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xRage Equation of State

John W. Grove
CCS-2 Los Alamos National Laboratory

1 Introduction

The xRage code supports a variety of hydrodynamic equation of state (EOS)
models. In practice these are generally accessed in the executing code via a
pressure-temperature based table look up. This document will describe the
various models supported by these codes and provide details on the algo-
rithms used to evaluate the equation of state.

2 General Theory

The continuum model for compressible hydrodynamics assumes that the ther-
modynamics of a material component is described by an equilibrium equation
of state that relates the pressure (P ), temperature (T ), specific internal en-
ergy (e), specific entropy (S), and specific volume (V ) of the material. An
excellent summary of equations of state for equilibrium components can be
found in the article of Menikoff and Plohr [15]. Briefly, the thermodynamic
equilibrium properties are described by a free energy for the component.
These include:

The specific internal energy:

e = e (V, S) , de = TdS − PdV. (1)

The specific enthalpy:

H = H (P, S) , dH = TdS + V dP. (2)

The Gibb’s free energy:

G = G (P, T ) , dG = −SdT + V dP. (3)

The Helmholtz free energy:

F = F (V, T ) , dF = −SdT − PdV. (4)
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These free energies are related via Legendre transformations so that any one
determines the others. In particular we have:

F (V, T ) = inf
S

[e (V, S)− TS] , e (V, S) = sup
T

[F (V, T ) + TS]

H (P, S) = inf
V

[e (V, S) + PV ] , e (V, S) = sup
P

[e (V, S)− PV ]

G (P, T ) = inf
V,S

[e (V, S)− TS + PV ] , e (V, S) = sup
P,T

[G (V, T ) + TS − PV ] .

(5)
The free energies are constrained by thermodynamic stability so that e (V, S)
is a convex function:

e ((1− α)V0 + αV1, (1− α)S0 + αS1) ≤ (1− α) e (V0, S0)+αe (V1, S1) , 0 ≤ α ≤ 1.
(6)

The invertability of the Legendre transform then implies that the Gibb’s free
energy is a concave function of pressure and temperature:

G ((1− α)P0 + αP1, (1− α)T0 + αT1) ≥ (1− α)G (P0, T0)+αG (P1, T1) , 0 ≤ α ≤ 1.
(7)

The free energies are piecewise smooth (C2) away from phase transitions and
the differential relations in equations (1.1)(1.4) hold in smooth regions of the
domain. The convexity constraint for the specific internal energies implies
the positivity of the specific heat at constant pressure (CP ), the specific heat
at constant volume (CV ), and that the adiabatic sound speed (c) is real:

CP = ∂H
∂T

∣∣
P

= T ∂S
∂T

∣∣
P
≥ CV = ∂e

∂T

∣∣
V
T ∂S

∂T

∣∣
V
≥ 0,

c2 = −V 2 ∂P
∂V

∣∣
S
≥ 0.

(8)

Incomplete equations of state: It is very common in practice to specify
the equation of state of a material via a specification of the pressure as a
function of the specific internal energy and specific volume. Such a formula-
tion is called an incomplete equation of state. For inviscid hydrodynamics,
such a formulation is in fact sufficient to solve to the compressible Euler
equations. What is missing is the specification of the temperature or specific
entropy of the material. If one wishes to derive a complete equation of state
that is compatible with a given incomplete equation of state, the basic issue
is to find a temperature and specific entropy that satisfies the first law of
thermodynamics:
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TdS = de+ P (e, V ) dV ⇔ ∂1/T

∂V

∣∣∣∣
e

=
∂P/T

∂e

∣∣∣∣
V

⇔ P
∂T

∂e
− ∂T

∂V
= T

∂P

∂e
. (9)

Equation(1.9) specifies a partial differential equation for temperature as a
function of specific internal energy and specific volume. This equation is a
scalar hyperbolic equation whose characteristics are the isentropes (constant
specific entropy) curves defined by the incomplete equation of state:

de

dV
= −P (e, V ) . (10)

General theory implies that a solution to (1.9) can be found by specifying
the temperature along any non-characteristic curve. The most common case
is that of constant CV so that the specific internal energy is related to the
temperature by a relation of the form:

e− er (V ) = CV (T − Tr (V )) . (11)

It can further be shown that the assumption of a constant CV implies that
the incomplete equation of state is of the Grüneisen form:

P − Pr (V ) =
Γ (V )

V
(e− er (V )) . (12)

In this case the reference curves, Pr (V ) and er (V ) together with the Grüneisen
exponent Γ (V ) are assumed to given as part of the specification of the in-
complete equation of state. Substituting equations (1.11) and (1.12) into
equation (1.9) we obtain an ordinary differential equation for the reference
temperature:

dTr
dV

+
Γ (V )

V
Tr =

Pr (V ) + e′r (V )

CV
. (13)

The solution of (1.13) is given by:

Tr (V ) = e
−
∫ V
V0

Γ(v)
v
dv

T0 +

V∫
V0

Pr (v) + e′r (v)

CV
e

v∫
V0

Γ(χ)
χ
dχ

dv

 . (14)

Here T0 is the value for the reference temperature at the specific volume V0
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At this writing, there is a bug in many of the analytic equations of state
implemented in xRage that assumes the relation e = CV T , which implies
er (V ) = CV Tr (V ), Pr (V )V = CV Γ (V )Tr (V ), and hence PV = Γ (V ) e
Since most of the non-perfect gas equations of state have non-trivial reference
curves, this means that the temperature computed by these functions is not
thermodynamically consistent with the given incomplete equation of state.

2.1 Mixtures

The xRage hydrodynamic solvers are implementations of what are commonly
called mixed cell hydrodynamic algorithms. Basically these are models that
assume the thermodynamics of a fluid mixture can be computed from the
properties of the separate component equations of state together with infor-
mation about the relative quantity and distribution of the components within
a computational element, specifically the mass and volume fractions of the
components in the mixture. Three basic models are currently implemented:

1. Pressure-temperature equilibrium which assumes that all of the com-
ponents in the mixture are at the same pressure and temperature with
respect to the separate equations of state.

2. Thermal Isolation which assumes that the components specific en-
tropies advect with the volume while remaining in pressure equilibrium.

3. Uniform strain which assumes that the components volume fractions
advect with the flow while remaining in pressure equilibrium.

All three of these models assume that the components in the mixture are in
velocity equilibrium with each other.

2.1.1 Pressure-Temperature Equilibrium Mixtures

Physically, the pressure-temperature equilibrium model is based on the as-
sumption that the thermodynamics of a moving fluid element is described by
a Gibb’s free energy that is the mass average of the component Gibb’s free
energy:

G (P, T, µ1, . . . , µN) =
N∑
k=1

µkGk (P, T ). (15)
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Here µk is the mass fraction of component k, and
N∑
k=1

µk = 1. Since conser-

vation of mass for a non-reacting flow imply that the mass fractions advect
with the common velocity of a fluid element Dµk

Dt
= ∂µk

∂t
+ v • ∇µk = 0 one

can regard equation (1.15) as specifying an equation of state for the mixture
as a mass average of the equation of state for the components. In particular,
one can show that equation (1.15) implies that the mixture specific internal
energy and specific volume are obtained as mass averages of the component
values at their equilibrated pressure and temperature:

e =
N∑
k=1

µkek (P, T )

V =
N∑
k=1

µkVk (P, T ).

(16)

In practice a pressure-temperature equilibrium equation of state is imple-
mented by solving equation (1.16) for P and T given the mixture specific
internal energy e, mixture specific volume V , and the component mass frac-
tions µ1, . . . , µN . The component volume fractions αk are then determined
by the relation:

αkρk = µkρ⇔ αkV = µkVk = µkVk (P, T ) . (17)

Perfect Gas Mixtures In general it is not possible to solve the system
(1.16) analytically for general equations of state; however this is possible for
the important special case of mixtures all of whose components have perfect
gas equations of state:

PVk = (γk − 1) ek
ek = CV,kT.

(18)

Inserting the relations in (1.18) into system (1.16) we obtain:

e =

(
N∑
k=1

µkCV,k

)
T = CV T

PV =
N∑
k=1

µkPVk =
N∑
k=1

µk (γk − 1)ek =

(
N∑
k=1

µk (γk − 1)CV,k

)
T = (γ − 1) e

αk = µk
Vk
V

= µk
(γk−1)CV,k
(γ−1)CV

.

