertainty quantification. We assume that the permeability 
field is stochastic and can be described in a finite dimensional stochastic space. This is common 
in applications where the coefficients are expanded using chaos approximations. We discuss two 
types of approaches. In the first approach, the basis functions are interpolated using pre-computed 
basis functions computed based on some selected realizations of the permeability field. In the 
second approach, the stochastic solution is projected to a finite dimensional space consisting of basis 
functions corresponding to selected realizations. The second case does not require any interpolation 
in stochastic space. Basis functions can be constructed both locally and globally. The proposed 
multiscale method constructs multiscale basis functions corresponding to some realizations, and 
these basis functions are used to approximate the solution on the coarse grid for any realization. 
These multiscale methods are used in developing multilevel Monte Carlo methods in [27, 16], where 
we propose multilevel Monte Carlo (MLMC) methods. In multilevel Monte Carlo methods, more 
accurate (and expensive) forward simulations are run with fewer samples, while less accurate (and 
inexpensive) forward simulations are run with a larger number of samples. Selecting the number 
of expensive and inexpensive simulations based on the number of coarse degrees of freedom, one 
can show that MLMC methods can provide better accuracy at the same cost as Monte Carlo (MC) 
methods. We also apply the proposed technique to an uncertainty quantification problem where 
the permeability field is sampled based on oil production rates (an integrated response).

In a number of papers, we explored performing the multiscale model reduction in both physical 
space and stochastic space to design effective dimensional reduction method. In [7, 32], we develop 
a data-driven stochastic method by using multiscale model reduction for flow equations in the 
physical space and exploring a low-rank solution structure in the stochastic space. By upscaling in 
the physical space and by exploring the low rank structure in the stochastic space, we demonstrate
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this multiscale data-driven stochastic method gives a significant speed-up over existing stochastic 
methods based on generalized polynomial chaos expansion.

In [5, 6], we develop a dynamically bi-orthogonal method (DyBO) to solve compressible flow 
equations described by time dependent stochastic partial differential equations (SPDEs). The ob­
jective of our method is to exploit some intrinsic sparse structure in the stochastic solution by 
constructing the sparsest representation of the stochastic solution via a bi-orthogonal basis. The 
main contribution of these papers is that we derive an equivalent system that governs the evolu­
tion of the spatial and stochastic basis in the Karhunen-Loeve expansion. Unlike other reduced 
model methods, our method constructs the reduced basis on-the-fly without the need to form the 
covariance matrix or to compute its eigendecomposition. We have performed extensive numeri­
cal experiments for compressible single-phase flow in stochastic porous media to demonstrate the 
effectiveness of the DyBO method.

In [25], we introduce a heterogeneous stochastic FEM framework to solve single-phase flow 
equation described by stochastic elliptic PDEs with multiscale random coefficients. Our method 
explores the compactness of the inverse operator in the stochastic direction and allows for spatially 
heterogeneous stochastic structure. More specifically, we use the heterogeneous coupling of spatial 
basis with local stochastic basis to exploit the local stochastic structure of the solution space. This 
line of research is further explored in [26].

In upscaling a stochastic PDE describing flow equations, how to define an appropriate local 
boundary condition is crucial for accuracy of the upscaled problem. In [24], we propose a local 
oversampling method to construct basis functions that have optimal local approximation property. 
Our methodology is based on the compactness of the solution operator when restricted to local re­
gions of the spatial domain, and does not depend on any scale-separation or periodicity assumption 
of the coefficient. We construct a special type of basis functions that are harmonic on each ele­
ment and have optimal approximation property. Rigorous error estimates can be obtained through 
thresholding in constructing the basis functions. Numerical results for single-phase flow with mul­
tiple spatial scales and high contrast inclusions are presented to demonstrate the compactness of 
the local solution space and the capacity of our method in identifying and exploiting this compact 
structure to achieve computational savings.

