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Abstract

Geodesic grids become increasingly prevalent in large weather and 
climate applications. The deluge amount of simulation data de­
mands efficient and scalable visualization capabilities for scientific 
exploration and understanding. Given the unique characteristics of 
geodesic grids, no current techniques can scalably visualize scalar 
fields defined on a geodesic grid. In this paper, we present a new 
parallel ray-casting algorithm for large geodesic grids using mas­
sively distributed GPUs. We construct a spherical quadtree to adap­
tively partition and distribute the data according to the grid reso­
lution of simulation, and ensure a balanced workload assignment 
over a large number of processors from different view angles. We 
have designed and implemented the entire rendering pipeline based 
on the MPI and CUDA architecture, and demonstrated the effec­
tiveness and scalability of our approach using an example of large 
application on a supercomputer with thousands of GPUs.

1 Introduction

Advanced supercomputing techniques and systems allow scientists 
to conduct simulations with detailed numerical weather and cli­
mate models. Geodesic grids have become increasingly prevalent 
in the development of models [1, 17]. This type of grid can facili­
tate scientists to model the Earth's surface with higher resolutions 
and higher numerical stability, leading to a simulation of an un­
precedented scale. Such a simulation can possibly generate tera- or 
peta-bytes of data that are typically time-varying and multivariate. 
The sheer size of data requires scalable and interactive visualiza­
tion techniques for agile exploration and timely weather and climate 
prediction. Parallel visualization provides a viable solution to ad­
dress the vast amount of simulation data, in that data are partitioned 
and distributed among multiple processing units and visualization 
calculations are conducted in a divide-and-conquer manner. A par­
allel visualization algorithm with a balanced workload assignment 
can achieve scalable performance over a large number of proces­
sors, and make it possible to interactively explore massive data.

Geodesic grids were first introduced by Williamson [24] and 
Sadourny et al. [18] for meteorological applications. A geodesic 
mesh is constructed by subdividing an icosahedron embedded in a 
sphere, where a simple bisection operation is iteratively applied on 
the edges to refine the grids [17]. The iteration number of subdi­
vision can be different over different regions of the sphere, such 
that more iterations are conducted on the regional areas of inter­
est to generate higher-resolution grids, while lower-resolution grids 
are placed for the remainder of the surface. The resulting geodesic 
mesh consists of spherical Voronoi polygons, where most of them 
are hexagons and the remainder can be pentagons or heptagons. 
The spherical polygon mesh is then scaled and duplicated along 
the direction perpendicular to the Earth surface but at different al­
titudes to construct a set of spherical layers. These layers together 
form a 3D mesh (or cage) used to model oceanic or atmospheric
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Figure 1: An example of spherical geodesic grids covering the ocean of the 
Earth surface. The resolutions of Voronoi polygons vary across different re­
gions: higher-resolution grids are used in the regional areas of interest, while 
lower-resolution grids are placed for the remainder of the surface. Note that 
this example only displays the mesh of the top surface. For a real simulation, 
this spherical mesh is scaled and duplicated to construct a set of layers along 
the direction perpendicular to the Earth surface, resulting in a 3D mesh.

behavior in 3D. We refer interested readers to Xie's work [25] for 
an overview of grid construction. Figure 1 shows the top surface 
of a 3D geodesic mesh used in an ocean basin simulation, where 
the mesh is refined in specific regions of interest, lower-resolution 
grids are used in other ocean areas, and no grid is placed in the 
continental area.

Although extensive research has been carried out on parallel vi­
sualization, several fundamental challenges have prevented a direct 
application of current solutions on geodesic grids. First, most paral­
lel visualization solutions rely on data partitioning and distribution 
schemes that are designed in Cartesian coordinates, while geodesic 
grids are constructed in the spherical coordinate system. The data 
representations used in geodesic grids are fundamentally different 
from grids in Cartesian coordinates. Existing data partitioning and 
distribution schemes cannot be directly applied to handle geodesic 
grids. Second, the spherical structure introduces unique visualiza­
tion requirements in that only the scalar fields in front are desired to 
be visualized. Given the multiresolution nature of geodesic grids, 
the data density of visible regions can vary significantly across dif­
ferent view angles. Thus it is difficult to estimate the rendering cost 
using conventional methods for scientific volume data.