(19)
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The solution is that for constant mass fractions the mixture is effectively a
perfect gas with a specific heat CV that is the mass average of the component
values, and a Grüneisen exponent Γ = (γ − 1) that is a heat capacity average
of the component values.

2.1.2 Non-Temperature Equilibrium Mixtures

Both the thermal isolation and uniform strain models include dynamical
equations for the volume fractions and thus for the purposes of the equation
of state evaluation both the mass fractions and volume fractions are assumed
to be given in addition to the mixture specific internal energy and specific
volume. In this case we only need the incomplete equation of state P =
Pk (ek, Vk) for the components in order to solve for the mixture pressure.
The system of equations to be solved becomes:

P = Pk (ek, Vk) = Pk

(
ek,

µk
αk
V
)
, k = 1, . . . , N

e =
N∑
k=1

µkek.
(20)

If the component equations of state are inverted to give ek = ek (P, Vk) then
(1.20) reduces to the single equation for pressure:

e =
N∑
k=1

µkek

(
P,
µk
αk
V

)
. (21)

Thermal Isolation/Uniform Strain mixtures of Grüneisen equations
of state If all of the components in the mixture are of the Grüneisen form
(1.12) then the linear relation between pressure and specific internal energy
for fixed specific volume means that equation (1.21) can be solved explicitly:

P =

e−
N∑
k=1

µker,k (Vk)

N∑
k=1

µk
Vk

Γk(Vk)

+

N∑
k=1

µk
Vk

Γk(Vk)
Pr,k (Vk)

N∑
k=1

µk
Vk

Γk(Vk)

, Vk =
µk
αk
V. (22)

It is of some interest to note that the incomplete equation of state (1.22) is
also of Grüneisen form for fixed mass and volume fractions with:

1

Γ
=

N∑
k=1

αk
Γk
, Pr = Γ

N∑
k=1

αk
Γk
Pr,k, er =

N∑
k=1

µker,k. (23)
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3 Implemented Equation of State Models

The xRage code supports a variety of equation of state models. In the fol-
lowing we will summarize details of some of the more popular models that
can be used for a hydrodynamic simulation.

3.1 Perfect Gas/Gamma Law Mixtures

A mixture of perfect gases is the most common analytic equation of state for
theoretical applications. This model was described in the example on page
5. A user requests this EOS model via the input specifications:

3.1.1 Perfect Gas Mixtures Input File Specifications

The list below summarizes the input deck specifications needed to use a
perfect gas mixture. Again the reader is reminded that xRage only supports
one equation of state model per simulation specified by the value of the input
variable “keos”. Simulations that require mixtures of different EOS models
will need to use the tabular equation of state as described in the next section.

1. keos: Equation of state type, keos= 0

2. nummat: Number of material components, nummat= N a positive
integer

3. matdef(16,m) 1 ≤ m ≤ N: Grüneisen exponent, matdef(16,m) = Γ
a real number > 1, Γ = γ − 1 where γ is the usual ratio of specific
heats.

4. matdef(30,m): Specific heat at constant volume, matdef(30,m)=CV
a positive real number with units of ergs/(gram eV)

3.2 Gittings Tabular Equation of State

The Gittings tabular equation of state is the workhorse EOS model in xRage
This package was designed by M. Gittings of SAIC to allow the relatively
rapid computation of the pressure-temperature thermodynamics of a mixture
of material components. The structure of this EOS model is a set of pressure-
temperature tables of densities and specific internal energies as functions of
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pressure and temperature for each material component. The key feature of
this table is that all of the material component data are given along the same
isobars/isotherms. In other words the tables are of the form:

ρi,j,m = ρm (Pi, Tj)
ei,j,m = em (Pi, Tj)

, 1 ≤ i ≤ nP , 1 ≤ j ≤ nT , 1 ≤ m ≤ N. (24)

Here N is the number of material components represented in the table. In the
current code (as of this writing) evaluation of the table is based on bilinear
interpolation of specific volume and specific internal energy as functions of
pressure and temperature:

Vm (P, T ) =

(
Pi+1−P
Pi+1−Pi

)((
Tj+1−T
Tj+1−Tj

)
Vm (Pi, Tj) +

(
T−Tj

Tj+1−Tj

)
Vm (Pi, Tj+1)

)
+(

P−Pi
Pi+1−Pi

)((
Tj+1−T
Tj+1−Tj

)
Vm (Pi+1, Tj) +

(
T−Tj

Tj+1−Tj

)
Vm (Pi+1, Tj+1)

)
em (P, T ) =

(
Pi+1−P
Pi+1−Pi

)((
Tj+1−T
Tj+1−Tj

)
em (Pi, Tj) +

(
T−Tj

Tj+1−Tj

)
em (Pi, Tj+1)

)
+(

P−Pi
Pi+1−Pi

)((
Tj+1−T
Tj+1−Tj

)
em (Pi+1, Tj) +

(
T−Tj

Tj+1−Tj

)
em (Pi+1, Tj+1)

)
Pi ≤ P < Pi+1

Tj ≤ T < Pj+1

1 ≤ m ≤ N
.

(25)

Given masses mk (or equivalently mass fractions µk = mk/m,m =
N∑
j=1

mj) for

the components in a cell together with the total cell specific internal energy
e and specific volume V = 1/ρ the Gittings TEOS method seeks to determine

a pressure and temperature such that equation (1.16) holds. The algorithm
is based on a bisection type search of the tabular data. Note that since the
mass fractions are fixed in this calculation it is mathematically equivalent
to an inversion of a Gibb’s free energy given by equation(1.15) to compute
pressure and temperature given specific internal energy and specific volume.
Thus for this purpose the mass fractions can be regarded as “known” EOS
parameters within the solution algorithm, and we will frequently suppress
the explicit dependence of the specific volume and specific internal energy as
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functions of the mass fractions:

V (P, T ) ≡ V (P, T, µ1, . . . , µN) =
N∑
k=1

µkVk (P, T )

e (P, T ) ≡ e (P, T, µ1, . . . , µN) =
N∑
k=1

µkek (P, T ).

(26)

A similar suppression is used for the thermodynamic derivatives of the mix-
ture.

3.2.1 Tabular Equation of State Input File Specifications

The input file specifications needed to use a tabular equation of state are
summarized below:

1. keos: Equation of state type, keos=3

2. nummat: Number of material components, nummat= N a positive
integer

3. eosfile: Name of the file containing the tabular equation of state data,
eosfile=’file’ where the TEOS is contained in the indicated file

4. matdef(1,m) 1 ≤ m ≤ N: Material index identifier, an unique integer
identifier for a material in the table file, matdef(1,m)=ID a positive
integer corresponding to a material EOS contained in the TEOS file.

5. matident(m) 1≤m≤N: Material component name (e.g. ‘air’,’Sn’,. . . ),
matident(m)=’NAME’ where NAME is the label that will be used for
this material in printed diagnostics. The names must be unique.

6. matdef(25,m) 1 ≤m ≤ N: Specific internal energy / Specific Volume /
Specific entropy scale, matdef(25,m)=sr a dimensionless positive real
number. Scales the table values for specific internal energy and specific
volume by the indicated value. This is basically a ratio of molecular
weights and is used to create an EOS for one isotope from the EOS of
another isotope of the same material. It is also used as a method to
attempt to match a desired mass for a component when the state of
that material is specified by a pressure and temperature. The default
value of this parameter is zero, but internally a value for matdef(25,m)
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= 0 is translated into the equivalent value of 1 (identity scaling). It is
possible to have the code attempt to set the value for matdef(25,m) au-
tomatically. This is done by not specifying a value for matdef(25,m) in
your input deck and instead specifying either a desired mass or density
for the material using the arrays material density or material mass, but
not both. If material mass(m) is given, then a value for matdef(25,m)
is computed to yield that specified mass and the masses in the cells con-
taining this component are modified to yield the desired mass. Similarly
if material density(m) is specified then the total mass of this compo-
nent is modified so the the ratio of total mass of this material divided
by its total volume is equal to the input density. Note: this process
can produce a mesh dependency in the resulting EOS evalutions.

7. matdef(26,m) 1 ≤ m ≤ N: Specific internal energy translation, mat-
def(26,m) = ∆em a real number with units ergs/gram. The spe-
cific energy of a component at pressure P and temperature T becomes
em (P, T ) = em,table (P, T )−∆em. Default = 0

8. use old ss: Revert to old (wrong) sound speed formula, A logical vari-
able that allows the reversion to an old incorrect formula for the sound
speed. Default = .false.