6 Multiscale methods for high contrast porous media and their 
generalizations

To take into account the high contrast in the media properties, we have developed a general 
multiscale framework, Generalized Multiscale Finite Element Method, which extends multiscale 
finite element method. In [20, 18, 19], we have presented a general framework for solving multiscale 
problems with a high contrast. The main idea of the GMsFEM is to introduce snapshots on a 
coarse grid and identify dominant modes in the snapshot space. The snapshot space represents a 
set of functions that can be used to calculate the local solution space accurately. The snapshots 
typically consist of local solutions with randomized boundary conditions, which represent point 
sources distributed on the boundaries. The snapshot vectors are similar to the snapshots used in 
global model reduction, however, they are constructed without solving expensive global problems 
and similar to cell problems in homogenization. The snapshot vectors are computed by using 
random boundary conditions. To avoid the effects of randomization and improve the accuracy, 
we use oversampling techniques and compute snapshots in domains slightly larger than the target
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coarse block. The local spectral decomposition is performed in the space of snapshots by identifying 
local spectral decomposition based on the analysis. The analysis consists of decomposing the error 
into local regions and bounding these error components. We have demonstrated applications of the 
method to two-phase flow systems in [21].

The multiscale methods in the presence of the high contrast has also been rigorously investi­
gated in [8, 9] for some special permeability fields. The authors have introduced a new variant of 
the multiscale finite element method which is able to accurately capture solutions of high contrast 
elliptic interface problems using uniform coarse meshes which are not required to resolve the inter­
faces [8, 9]. A typical application would be the modeling of a number of highly permeable inclusions 
in a low-permeability matrix. Under moderate assumptions, we prove that our methods have con­
vergence of O(H) in the energy norm and O(H2) in the L2 norm, independent of the contrast, 
where H is the (coarse) mesh diameter. Our methods are conforming and employ multiscale finite 
element approximation with novel interior boundary conditions on element edges which intersect 
the interface. The method reduces to standard linear approximation on elements which do not 
intersect the interface. The new boundary conditions depend not only on the contrast but also on 
the local angles of intersection of the interface with the element edges. Our numerical experiments 
have confirmed our theoretical results. This is the first convergence result for the multiscale inter­
face problem in which one can obtain an optimal convergence result independent of the contrast of 
the coefficients without requiring the media being periodic in order to use homogenization theory.

7 Multiscale methods for geomechanics

One of the proposed areas included geomechanics, where the flow and mechanics equations are 
coupled. We have investigated the application of multiscale methods to geomechanics in [1, 2].

In [1], the numerical solution of poroelasticity problems is studied. The system is of Biot type, 
for which a general algorithm for solving coupled systems is developed. The challenges associated 
with mechanics and flow problems in heterogeneous media are discussed. The two primary issues 
being the multiscale nature of the media and the solutions of the fluid and mechanics variables 
traditionally developed with separate grids and methods. For the numerical solution we develop and 
implement a Generalized Multiscale Finite Element Method (GMsFEM) that solves problem on a 
coarse grid by constructing local multiscale basis functions. The procedure begins with construction 
of multiscale bases for both displacement and pressure in each coarse block. Using a snapshot space 
and local spectral problems, we construct a basis of reduced dimension. Finally, after multiplying 
by a multiscale partitions of unity, the multiscale basis is constructed in the offline phase and 
the coarse grid problem then can be solved for arbitrary forcing and boundary conditions. The 
algorithm is implemented on two heterogeneous media and the errors are computed between the 
multiscale solution with the fine-scale solutions.

In [2], The numerical solution of some nonlinear poroelasticity problems is considered. This 
Biot type system is solved by a novel general algorithm. The difficulties associated with flow and 
mechanics in heterogeneous media with nonlinear coupling are discussed. The central issue being 
how to handle the nonlinearities and the multiscale scale nature of the media. To compute an 
efficient numerical solution we develop and implement a Generalized Multiscale Finite Element 
Method (GMsFEM) that solves nonlinear problems on a coarse grid by constructing local mul­
tiscale basis functions and treating part of the nonlinearity locally as a parametric value. After 
linearization with a Picard Iteration, the procedure begins with construction of multiscale bases
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for both displacement and pressure in each coarse block by treating the staggered nonlinearity as a 
parametric value. Using a snapshot space and local spectral problems, we construct an offline basis 
of reduced dimension. From here an online, parametric dependent, space is constructed. Finally, 
after multiplying by a multiscale partitions of unity, the multiscale basis is constructed and the 
coarse grid problem then can be solved for arbitrary forcing and boundary conditions. The algo­
rithm is implemented on a geometry with a linear and nonlinear pressure dependent permeability 
field. The errors are computed between the multiscale solution with the fine-scale solutions.
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