In this paper, we introduce a scalable parallel solution to in­
teractively visualize large-scale geodesic grid data using multiple 
GPUs. Based on a careful characterization of geodesic grid visual­
ization, we design a new data partitioning and distribution scheme 
that employs a spherical quadtree to decompose and index the mul­
tiresolution spherical grids. This spatial data structure enables us 
to accurately estimate the rendering load for regions with different 
resolutions. Moreover, we use the quadtree structure to scatter the 
regions among the processors and ensure that each processor can 
be assigned an approximately equal amount of workloads from any 
viewing direction. Therefore no processors will be idle during the 
rendering, and the maximum parallelism can be achieved. Our im-
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Figure 2: Ray-casting of scalar fields. rt and rb correspond to the boundary 
of the view frustum. A and B are the sampling points along a ray n. (a): For 
a general scalar field, both A and B can be visible, and the entire domain (in 
green) is involved in the rendering calculation, (b): For a scalar field defined 
on a spherical mesh covering the Earth, we only render A in the front region 
(in green), while excludes B in the back region (in gray) that is invisible.

plementation of the entire rendering pipeline is based on the MPI 
and CUBA architecture and can be directly executed on state-of- 
the-art supercomputers. The scalability and effectiveness of our so­
lution have been demonstrated using the full extent of geodesic grid 
data from real-world simulations. Great 3D details can be delivered 
at an interactive rate to scientists for exploration. In addition, our 
approach directly takes the original simulation data as input, and 
thus can be readily extended in support of in-situ visualization dur­
ing simulation time.

2 Related Work

While researchers have extensively studied visualization of struc­
tured and unstructured grids, there is a lack of visualization tools 
for geodesic grids. In the scientific literature on numerical clima­
tological study, mostly simple polygon renderings are used to vi­
sualize the scalar field defined on the top surface of 3D geodesic 
grids [7]. Such a rendering cannot reveal complex 3D interior struc­
tures embedded in grids that are related to detailed ocean processes 
and cloud processes in the atmosphere.

It is possible to first convert geodesic grid data into conventional 
representations (such as tetrahedral grid) and then apply suitable 
algorithms (such as cell-projection [20] or ray-casting [6]) to vi­
sualize 3D scalar fields. However, this solution requires computa­
tion and storage overhead that can be prohibitively high for current 
tera/petascale and future exascale simulations. To address this is­
sue, Xie et al. [25] presented a GPU-based ray-casting algorithm 
that can directly visualize 3D scalar fields defined on raw geodesic 
grids without data transformation. Their approach achieves interac­
tive rendering rates using a single GPU.

When data size is larger than the available memory capacity of 
a single machine, a common strategy is to use multiple machines 
to perform visualization in parallel. Researchers have developed 
plenty of parallel visualization algorithms for large data. One of the 
main focuses is to achieve high quality rendering while maintaining 
scalable performance with an increasing number of processors. Ma 
et al. [10] developed a parallel cell-projection algorithm for 3D un­
structured data from aerodynamics applications. They used a round 
robin distribution of data cells to achieve an effective static load bal­
ancing among the processors. Parker et al. [15] conducted ray trac­
ing using shared-memory multiprocessor machines. Their method 
enables an interactive isosurface visualization of large volume data 
with high parallel efficiency. Leaf et al. [8] developed a parallel vol­
ume rendering algorithm for large-scale Adaptive Mesh Refinement 
(AMR) data. They partitioned AMR data into convexly-bounded 
chunks and distributed them among multiple GPUs using static load 
balancing to perform distributed ray-casting.

Recent efforts have been made to further improve the scalabil-

Figure 3: (a) shows a regular partitioning scheme along the latitude and lon­
gitude. (b) shows our spherical quadtree based partitioning scheme, which can 
achieve load balancing with a smaller number of regions and a lower cost of 
parallel image compositing.

ity of parallel visualization to be on par with simulations, thus en­
abling in-situ visualization to address future exascale supercomput­
ing challenges [19]. Researchers have directly integrated visual­
ization [26, 4] into simulation routines to operate on in-memory 
simulation data. We also take in-situ visualization into account in 
our design, in that our approach can directly process the original 
grid data used in simulations and achieve high parallel efficiency 
comparable to simulations.