3.2.2 Generating TEOS Tables

The data files used and input for using the Gittings’ tabular equation of state
are generated by running xRage using a special input deck that contains
the specification of the EOS models to be incorporated into the pressure-
temperature based tables together with a file name for the outputted data.
The key field is to specify a value teos file=filename in the input deck; if
such an entry is found the code branches to a non-returning equation of state
setup routine. The only action of the run will be to produce the TEOS file
using the desired material specifications. The following list outlines the main
input deck options needed to generate a TEOS table.

1. teos file: TEOS file name. The name of the file that will contain the
computed TEOS data, a character string at most 64 characters long.

2. numm: Number of EOS models. The number of EOS models to be
inserted in the table. numm= N a positive integer.
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3. support tension: A logical variable which when true will allow the
tabular EOS to contain negative pressures. Default = false. Note that
when a run uses an EOS file that was created with the support tension
option turned on, this value is turned on as the default value in the
hydro run. This will affect various cutoff’s used in the hydro solvers.

4. matid(m), 1 ≤ m ≤ N: Material index. An array of material indices,
one different array per material. These are the values to be entered as
matdef(1,m) in simulation input files. A positive integer.

5. eostype(m), 1 ≤m ≤ N: Equation of state type. An array of N integer
identifiers for the equation of state type to be used for each material.
The legal values for eostype(m) include:

(a) Notation.

i. P is the pressure with units microbars.

ii. E is the specific internal energy with units ergs/gram.

iii. T is the thermodynamic temperature with units of tempera-
ture equivalent electron volts.

iv. ρ is the mass density with units grams/cc V = 1
ρ

(b) eostype(m)=0: Sesame [2, 13] equation of state using the Git-
tings’ sesame interface

i. Use matid(m) to select the desired SESAME material.

(c) eostype(m)=99: Sesame equation of state using the EOSPAC
[19] interface

i. Use matid(m) to select the desired SESAME material.

(d) eostype(m)=1: JWL [12, 4] equation of state

i. P = Pr(V ) + w
V

(E − Er(V ))

ii. E = Er(V ) + CV T

iii. Pr(V ) = Ae
−R1

V
V0 +Be−R2

V
V 0

iv. Er(V ) = AV0

R1
e
−R1

V
V0 + BV0

R2
e−R2

V
V 0

v. A = matdef(3,m) units microbars

vi. B = matdef(4,m) units microbars

vii. R1 = matdef(10,m) dimensionless
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viii. R2 = matdef(11,m) dimensionless

ix. w = matdef(16,m) dimensionless

x. ρ0 = matdef(21,m) dimensionless, V0 = 1
ρ0

xi. ρ0CV = matdef(30,m) units ergs/cc/eV

(e) eostype(m)=2: Polynomial equation of state e = CV (T − T0 +
P0/(Γρ0CV )),

i. P = (κa + (κb + κcµ)µ)µ+ ΓρE µ > 0,

ii. P = κaµ+ ΓρE µ < 0

iii. µ = ρ
ρ0
− 1

iv. κa = matdef(3,m) units microbars

v. κb = matdef(10,m) units microbars

vi. κc = matdef(11,m) units microbars

vii. Γ = matdef(16,m)

viii. ρ0 = matdef(21,m) units grams/cc

ix. T0 = matdef(26,m) units eV

x. P0 = matdef(28,m) units microbars

xi. CV = matdef(30,m) units ergs/gram/eV

(f) eostype(m)=3: The Steinberg [20, 21] variation of the Mie-Grüneisen
equation of state based on principal Hugoniot as reference curve
with

us = c0 +
[
s1 + s2(up/us) + s3(up/us)

2
]
up (27)

i.

P =


ρ0c20µ[1+(1−Γ0

2 )µ− b2µ2][
1−(s1−1)µ−s2 µ2

1+µ
−s3 µ3

(1+µ)2

]2 + (Γ0 + bµ) ρE , for ρ ≥ ρ0

ρ0c
2
0µ+ Γ0ρE , for ρ < ρ0

where µ = ρ
ρ0
− 1.

ii. E = CV (T − T0)

iii. NOTE: There are two inconsistencies in the above formulas.
The formula for pressure is based on a misinterpretation of
formula (17) in [20, 21]. In the reference the quantity E is
energy per reference volume not energy per volume. Conse-
quently, the above formula for P does not give the correct
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Hugoniot.
The second inconsistency is the specific internal energy tem-
perature relation of which the above formula is only the lin-
earization of the thermodynamically consistent equation near
the reference values.

iv. If matdef(2,m) is non-zero, then the above mentioned incon-
sistencies in the specific heat and specific internal energy are
corrected. In this case the value of matdef(30,m) specifies the
reference density times the specific heat at constant volume
ρ0CV = matdef(30,m) and the incomplete equation of state
becomes:

P =


ρ0c20µ[1+(1−Γ0

2 )µ− b2µ2][
1−(s1−1)µ−s2 µ2

1+µ
−s3 µ3

(1+µ)2

]2 + (Γ0 + bµ) ρ0E , for ρ ≥ ρ0

ρ0c
2
0µ+ Γ0ρE , for ρ < ρ0

where µ = ρ
ρ0
− 1. See also eostype(m)=11.

v. c0 = matdef(3,m) units cm/sec

vi. s1 = matdef(4,m) units dimensionless

vii. s2 = matdef(10,m) units dimensionless

viii. s3 = matdef(11,m) units dimensionless

ix. Γ0 = matdef(16,m)

x. b = matdef(17,m)

xi. ρ0 = matdef(21,m) units grams/cc

xii. T0 = matdef(26,m) units eV

xiii. P0 = matdef(28,m) units microbars - this input is ignored

xiv. CV = matdef(30,m) units ergs/gram/eV.
NOTE: when using the quantity cp to approximate CV from
the tables in reference [21] the user should be aware that Stein-
berg’s cp is a specific heat per reference specific volume. As
article specifically states, the specific heat cp was only in-
tended to be used to compute a melt energy, but if the user
wishes to use his value to approximate CV then the value cp

ρ0

is an appropriate value.

(g) eostype(m)=4: The Nadyozhin [18] equation of state

(h) eostype(m)=5: The Mader HOM solid equation of state [14]
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i. HOM solid is a Mie-Grüneisen form equation of state with
constant Grüneisen and linear Us − Up coefficient s. See the
high explosive reference manual and related documents for
more details. The temperature reference curve is approxi-
mated by a logarithmic fit.

(i) eostype(m)=6: The Mader HOM gas equation of state [14]

i. HOM gas is a Grüneisen form equation of state with loga-
rithmic fits for the reference curves which are assumed to be
isentropic curves. See the high explosive reference manual and
related documents for more details.

P = Pr (V ) + Γ(V )
V

[E − Er (V )] , E = Er (V ) + CV [T − Tr (V )]

log [Pr (V )] =
4∑

k=0

pk[log (V )]k, log [Er (V ) + z] =
4∑

k=0

ek[log (V )]k,

log [Tr (V )] =
4∑

k=0

tk[log (V )]k, Γ (V ) = − V
Tr(V )

T ′r (V )

ii. p0 = matdef(2,m)

iii. p1 = matdef(3,m)

iv. p2 = matdef(4,m)

v. p3 = matdef(5,m)

vi. p5 = matdef(6,m)

vii. e0 = matdef(7,m)

viii. e1 = matdef(8,m)

ix. e2 = matdef(9,m)

x. e3 = matdef(10,m)

xi. e5 = matdef(11,m)

xii. t0 = matdef(12,m)

xiii. t1 = matdef(13,m)

xiv. t2 = matdef(14,m)

xv. t3 = matdef(15,m)

xvi. t5 = matdef(16,m)

xvii. cv = matdef(17,m)
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xviii. z = matdef(18,m)

(j) eostype(m)=7: National Bureau of Standards() [8] / S-CUBED
[6] water-ice equation of state

(k) eostype(m)=8: The LLNL QEOS [17] equation of state

(l) eostype(m)=9: Stiffened polytropic (gamma law) equation of
state [10]

i. P + (Γ + 1)P∞ = Γ
V

(E + E∞)

ii. E + E∞ = CV T + P∞V

iii. P∞ = matdef(3,m) units microbars

iv. E∞ = matdef(10,m) units ergs/gram

v. Γ = matdef(16,m) dimensionless

vi. CV = matdef(30,m) units ergs/gram/eV

(m) eostype(m)=10: JWL [12, 4] equation of state with temperature
specified at a given density/energy. See section 2 for the discussion
of how the temperature is computed for this model.

i. P = Pr(V ) + w
V

(E − Er(V ))

ii. E − Er(V ) = CV (T − Tr(V ))

iii. Pr(V ) = Ae
−R1

V
V0 +Be−R2

V
V 0

iv. Er(V ) = −∆E + AV0

R1
e
−R1

V
V0 + BV0

R2
e−R2

V
V 0

v. Tr(V ) = T0

(
V
V0

)−w
vi. A = matdef(3,m) units microbars

vii. B = matdef(4,m) units microbars

viii. R1 = matdef(10,m) dimensionless

ix. R2 = matdef(11,m) dimensionless

x. w = matdef(16,m) dimensionless

xi. ρ0 = matdef(21,m) dimensionless, V0 = 1
ρ0

xii. ∆E = matdef(29,m) units ergs/gram

xiii. CV = matdef(30,m) units ergs/gram/eV

xiv. T0 = matdef(32,m) units eV. T0 = 0 corresponds to the stan-
dard JWL EOS, see eostype(m)=1. Larger value of T0 can
limit the domain at low temperatures.

