ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-16-23837

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

Uncertainties in the Standard Moments, the Derivation of the Y1 to Y8
parameters, and the Derivation of w1l to w8 for Feynman Histograms.

Smith-Nelson, Mark A.
Cutler, Theresa Elizabeth
Hutchinson, Jesson D.

Internal Documentation

2016-06-02




Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



Uncertainties in the Standard Moments,
the Derivation of the Y1 to Yg parameters,
and the Derivation of an to axs
for Feynman Histograms.

Mark A. Smith-Nelson, Jesson D. Hutchinson, Theresa E. Cutler.

Introduction

Momentum is a neutron multiplicity analysis software package that calculates a variety of parameters
associated with Feynman histograms. While most of these parameters are documented in Cifarelli [1]
and Smith-Nelson [2] there are some parameters which are not. Most prominent of these are the
uncertainties in the standard moments and this paper will explicitly document these parameters. This
paper will also document the higher order Y, parameters and their associated @, functions because

they may be useful for future applications.

The generation of what is referred to as Feynman histograms will not be explained here. For a discussion
on the generation of Feynman histograms please see Cutler [3].

Uncertainties in the Standard Moments

The j" standard moments for a Feynman histogram are defined as

ik"ck
 _ k=0

Ci="— (1)

] 0

DG
k=0
where Ckis the number of counts in the bin k of a histogram [4]. The variance for the standard moments
is determined by

2
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where the parameter N is the number of gates in a histogram [5]. N is calculated by

N=>c,. (3)
k=0

Once the equation for the variance is expanded and simplified the result is

1 (— =
%6’ =1(%~C) (4)
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For completeness the variances for the first four standard moments are

7 =5 (G C)
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Example Histogram

(8)

An example histogram is presented in Table 1 and Figure 1. The standard moments and their associated

uncertainties for this example are listed in Table

Table 1. The values of the histogram used for illustration purposes.
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Figure 1. An example histogram used for illustrating the parameters in the uncertainty estimation.

Table 2. The standard moments of the example histogram and
the associated uncertainties.

Moment Value % Uncertainty
C, 5012 +  0.062 1.2%
C, 28.931 +  0.648 2.2%
C, 183.495 + 5992 3.3%
C, 1252203 + 54.931 4.4%

Higher order Y, Parameters

A set of parameters referred to as the Y, parameters are used to describe a Feynman histogram. The
first three Y, parameters are explicitly stated in Cifarelli [1] but they do not show the equations for the
higher order Y, parameters. Walston [6] demonstrates the recursive nature of the derivation of these
parameters and this method was used to determine the higher order parameters.

The first eight Yn’'s were calculated using Maple 18 and are listed below. For comparison the first three
Yn parameters calculated here agree with Cifarelli [1] and so there is confidence that the subsequent
Y.'s are correct. The resulting Yy's are in terms of reduced factorial moments, which are represented as

m_n . The generation of these moments is described in Cutler [3], and Smith-Nelson [2] but for
convenience, the first four reduced factorial moments are given below as well.
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Shape of the Y, parameters
The Y, parameters are fit to equations that are of the form

Y, =R, (4,7). (21)

where R; is the rate of detection of n neutrons from a fission chain, A is the inverse of the neutron
lifetime, and ris the gatewidth. The derivation of the term ), is given in Walston [6] but a simpler

formula is referenced by Hutchinson [7], which is

n-1 n_l 1_e—HK
a)n(z,r)=§( K j(—l)KM—K- (22)
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The first eight derivations of @, were calculated using Maple 18 and are given below.
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Correlated neutron data was generated to simulate a 4.5 kg sphere of plutonium containing 6% 2*°Pu

[8]. From this data the first four Y, parameters were calculated and fitted with the appropriate

functions. The plots for these are presented below in Figures 2 through 5. It can be see that the shape of

the @, functions fit the data well.
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Figure 2. A plot of the Y; parameter as a function of gatewidth.
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Figure 3. A plot of the Y, parameter as a function of gatewidth.
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Figure 4. A plot of the Y3 parameter as a function of gatewidth.
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Figure 5. A plot of the Y4 parameter as a function of gatewidth.

Summary

The uncertainties in the standard moments has been documented. The higher order Y, parameters of Y;
to Yg as functions of the reduced factorial moments have also been calculated here. The shape of the Y,
parameters as a function of gatewidth have also been generated and explicitly given.
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