3 Characterizing Geodesic Grid Visualization

A balanced workload assignment is the key to the scalability of 
parallel visualization algorithms. Given the unique visualization 
requirements from geoscience applications, current methods to es­
timate the workload associated with conventional mesh structures 
cannot be applied to geodesic grids.

For conventional mesh structures, the entire domain of a scalar 
field is often counted in workload estimation regardless of view an­
gles. This is because during volume rendering of the field users can 
adjust transfer functions and assign different opacities to different 
regions, which implies that the entire domain can be involved in 
the rendering calculation along an arbitrary ray. As shown in Fig­
ure 2(a), along a ray n for rendering a general scalar field, both the 
sampling points A and B can be perceived with a certain config­
uration of transfer function. Therefore, when designing a parallel 
visualization algorithm, we may assign the regions containing A 
and B to different processors, and all processors can be involved in 
rendering from any view angle.

However, in a geoscience application, scientists typically merely 
focus on the scalar field of the front Earth surface towards viewers. 
For the phenomena over the other region, they can rotate the sphere 
and bring the region to the front for observation. As shown in Fig­
ure 2(b), for spherical geodesic grids covering the Earth surface, we 
just render the sample points in the front visible region along a ray 
ri. Although it is technically feasible to make A and B visible, a 
display of both points can preclude a clear observation and thus is 
rarely applied in practice. In this case, if we still simply assign the 
regions of A and B to different processors, some processors can be 
idle during the rendering if the corresponding regions have been ro­
tated to the back, which may lead to severely unbalanced workloads 
among the processors.

In addition, as shown in Figure 1, the mesh existence and density 
can vary greatly in a model of the Earth surface. Thus, rendering 
workloads can be dramatically different with respect to different 
view angles. For example, showing the Pacific Ocean would incur 
a larger amount of rendering calculations compared to a display 
of the Americas due to a lack of grids in the continental regions. 
Such use of unstructured and variable-density grids exacerbates the 
issue of workload assignment, in that the amount of grids assigned 
to different processors must be carefully balanced with a holistic 
consideration of view angles and grid resolution distributions.
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Figure 4: The major steps of our parallel volume rendering framework.

4 Parallel Volume Rendering Framework

A parallel rendering framework is typically comprised of the stages 
of data partition, distribution, rendering, and image compositing. 
Given the characterization of geodesic grid visualization, we have 
taken several design considerations into account for the develop­
ment of a framework.

First, there are three basic parallel rendering approaches, namely, 
sort-first, sort-middle, and sort-last [13]. Although the rendering 
cost of geodesic grids is largely view-dependent, an image-based 
workload partition scheme may constantly require communication 
between processors to exchange simulation data when changing 
views. This communication cost can be prohibitively high for pro­
cessing large climate simulation data. To this end, we choose sort- 
last parallel rendering because of its simple workload decomposi­
tion for achieving load balancing and no communication overhead 
involved in the rendering stage.

Second, data partition and distribution are conducted before the 
rendering stage in sort-last parallel rendering. In order to maximize 
the parallelism, it is imperative to keep all the processors busy in 
rendering visible regions. However, if a processor is only assigned 
one or a few partitions, it will be idle when its regions are facing 
away from the viewer. As illustrated in Figure 2(b), one intuitive 
idea is to assign the opposite regions along a ray, such as the regions 
containing both A and B, to one processor. That is, the processor 
will be always busy whenever a user is facing towards either A or 
B. But it is possible for the processor to become idle again when 
the viewing direction is perpendicular to AB. Thus we need to 
design a more sophisticated partition and distribution strategy to 
allow each processor to have visible regions to render from any 
viewing direction.

Third, besides visible regions, each processor would also be ide­
ally assigned a roughly equal amount of rendering workload from 
any viewing direction. The data size of each region depends on its 
local mesh resolution. However, the raw mesh of a simulation data 
mainly contains the connectivity information rather than the mesh 
densities. Thus it requires us to find a way to index the data accord­
ing to the variation of grid resolutions, such that we can quickly 
quantify the mesh density and then compute the data size for any 
given region. This functionality is vital for us to accurately estimate 
the regional rendering cost for load balancing.