15



(n) eostype(m)=11: The Steinberg [20, 21] variation of the Mie-
Grüneisen equation of state with temperature specified at a given
density/energy; alterative to eostype(m)=3. See section 2 for the
discussion of how the temperature is computed for this model.

i.

P = Pr (V ) + Γ(V )
V

[E − Er (V )]

E − Er (V ) = CV [T − Tr (V )]

CV

[
d
dV
Tr (V ) + Γ(V )

V
Tr (V )

]
= Pr (V ) + Er

′ (V ) , Tr (V0) = T0

Γ (V ) =


Γ0 (1− η) + bη , 0 ≤ η ≤ 1

Γ0 , η < 0

Pr (V ) = P0 + ρ0c
2
0


η

[1−ηs(η)]2
, 0 ≤ η ≤ 1

[(1−η)−(Γ0+1)−1]
Γ0+1

, η < 0

, η = V0−V
V0

s (η) = s1 + s2η + s3η
2

Er (V ) = E0 +


Pr(V )+P0

2
(V0 − V ) , 0 ≤ η ≤ 1

c20
Γ0+1

[
(1−η)−Γ0−1

Γ0
+ η

Γ0+1

]
, η < 0, Pr (V ) = −Er ′ (V )

ii. c0 = matdef(3,m) units cm/sec

iii. s1 = matdef(4,m) units dimensionless

iv. s2 = matdef(10,m) units dimensionless

v. s3 = matdef(11,m) units dimensionless

vi. Γ0 = matdef(16,m)

vii. b = matdef(17,m)

viii. ρ0 = matdef(21,m) units grams/cc

ix. T0 = matdef(26,m) units eV

x. P0 = matdef(28,m) units microbars
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xi. E0 = matdef(29,m) units microbars

xii. CV = matdef(30,m) units ergs/gram/eV, NOTE: when using
the quantity cp to approximate CV from the tables in refer-
ence [21] the user should be aware that Steinberg’s cp is a
specific heat per reference specific volume. As article specifi-
cally states, the specific heat cp was only intended to be used
to compute a melt energy, but if the user wishes to use his
value to approximate CV then the value cp

ρ0
is an appropriate

value.

(o) eostype(m) = 16: Ideal gas with a polynomial in T specific heat
at constant pressure, Cp. Two sets of coefficients are used for both
a high temperature range and low temperature range. The cutoff
between the two ranges is denoted by Ts below.

i.
PV = RT

Cp
R

=


5∑
i=1

aiT
i−1, T > Ts

5∑
i=1

ai+7T
i−1, T < Ts

h

RT
=


a6

T
+

5∑
i=1

ai
i
T i−1, T > Ts

a13

T
+

5∑
i=1

ai+7

i
T i−1, T < Ts

S

R
=


a1 lnT + a7 +

5∑
i=2

ai
i−1
T i−1, T > Ts

a8 lnT + a14 +
5∑
i=2

ai+7

i−1
T i−1, T < Ts

ii. ai = matdef(3+i,m) 1 ≤ i ≤ 14

A. a1, a8 units dimensionless

B. a2, a9 units (eV)−1

C. a3, a10 units (eV)−2

D. a4, a11 units (eV)−3

E. a5, a12 units (eV)−4

F. a6, a13 units eV
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G. a7, a14 units dimensionless

NOTE: A table of ai values for various common atoms and
molecules can be found here: http://www.me.berkeley.edu/gri-
mech/version30/files30/thermo30.dat. An explanation of the
data in the tables is given here: http://www.me.berkeley.edu/gri-
mech/data/nasa plnm.html. These tables are accurate only
within the temperature ranges given in the table (typically
200 K to a few 1000 K, hence the default limits for Tmin and
Tmax below), and it is not recommended to use them above
that range.

iii. Tmin = matdef(18,m) units eV. Default = 200/EV PER KELVIN
eV ' 0.017 eV (i.e., 200 K). For temperatures below this
value, EOS quantities are extrapolated based on constant spe-
cific heats.

iv. Tmax = matdef(19,m) units eV. Default = 3500/EV PER KELVIN
eV ' 0.302 eV (i.e., 3500 K). For temperatures above this
value, EOS quantities are extrapolated based on constant spe-
cific heats.

v. Ts = matdef(20,m) units eV. Default = 1000/EV PER KELVIN
eV ' 0.086 eV (i.e., 1000 K).

vi. R = matdef(30,m) units ergs/grams/eV

vii. ρ0 = matdef(21,m) units grams/cc

viii. T0 = matdef(26,m) units eV

ix. P0 = matdef(28,m) units µbar
NOTE: In the current implementation of this EOS, ρ0, T0,
and P0 have no purpose, so it does not matter what you set
them to.

x. NOTE: There is no assumption that Cp, h, or S are continuous
at Ts. The user can impose this condtion by ensuring that

5∑
i=1

aiT
i−1
s =

5∑
i=1

ai+7T
i−1
s

a6

Ts
+

5∑
i=1

ai
i
T i−1
s =

a13

Ts
+

5∑
i=1

ai+7

i
T i−1
s
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a1 lnTs + a7 +
5∑
i=2

ai
i− 1

T i−1
s = a1 lnTs + a14 +

5∑
i=2

ai+7

i− 1
T i−1
s

6. Pressure/Temperature Mesh Control

(a) Standard pressure grid controls:

i. prslo: Minimum pressure. Minimum isobar pressure value,
Plo. A real number with units of microbars. Default =
104µbar.

ii. prshi: Maximum pressure. Maximum isobar pressure value,
Phi. A real number greater than Plo with units of microbars.
Default =1016µbar

iii. numprsdec: Number of pressure decades. Number of pres-
sure decades, Ndec, to insert in the table. A positive integer.
Default = 20

When Plo > 0 the table will contain isobars at pressures

Pi = Plo10
i−1

NPdec , 1 ≤ i ≤ Np = 1 +Ndec log10

Phi
Plo

.

(b) Finer pressure grid controls.

i. pscale Pressure scale Pσ. A positive real number of units
microbars. This becomes the default value for pscale neg and
pscale pos as used in the above formula for the pressure grid
points. Default = 104µbar.

ii. pscale pos Positive pressure scale Pσ−. A positive real num-
ber of units microbars. Defines the pressure scale coefficient
for positive pressures. Default = pscale.

iii. pscale neg Negative pressure scale Pσ+. A positive real num-
ber of units microbars. Defines the pressure scale coefficient
for positive pressures. Default = pscale.

iv. numprsdec pos Number of positive pressure decades NPdec+.
A positive integer. Controls the number of points for positive
pressures. Default = numprsdec.

v. numprsdec neg Number of negative pressure decades NPdec−.
A positive integer. Controls the number of points for negative
pressures. Default = numprsdec.
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These options were primarily introduced to provide better control
of the pressure grid when tension support is requested. When
Plo < 0 the pressure grid is given by:

Pi =


Plo10

1−i
NPdec− + Pσ−

(
1− 10

1−i
NPdec−

)
, 1 ≤ i ≤ Np−

0, i = Np− + 1

Pσ+

(
10

i−Np−−1

NPdec+ − 1

)
Np− + 2 ≤ i ≤ Np

Np− = NPdec− log10

(
1− Plo

Pσ−

)
, Np+ = NPdec+ log10

(
1 +

Phi
Pσ+

)
, Np = Np−+1+Np+

The above options allow for separate exponential spacing for the
positive and negative pressure axes and help ensure the EOS is
adequately fine to capture the structure of the original EOS. A
suggested value for prslo might be the minimum pressure sup-
ported by the equation of state. For SESAME table one can use
the Amhctools utility ”SesameRange” to quickly obtain these val-
ues. They can also be discovered using the T-1 EOS tool plot-
sesamebin.x available on Los Alamos ICN machines. The choice
for the pscale pos and

(c) pscale neg should be based on how much resolution is required in
the EOS table near zero pressure. Usually a value on the order of
a bar or so is sufficient. Remember that the pressure units for the
code are microbar, so to get a one bar pressure scale means using
a value of a million in the input deck. The number of decades
variables should be used to ensure a sufficiently fine pressure grid
so that the bilinear interpolation used to evalute the EOS are rel-
atively accurate. There is no hard and fast number here, and the
spacing should really depend on estimates of the second deriva-
tives of the EOS data with respect to pressure and temperature.
In practice using a value in the range of 20-50 seems to work. The
higher values will greatly increase the size of the EOS table.