These considerations can lead to a design in which we can regu­
larly decompose the spherical surface into a set of patches along the 
latitude and longitude lines, as shown in Figure 3(a). The number 
of the patches is sufficiently larger than the number of processors, 
and then we randomly distribute the patches among the processors. 
Hence each processor can be assigned the regions scattered over the 
surface, and a portion of regions are visible from a viewing direc­
tion. In addition, by randomization, the amount of data assigned to 
each processor can be roughly equal. This design is based on fine­
grained partitioning and randomization, which is commonly used 
in distributed computing for load balancing. However, a large num­
ber of decompositions can also increase the number of the partial 
images generated by each processor. These partial images of each 
processor typically cannot be composited locally, because they cor­
respond to a set of scattered regions whose projections may not be 
continuous in depth. Thus a significant overhead will be introduced 
in the parallel image compositing stage for merging a large number 
of partial images into a final image, and becomes the main perfor­
mance bottleneck of the entire pipeline.

We design our sort-last parallel volume rendering framework for

Figure 5: Ray-casting of a quadrant. Given a quadrant q (in blue), we can 
project it onto a 2D screen space. The gray area corresponds to the pixels of 
projection. A ray is casted from each pixel to penetrate the grid cells covered 
by q, and the color and opacity values of sample points are accumulated along 
the ray to generate the final color of the pixel.

Figure 6: Rendering of a quadtree constructed from a real simulation data.

geodesic grids to address these issues. We first construct a spherical 
quadtree to cover the surface of a geodesic mesh, as shown in Fig­
ure 3(b). The quadtree is refined adaptively according to the count 
of regional grid cells. In this way, we can quantify the mesh density 
within the region of any quadtree node. We then partition the grids 
into the regions corresponding to the leaf nodes of the quadtree, 
and distribute them among the processors according to the traversal 
order of the leaf nodes. Hence we can not only control the total 
number of regions, but also ensure that each processor is assigned 
a number of regions scattered across the spherical surface. No pro­
cessors will be idle for any viewing direction, and the rendering 
load will be balanced among the processors. After each processor 
renders its assigned regions, we use parallel image compositing to 
generate the final image. Our approach can lower the number of 
partitions and significantly reduce the overhead of parallel image 
compositing compared to the conventional fine-grained partition­
ing scheme. Figure 4 shows the major steps of our approach.

4.1 Spherical Quadtree based Grid Partitioning
A quadtree is a commonly used data structure to partition a 2D 
space. A typical quadtree is constructed by recursively subdividing 
the space into four quadrants or regions until certain criteria are 
reached. The concept of quadtrees can be naturally extended to 
decompose spherical surfaces [9, 23, 21] in that the decomposition 
can be conducted along the latitude and longitude lines instead of 
X- and Y-axes in a 2D square space.

We use the quadtree to partition spherical geodesic grids such 
that each quadrant or region will be associated with an approxi­
mately equal amount of rendering loads. To achieve this goal, we 
first need to estimate the rendering cost of a quadrant q. Without 
loss of generality, we use ray-casting to volume render geodesic 
grids. As shown in Figure 5, we first project q onto a 2D screen 
space, and then cast a ray from each pixel to penetrate the grid cells 
covered by q. For each ray, we sample the scalar field and accumu-
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late the color and opacity values of sampling points to compute the 
final color of the pixel. Thus the rendering cost is proportional to 
the number of pixels and the number of cells. We note that the num­
ber of pixels depends on the projection and the area of the region. 
For a static view, the number of pixels projected from different re­
gions can be different. But if we allow users to interactively view 
the spherical surface from any direction, the amortized number of 
pixels projected from a region is proportional to the area of the re­
gion, because each region on a sphere has an equal probability to be 
viewed. Thus, for a quadrant q, the rendering cost (, is estimated 
as a linear function of its area Sq and its number of cells Gq:

Cq = kSqGq (1)

where k is a constant, and Sq is computed according to the latitudes 
lat-i and Zat2 and the longitudes Ion and /on2 that bound ql.