(d) Standard temperature grid controls:

i. tevlo: Minimum temperature Minimum isotherm tempera-
ture value, Tlo A positive real number of units electron volts.
Default = 10−2 eV
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ii. tevhi: Maximum temperature. Minimum isotherm tempera-
ture value, Tlo A positive real number greater than Tlo of units
electron volts. Default = 106 eV

iii. numtevdec: Number of temperature decades. Number of
temperature decades NTdec to insert in the table. A positive
integer. Default = 20

If tevlo is positive, then by default the temperature grid contains
isotherms at temperatures:

Tj = Tlo10
j−1
NTdec , 1 ≤ j ≤ NT = 1 +NTdec log10

Thi
Tlo

(e) Finer temperature grid Controls: When tension is being supported
or when the EOS needs more data in the colder regions of phase
space, the default controls for the temperature grid result in very
few low temperature isotherms. For applications with tension or
even for those for which the lower temperature limit is desired to
be zero, the temperature mesh can be modified by the following
values.

i. tevlo = 0. When there are no other modifications to the
temperature grid controls other than setting the lower bound
temperature to be zero, the isotherms in the EOS table are
given by:

Tj = 10
j−1
NTdec − 1, 1 ≤ j ≤ NT = 1 +NTdec log10 (1 + Thi)

ii. tevhi tension. Specifies an upper bound, Tten of temper-
atures whose isotherms should contain tension regions. A
positive real number of units electron volts. Default = tevlo.

iii. num tevtension. The number of isotherms, NTten reguired
in the table for temperatures less than or equal to tevhi tension.
Default = 0.

When Tten > Tlo and NTten > 0 then tabulated isotherms are given
by:

Tj =

{
Tlo + (j − 1) Tten−Tlo

NTten
, 1 ≤ j ≤ NTten

Tten10
j−(NTten+1)

NTdec , NTten + 1 ≤ j ≤ NT = NTten + 1 +NTdec log10
Thi
Tten
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When using SESAME, a suggested value for tevhi tension might
the maximum temperature for all of the tables being considered
whose isotherm data contains a negative pressure, and the value
for num tevtension might be the maximum of the number of
isotherms that contain negative pressures.

7. sesfiles: Sesame file list. An array of up to twenty file names for files
containing SESAME equation of state data. Array of character strings
Default = array of blanks (Appropriate if no sesame tables are being
used.)

8. matdef(*,m)), 1 ≤ m ≤ N: EOS parameters. Specific values and ar-
ray indices depend on the EOS model. Real numbers or integers as
appropriate, the units are variable.

9. force code: Force absolute zero isotherm. Sets the minimum temper-
ature isotherm value to 10−6eV . Errors will occur if tevlo is less than
this value. A logical variable. Default = .false.

10. auto teos: Automatic EOS table setup. If true, create isotherms ac-
cording to formula (28). Ignores the input values of tevlo, tevhi, and
numtevdec A logical variable. Default = .false.
The isotherm formula for auto tev is given by:

T1 =

{
Tcold force cold = .true.
∆TfixedeV force cold = .false.

, Tcold = 10−6eV,∆Tfixed = 10−3eV

Tj = ∆Tfixedj, Tj ≤ Tfixed = 0.05eV

Tj = σjTj−1, σj = 1 +
∆Tfixed
Tfixed

, Tfixed < Tj ≤ Tsup er = 0.1eV

Tj = σjTj−1, Tsup er < Tj, σj = min (10.1, 1.005× σj−1) , Tj ≤ Thi = 106eV.
(28)

11. mxdome itr: Maximum Maxwell Construction iterations. Sets a max-
imum value for the number of internal iterations used to perform a
Maxwell construction on a sesame table to eliminate van der Waals
loops. The default value should be sufficient to process any reasonable
sesame table. The user can increase this value as an attempt to force
the code to succeed. But if the loop construction is failing, this is in-
dicative of a faulty sesame table and it is unlikely that the code will be
able to process this file. An integer variable. Default = 10,000
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Debugging and Other Diagnostic Variables

1. Sesame Debugging Flags:

(a) list 301: List 301 tables. A logical flag, if true the SESAME 301
tables for the requested materials will be printed and no TEOS
table will be created. A logical variable. Default = .false.

(b) list index: List table indices. A logical flag, if true the SESAME
material indices for the requested materials will be printed and no
TEOS table will be created. A logical variable. Default = .false.

(c) list tid: An unused integer input variable. Default = 0

2. list cross: List crossed isotherms, Logical flag, if true then print any
crossed isotherms detected during the table setup. A logical variable.
Default = .true

3. Table build tests: If both test prs sig= σP and test tev sig= σT
are positive the inverted P-T tables will be checked against the original
sesame data at the points

(
Ploσ

i
P , Tloσ

j
T

)
, Plo ≤ Ploσ

i
P ≤ Phi, Tlo ≤

Tloσ
j
P ≤ Thi

(a) test prs sig, Pressure check points. A non-negative real number
of units microbars. Default = 0 µbar

(b) test tev sig, Temperature check points. A non-negative real num-
ber of units electron volts. Default = 0 eV

4. debug eos: Debug EOS. A logical flag to print out the table data if
requested. The filenames are of the form “matI.J.txt” where I is the
material id for a component and J corresponds to a step in the table
setup algorithm (see below). A logical variable. Default = .false.

3.2.3 EOS Modifications During Table Creation

Several modifications of the equation of state data can occur during the cre-
ation of the TEOS tables. In particular SESAME data may be modified using
a Maxwell construction [7, 9] to replace van der Waals loops in isotherms.
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3.2.4 Implicit assumptions on the Equation of State implemented
by TEOS

In the description of the solution algorithm for the TEOS equations of state,
several implicit assumptions regarding the nature of the component equation
of states turn up. The list below summarizes these assumptions.

1. The equation of state is consistent in the sense that the partial deriva-
tives of specific internal energy and density satisfy the condition that
there exists a Gibb’s free energy for the flow:

dG = −SdT + V dP
e = G− PV + TS.

(29)

1. The equation of state is stable, in particular the specific heats at con-
stant volume are non-negative and the sound speed is real:

CP = T ∂S
∂T

∣∣
P
≥ CV = T ∂S

∂T

∣∣
V
≥ 0

c2 = −V 2 ∂P
∂V

∣∣
S
≥ 0.

(30)

Conditions 1 and 2 are actually generic restrictions for all thermodynamic
equations of state and should be satisfied with the domain of validity of the
EOS. The other conditions in this list need not be satisfied in general, but
are assumed (or imposed) by the TEOS solution algorithm.

1. The specific internal energy is monotone non-decreasing as a function
of temperature along an isobar:

∂e

∂T

∣∣∣∣
P

≥ 0. (31)

1. The Grüneisen exponent is non-negative:

Γ = V
∂P

∂e

∣∣∣∣
V

= − ∂ log T

∂ log V

∣∣∣∣
S

≥ 0. (32)

1. The pressure is a monotone non-increasing function of specific volume
for constant energy:

∂P

∂V

∣∣∣∣
e

≤ 0 (33)

1. For materials in a “gas” phase (see below), the specific internal energy
does not depend on pressure along the lowest isobar in the table.
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3.2.5 Table Data Setup

During initialization a user supplied data file containing the pressure/temperature
based table of component specific internal energies and densities is read (see
the subroutine teos load select () in module teos.f90). These files are usually
called TEOS files and often are given a suffix of “.teos”. This file instanti-
ates the arrays for energy and density defined in equation(2.1). This process
includes a “culling” of the data provided in the TEOS file to limit the num-
ber of materials in the internal arrays to only those materials specifically
requested by the users input deck.

Once the density and specific internal energy tables are assigned the code
will create and store estimates for the specific volume and specific internal
energy together with their pressure derivatives along the minimum isobar in
the table:

Vk,floor (Tj) = Vk (P1, Tj) ,
∂Vk,floor

∂P

∣∣∣
T

(Tj) = ∂Vk
∂P

∣∣
T

(P1, Tj)

ek,floor (Tj) = ek (P1, Tj) ,
∂ek,floor
∂P

∣∣∣
T

(Tj) = ∂ek
∂P

∣∣
T

(P1, Tj) .
(34)

The specific internal energy derivatives are approximated using simple finite
differences:

∂ek
∂P

∣∣∣∣
T

(P1, Tj) ≈
ek (P2, Tj)− ek (P1, Tj)

P2 − P1

. (35)

The pressure derivatives of the component specific volumes along the pressure
floor isotherm are approximated by a rather complicated method. First the
component density derivatives are approximated along floor isotherm using
finite differences:

∂ρk
∂P

∣∣∣∣
T

(P1, Tj) ≈
∆ρk
∆P

∣∣∣∣
T

(P1, Tj) =
ρ (P2, Tj)− ρ (P1, Tj)

P2 − P1

. (36)

Next the pressure is extrapolated to zero density along each isotherm:

P̃0,j,k = P1 −
ρk (P1, Tj)

∆ρk
∆P

∣∣
T

(P1, Tj)
. (37)

Two cases are now considered, if P̃0,j,k > −P1 the component is said to be
in a gas phase. In this case it is assumed that the density goes to zero as
the pressure vanishes along the isotherm, so that the derivative of specific
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volume is approximated by:

∂Vk
∂P

∣∣∣∣
T

(P1, Tj) = − 1

ρ2
k

∂ρk
∂P

∣∣∣∣
T

(P1, Tj) ≈ −
1

ρ2
k

ρk (P1, Tj)− ρk (0, Tj)

P1 − 0
= −Vk (P1, Tj)

P1

.

(38)
Otherwise the derivative is approximated using the extrapolated pressure
P̃0,j,k with the assumption that density vanishes at this pressure:

∂Vk
∂P

∣∣∣∣
T

(P1, Tj) = − 1

ρ2
k

∂ρk
∂P

∣∣∣∣
T

(P1, Tj) ≈ −
1

ρ2
k

ρk (P1, Tj)− ρk
(
P̃0,j,k, Tj

)
P1 − P̃0,j,k

= −Vk (P1, Tj)

P1 − P̃0,j,k

.

(39)
The intent of this approximate of derivatives is to ensure that the density
goes to zero as P → P̃0,j,k for fixed T = Tj

3.2.6 Pressure Floor Estimate

The first step is to locate bounding isotherms for the specific internal energy
evaluated at the floor isobar. Specifically find js so that:

N∑
k=1

µkek (P1, Tjs) ≤ e ≤
N∑
k=1

µkek (P1, Tjs+1). (40)

Inequality (2.16) points out an implicit assumption about the equation of
state models represented by the tabular data, namely that for each compo-
nent, the specific internal energy is a non-decreasing function of temperature
for fixed pressure:

∂ek
∂T

∣∣∣∣
P

≥ 0. (41)

Using the identities in the reference of Menikoff and Plohr [15] it can be
shown that inequality (2.17) is equivalent to the inequality:

CP,k

[
1− Γk

P

ρkc2
k

]
= CP,k

[
1− Γk

γk

]
≥ 0. (42)

Here c2 = ∂P
∂ρ

∣∣∣
S

is the adiabatic sound speed squared (ρc2 is called the bulk

modulus), γ = c2
/PV is the adiabatic exponent, and Γ = − ∂ log T

∂ log V

∣∣∣
S

= V ∂P
∂e

∣∣
ρ

is the Grüneisen exponent. Inequalities (2.17) or (2.18) need not be true for
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general equations of state, but are generally satisfied for equations of state
that are used in practice.

Given the isotherms bounding the specific internal energy at the floor
pressure a floor volume and temperature are computed using linear interpo-
lation:

Tfloor = Tjs + s (Tjs+1 − Tjs) , Vfloor = Vjs + s (Vjs+1 − Vjs)
s = max

(
e−ejs

ejs+1−ejs
, 0
)

ej =
N∑
k=1

µjek (Pj, Tj), Vj =
N∑
k=1

µjVk (Pj, Tj).

(43)

The specific heat at constant volume is also estimated that the point (P1, Tfloor)
using the finite difference approximation:

CV (P1, Tfloor) =
∂e

∂T

∣∣∣∣
V

(P1, Tfloor) ≈
e (P1, Tjs+1)− e (P1, Tjs)

Tjs+1 − Tjs
. (44)

Note that this is in fact possibly a poor approximation for CV since it is
actually a finite difference approximation for ∂e

∂T

∣∣
P

= T ∂S
∂T

∣∣
P
− P ∂V

∂T

∣∣
P

=

CP − P ∂V
∂T

∣∣
P

in the sense that it is a temperature finite difference along the
pressure floor isobar. In fact, for a general equation of state one can show
that (see Menikoff & Plohr [15] for example) that:

∂e
∂T

∣∣
P

= CP − P ∂V
∂T

∣∣
P

= CP

[
1− ΓP

ρc2

]
= CV

[
1− ΓP

ρc2

]
[
1−Γ2CV T

c2

]
CV =

∂e
∂T |P

1+ Γ2T
c2

∂e
∂T |P− ΓP

ρc2

.

(45)

Pressure is then extrapolated along the PV isotherm through the point
(P1, Vfloor) to zero specific volume:

Pzero = P1 +
Vfloor

∂V
∂P

∣∣
T

(P1, Tfloor)
. (46)

The slope in the denominator of (2.22) is approximated by linear interpola-
tion:

∂V
∂P

∣∣
T

(P1, Tfloor) =
N∑
k=1

µk
∂Vk
∂P

∣∣
T

(P1, Tfloor) ≈
N∑
k=1

µk
[
∂Vk
∂P

∣∣
T

(P1, Tjs) + s
(
∂Vk
∂P

∣∣
T

(P1, Tjs+1)− ∂Vk
∂P

∣∣
T

(P1, Tjs)
)]
.

(47)
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Similarly we can compute the derivative of specific internal energy with re-
spect to pressure as:

∂e
∂P

∣∣
T

(P1, Tfloor) =
N∑
k=1

µk
∂ek
∂P

∣∣
T

(P1, Tfloor) ≈
N∑
k=1

µk
[
∂ek
∂P

∣∣
T

(P1, Tjs) + s
(
∂ek
∂P

∣∣
T

(P1, Tjs+1)− ∂ek
∂P

∣∣
T

(P1, Tjs)
)]
.

(48)

We will also need the derivatives of specific volume and specific internal
energy with respect to temperature at the point (P1, Tfloor) These are ap-
proximated using simple finite differences:

∂V
∂T

∣∣
P

(P1, Tfloor) =
N∑
k=1

µk
∂Vk
∂T

∣∣
P

(P1, Tfloor),
∂Vk
∂T

∣∣
P

(P1, Tfloor) ≈ Vk(P1,Tjs+1)−Vk(P1,Tjs )

Tjs+1−Tjs

∂e
∂T

∣∣
P

(P1, Tfloor) =
N∑
k=1

µk
∂ek
∂T

∣∣
P

(P1, Tfloor),
∂ek
∂T

∣∣
P

(P1, Tfloor) ≈ ek(P1,Tjs+1)−ek(P1,Tjs )

Tjs+1−Tjs
.

(49)
Once Pzero is computed using equation (2.22) two cases are again considered,
gases for which Pzero > −P1 and solids for Pzero ≤ −P1

Pressure floor estimates for gases: For gases it is assumed that Pzero is

effectively zero and the derivative dP
dρ

∣∣∣
T

(Pzero, Tfloor) is approximated using

an extrapolated finite difference between P1 and Pzero = 0 with the assump-
tion that ρ (0, Tfloor) = 0:

dP
dρ

∣∣∣
T

(Pzero, Tfloor) ≈ P1−Pzero
ρ(P1,Tfloor)−ρ(Pzero,Tfloor)

=

P1

ρ(P1,Tfloor)−ρ(0,Tfloor)
= P1

ρ(P1,Tfloor)
= P1Vfloor.

(50)

The pressure first guess is then computed using a linear approximation for
the isotherm through the point (Pzero, Tfloor), P

0 = P1Vfloorρ =
P1Vfloor

V
and

the first guess for the solution temperature is taken as T 0 = Tfloor. First
guesses for the Grüneisen exponent (actually ρΓ) and the bulk modulus ρc2
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using the formula:

ρΓ0 (P 0, T 0) = ∂P
∂e

∣∣
V

(P 0, T 0) =
N∑
k=1

µk
∂Vk
∂T

∣∣∣
P(

N∑
k=1

µk
∂Vk
∂T

∣∣∣
P

)(
N∑
k=1

µk
∂ek
∂P

∣∣∣
T

)
−
(

N∑
k=1

µk
∂Vk
∂P

∣∣∣
T

)(
N∑
k=1

µk
∂ek
∂T

∣∣∣
P

) (P 0, T 0) =

∂V
∂T |P

( ∂V
∂T |P )( ∂e

∂P |T )−( ∂V
∂P |T )( ∂e

∂T |P )
(P 0, T 0)

ρc2 (P 0, T 0) = P 0Γ0 + ρ ∂P
∂ρ

∣∣∣
e
(P 0, T 0) .

(51)

The TEOS code also makes the implicit assumption that the Grüneisen ex-
ponent is non-negative, so if the quantity computed in (2.27) is less than
zero it is set to zero. The derivatives in (2.27) along the floor isobar are
approximated by the values computed for the point (P1, Tfloor) as described
in equations (2.23)(2.25).

The derivative of pressure with respect to density at constant energy can
be written:

∂P

∂ρ

∣∣∣∣
e

=
∂P

∂ρ

∣∣∣∣
T

[
1−

(
∂V
∂T

∣∣
P

) (
∂e
∂P

∣∣
T

)(
∂V
∂P

∣∣
T

) (
∂e
∂T

∣∣
P

)]−1

. (52)

For “gases” this derivative is approximated using the implicit assumption
that energy does not depend on pressure along the floor isobar, ∂e

∂P

∣∣
T

(P1, T ) ≈
0 and thus ∂P

∂ρ

∣∣∣
e
≈ ∂P

∂ρ

∣∣∣
T

as calculated in equation(2.26).

Pressure floor estimates for solids: In the case of a solid (Pzero ≤ −P1)
the density derivative at the pressure floor isobar is estimated as:

∂P

∂ρ

∣∣∣∣
T

(P1, Tfloor) = −
V 2
floor

∂V
∂P

∣∣
T

(P1, Tfloor)
. (53)

Where the right hand side quantities are given in equations (2.19) and(2.23).
Pressure is then extrapolated linearly assuming that the density vanishes
along the isotherm at pressure Pzero:

P 0 = Pzero + ∂P
∂ρ

∣∣∣
T

(Pzero, Tfloor) (ρ− ρ (Pzero, Tfloor)) = Pzero + 1
V
∂P
∂ρ

∣∣∣
T

(Pzero, Tfloor)

∂P
∂ρ

∣∣∣
T

(Pzero, Tfloor) ≈ ∂P
∂ρ

∣∣∣
T

(P1, Tfloor) .

(54)
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The derivative of pressure with respect to density at fixed energy is approx-
imated at the solution point:

∂P
∂ρ

∣∣∣
e
(P 0, T 0) = −V 2 ∂P

∂V

∣∣
e
(P 0, T 0) = − V 2(

∂e
∂T |P

∂V
∂P |T ∂e

∂T |P− ∂V
∂T |P ∂e

∂P |T

) (P 0, T 0) ≈

− V 2(
∂e
∂T |P

∂V
∂P |T ∂e

∂T |P− ∂V
∂T |P ∂e

∂P |T

)
(P1,Tfloor)

.

(55)
As before, the derivatives in the above relation are approximated using those
in equations (2.23)(2.25). Finally the bulk modulus at (P 0, T 0) is approxi-
mated as in equation(2.27)

3.2.7 Iteration Scheme for Computing the P-T Equilibrium Solu-
tion

The calculation described in the previous section returns an initial guess for
the P-T equilibrium solution together with thermodynamic derivatives at
that location. Specifically it returns:

1. The isotherm indices jsand js+1 bounding the desired specific internal
energy e at the floor pressure P1e (P1, Tjs) ≤ e ≤ e (P1, Tjs+1),.

2. The initial estimates for the solution interpolated or extrapolated off
the pressure floor isobar (P 0, T 0).

3. Estimates for the specific heat at constant volume CV , the bulk mod-
ulus ρc2, and the density times the Grüneisen exponent ρΓ = ∂P

∂e

∣∣
V

at
the point (P 0, T 0)

The first step in the solution iteration algorithm is to test the estimated
pressure value P 0 against the pressure floor value P1. If P 0 ≤ P1then it is
assumed that the solution to the equilibrium equation lies below the range
of the pressure table and the initial guesses described above are taken as
the answer to the equilibrium calculation. This is perhaps a very risky as-
sumption given the crudeness of the approximations made in computing this
initial guess and could be a source of error for solutions that lie near the
bottom of and pressure table. This bound check is in fact the only usage of
the estimated pressure P 0 in the solution algorithm.
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Once it has been determined that P1 < P 0 the iteration is started at a
pressure equal to the value of pressure provided as input data to the subrou-
tine, Pold The basic iteration can be summarized as:

1. Given P n(P 0 = Pold) find the temperature T n so that e (P n, T n) = e

2. Perform a Newton iteration along the specific internal energy level curve
e (P, T ) = e through (P n, T n) to compute a new pressure at the desired
density:

P n+1 = P n + ∂P
∂ρ

∣∣∣
e
(P n, T n) (ρ− ρn)

ρ = 1
V
, ρn = 1

V (Pn,Tn)
.

(56)

1. The scheme converges when either of the two conditions:

|ρ− ρn| ≤ ερ |ρ+ ρn|
|P n+1 − P n| ≤ εP |P n+1 + P n| . (57)

The actual tolerances used in the code are currently set to ερ = 10−12 and
εP = 10−7

3.3 Sesame Equations of State

The SESAME equation of state [1] is a family of equation of state models
supported type the Theoretical Division’s Equation of State Group [3] at
the Los Alamos National Laboratory that are made available as tables of
pressure and specific internal energy as functions of density and temperature.
A detailed description of the structure of the SESAME tables can be found
at the web site [2]. In addition to hydrodynamic equations of state, the
SESAME format also supports other constitutive functions such as mean
opacities and conductivities but our discussion here will only focus on the
thermodynamic equation of state models represented in a SESAME table.

The basic structure of a SESAME EOS table is to provide matrices of
specific internal energy and pressure as functions of density and temperature:

ei,j = e (ρi, Tj)
Pi,j = P (ρi, Tj)

, 1 ≤ i ≤ nρ, 1 ≤ i ≤ nT (58)

Equation of state evaluations at arbitrary densities and temperatures are
made using various interpolation methods. In particular the two most com-
mon methods are bilinear interpolation (fast but not very accurate), and a
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more accurate rational interpolation scheme described in the report of Ker-
ley [11]. Both methods are implemented in the library EOSPAC [19] and
are suitable for many hydrodynamic solvers. The main deficiency of these
interpolation schemes (especially the bilinear method) is that the derivatives
of the interpolant are discontinuous across the density/temperature mesh
boundaries. This can cause some difficulties for higher-order Godunov type
schemes that make extensive use of the sound speed since this quantity is
evaluated using such derivatives. The range of the density and temperature
arrays is generally taken to be sufficiently large so as to encompass the range
of state values that will be encountered in most simulations. However this
is not guaranteed to be the case and in fact many equation of state errors
are associated with evaluations of the tables for densities or temperatures
outside the defined range.

The xRage code does not use SESAME tables directly; instead these
tables are used to create a tabular equation of state (TEOS) table described in
the next section. Users should be aware that this process can involve certain
modifications of the raw EOS data contained in the SESAME file that can
lead to differences in the EOS evaluations using the TEOS file as compared
to such direct SESAME interpolations as implemented in EOSPAC.

The current version of the codes does not allow the direct running of sim-
ulations that initialize EOS’s from SESAME. Instead one creates a tabular
equation of state as described in the next section to create a TEOS equation
of state table and initializes the hydro simulation to use that file to determine
its equation of state data.

For porous materials such as foams, a dynamic equation of state modifi-
cation can be incorporated into the tabular EOS solution that accounts for
irreversible crushing of the material pores [5, 16].

Input specifications:

1. ramp num: Number of EOS ramps, ramp num= M a non-negative
integer. The number of material component to which a pore crush
ramp modification is to be applied. Default = 0

2. ramp reverse(n) 1≤ n≤M: Reversible pore compression flag, ramp reverse(n) =
L where L is either .true. or .false.. If .true. pore compression for the
material component is a reversible process. Default = .false.

3. ramp mat(n) 1 ≤ n ≤ M: Ramp material, ramp mat(n) = m an
integer 1 ≤ m ≤ N. Apply ramp corrections to material m. An error
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occurs if the material m appears in more than one ramp.

4. ramp alpha(n) 1≤ n≤M: Uncrushed/crushed volume ratio, ramp alpha(n) =
αa real number > 1. This quantity is the ratio of the uncrushed specific
volume of the component to the fully crushed specific volume.

5. ramp pe(n) 1 ≤ n ≤M: Minimum crush pressure ramp pe(n) = Pe a
positive real number of units microbars. This is the minimum pressure
needed to compress the pores in the component, i.e. the start of the
pressure ramp.

6. ramp pc(n) 1 ≤ n ≤ M: Maximum crush pressure, ramp pc(n) = Pc
a positive real number > Pe of units microbars. This is the pressure
above which the pores in the material are fully compressed.

7. ramp pe de(n) Energy modification to be applied for pressures <
ramp pe. This quantity is subtracted from the tabulated specific in-
ternal energy and is in addition to any specification by the user for a
total energy offset (via matdef(26,n)). For pressures between ramp pe
and ramp pc the energy offset changes linearly between the values
ramp pe de and ramp pc de (see below).

8. ramp pc de(n) Energy modification to be applied for pressures >
ramp pc. This quantity is subtracted from the tabulated specific in-
ternal energy and is in addition to any specification by the user for a
total energy offset (via matdef(26,n)).

The basic modification is to scale the specific volume of the material
by a pressure dependent factor. In addition we allow a pressure dependent
translation on the specific internal energy. NOTE: This correction is in ad-
dition to any translation provided via the specification in matdef(26,mat).
The basic modification of the tabulated specific volumes and specific internal
energy for a fixed material is given by:

Vramp (P, T ) = α (P )Vtable (P, T )

eramp (P, T ) = etable (P, T )−
{(

α(P )−1
αpe−1

)
∆pee+

(
αpe−α(P )

αpe−1

)
∆pce

}
(59)

The ramp modification does not in fact produce a thermodynamically con-
sistent equation of state, but as is pointed out in the reference or Menikoff and
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Kober [16] formula (2.34) can be regarded as an approximation of the spe-
cific internal energy as computed from a consistent EOS. The ramp function
α (P ) is computed as follows. The ramp function depends on the parameters
described in on page 9 under the section on ramp EOS modifications together
with the maximum pressure that has occurred in the cell, pmax Specifically
we denote:

1. ramp alpha = α0

2. ramp pe = Pe

3. ramp pe de = ∆pee

4. ramp pc = Pc

5. ramp pc de = ∆pce

6. pmax = Pmax

If ramp reverse is false, the formula for α (P ) is given by:

α (P ) =


α0 max (P, Pmax) ≤ Pe
α0 + max(P,Pmax)−Pe

Pc−Pe (1− α0) Pe ≤ max (P, Pmax) ≤ Pc
1 Pc ≤ max (P, Pmax)

. (60)

While for ramp reverse equal to true:

α (P ) =


α0 P ≤ Pe
α0 + P−Pe

Pc−Pe (1− α0) Pe ≤ P ≤ Pc
1 Pc ≤ P

. (61)

The distinction here is that when ramp reverse is true the compression is
reversible, i.e. when the pressure relaxes the pores can expand again, while
for ramp reverse equal to false the crush is irreversible, once crushed the
pores do not expand again.
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4 Legacy Equation of State (EOS)

4.1 Multi-Material Equation of State (MMEOS)

The Multi-Material Equation of State (MMEOS) was the original EOS used
for xRage, and this section is included to preserve the background of this
work. The code has moved through many iterations and currently only sup-
ports Temperature Equation of State (TEOS), which gets set with keos.
Using TEOS, the tables are built and the table reader is a derivation of the
old MMEOS. SESAME files as always can be used.

4.2 Creating an EOS file /TEOS

The xRage code has the ability to either build a tabular EOS or use an EOS
that has been produced already. Some simple analytic EOS can be used. The
reason the user needs an EOS file even if the user is calling the SESAME
files is due to the fact that they are used to build the EOS tables and are
inverted. xRage also has the ability to build TEOS/EOS tables. To create
an EOS file you must have an input file. An example of an input file is found
in Table 1. To build an EOS file you run codename.x file.eos.in .

Table 1: Creating an EOS File and TEOS File

Variable Description

teos file Name for the EOS output file.
sesfiles(1) Full path to the first SESAME file.
sesfiles(n) Additional SESAME file specifications.
numm Total number of materials.
matid(1) First material ID.
matid(n) Additional material IDs.

4.3 Equation of State Types

The code xRage has the ability to either build a tabular Equation of State
(EOS) or use an EOS that has been produced already. Some simple analytic
EOS can be used (must be very simple). The user needs an EOS file, even if
you are calling the SESAME files, because the EOS files are used to build the

35



EOS tables and are inverted. To build an EOS file one can run: codename.x
file.eos.in .

4.3.1 keos

The type of equation of state xRage will use for a calculation is determined
by the input variable keos. The default value of keos is 0, which specifies
an iterative multi-material ideal gas EOS. Users will primarily use ideal gas
and tabular equation of states. Table 2 below lists all of the keos options.

Table 2: Equation-of-State Options

keos Type Description

0 Multi-Material Ideal
Gas

Default EOS.

1 Deprecated
2 Deprecated
3 TEOS Built from SESAME EOS.

obsolete Standard MMEOS Tab-
ular

Multi-cell, multi-material, vectorized,
tabular equation of state with crush
curves. User is required to supply the
proper tabular EOS file.

-1 Multi-Material Stiff
Ideal Gas

Similar to Ideal Gas EOS but re-
quires additional inputs to define stiff-
ness properties.

-2 Multi-Material Analytic
EOS with Crush Curves

Not yet supported.

-3 JWL Explosive Not yet supported. Will allow only 1 ex-
plosive material with several other stiff
ideal gas materials.

-4 Non-standard MMEOS
Tabular

Not yet supported. Requires specially
built tabular EOS files.

4.3.2 Analytic EOS

To use an ideal gas equation of state, the user first sets the input variable
keos=0. This is the default value for keos. keos>0 is used if the eosfile is
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specified. The code will then look for an EOS table with filename eosfile.
Else, if eosver is greater than 0, and eosver is less than 9999, then look
for an EOS table with filename estbXXXX, where XXXX is a four-digit num-
ber equal to eosver and padded on the left with zeros. If keos=-1, this
setting will utilize multi-material stiff ideal gas. keos=-2 is multi-material
analytic EOS with crush curves. keos=3 uses TEOS built from SESAME
EOS. keos=1 and keos=2 have been removed from the code.

4.3.3 Tabular

To use an xRage Tabular Equation of State, the user first sets the input
variable keos> 0. The xRage tables can be built from SESAME EOSs. The
code, xRage, will expect a default filename of meostab for the Tabular EOS
file. The user can specify a unique file name with the input variable eosfile.
Simply set this variable to the filename of the Tabular EOS file and place this
file in the local file space with the xRage executable code. Table 3 displays
input examples for ideal gas EOS.

Table 3: Ideal Gas EOS Input Example

Variable Setting Description

keos=0 Ideal gas equation of state
nummat=1 1 material in problem
matdef(16,1) = 0.66666667 Specifying (γ − 1); γ = 5/3, (air)
matdef(30,1) = 1.0e-4 Specifying Cv - specific heat [erg/gm/ev]

(1 [J/(mol*K)] ≈ 1e7*11604/(molar
mass) [erg/(g*eV)])

4.3.4 SESAME EOS

SESAME is the typical tabular temperature-based EOS used. Since xRage
is an energy-based code, the EOS tables need to be inverted to work.
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