This cost model guides us in constructing a quadtree. Given a 
geodesic mesh, we first use Equation 1 to estimate the total render­
ing cost Ct using the total spherical surface area and the total cell 
number. Assume that the number of processors is N and each pro­
cessor will be assigned m quadrants. The average rendering cost 
Cavg of each quadrant is computed as

Ca Ct
niN (2)

We then start to recursively subdivide the spherical surface to con­
struct the quadtree. We stop subdividing a quadrant if its estimated 
rendering cost is smaller than Ca vg or the total quadrant number is 
larger than mN. In this way, we can construct a quadtree where 
each quadrant is associated with a similar rendering cost.

According to the Earth satellite constellation design, three satel­
lites spaced equally around the equator can cover most of the 
Earth [2], If we imagine that a user’s view point is a satellite around 
the spherical mesh, this implies that each processor needs to be as­
signed at least 3 quadrants scattering on the surface. Thus from any 
viewing direction, a processor can have at least one quadrant that 
is visible, which can prevent the processor from becoming idle. In 
practice, we hud that m = 5 provides us a good performance result. 
Figure 6 shows a quadtree constructed from a real simulation data. 
We can clearly see that the finer-grained quadrants are generated 
to cover the higher-resolution regional areas of interest, while the 
coarser-grained quadrants cover the remains of ocean area, which 
matches the distribution of grid resolutions in Figure 1.

With our spherical quadtree based partitioning, the shape of the 
quadrants can be different across the sphere: they are close to be 
rectilinear for regions around the equator, but are triangular for re­
gions around the poles, as shown in Figure 3(b). Our cost model 
considers the surface area of quadrants, and the workload estima­
tion is independent of the location and the shape of a quadrant.

(b)

Figure 7: The spatial decomposition of a spherical surface and its corre­
sponding quadtree. A pre-order traversal of quadrants is equivalent to the 
space-filling curve on the spherical surface, (a) shows that we evenly assign 
the quadrants among three processors from left to right in the quadtree, and 
the distribution of their regions is contiguous along the space-filling curve. In 
this case, each processor's regions may not be always visible from different 
viewing directions, (b) shows that we assign the quadrants among three pro­
cessors in round robin, and the neighboring regions are largely assigned to 
different processors. In this case, a portion of a processor's regions can be 
visible from any viewing direction.

quadrants. This property of quadtree has been widely used in the 
optimization of data layout. For example, the grid cells can be lin­
earized and saved in persistent storage according to the space-filling 
curve obtained by quadtree. This storage pattern can guarantee con­
tiguous reads/writes, and improve I/O performance [3],

If we assign the processors along the space-filling curve for par­
allel visualization, each processor will be responsible for contigu­
ous regions on the surface. Figure 7(a) illustrates such an assign­
ment for three processors distinguished in different colors. How­
ever, the regions assigned to a processor can be occluded from cer­
tain view points. For example, as shown in Figure 7(a), the green 
regions cannot be perceived if the viewer is around the north pole, 
and the processor PE2 will become idle.

4.2 Space-filling Curve based Grid Distribution
It is desired to assign each processor with a set of quadrants that 
are as scattered as possible. A straight-forward approach is to ran­
domly assign the quadrants among the processors. However, we 
can achieve a more appropriate assignment by leveraging the spatial 
locality encoded in a quadtree. If we use the linear quadtree tech­
nique [5] to encode and distinguish quadrants, a pre-order traver­
sal of quadrants leads to the well-known space-filling curve which 
groups the spatial nearby quadrants together on the spherical sur­
face. Figure 7 shows an example of spherical surface decomposi­
tion and the corresponding quadtree. The traversal of leaf quadrants 
from left to right is equivalent to the zigzag on the spherical surface. 
Therefore, a strong spatial locality can be clearly identified for these

^Our implement is similar to the areaquad function of MATLAB to 
compute surface area of latitude-longitude quadrangle [12].

We note that the spatial locality becomes the best along the 
space-filling curve of the decomposition. On the other hand, we 
may achieve the worst locality using the space-filling curve in the 
opposite way to favor visualization workload assignment. Instead 
of a contiguous assignment, we distribute the quadrants among the 
processors in round robin along the space-filling curve. Given a 
sufficient number of processors, this distribution can guarantee that 
the neighboring regions are assigned to different processors. As 
shown in Figure 7(b), the regions of each processor scatter across 
the spherical surface, and a processor always has a portion of re­
gions that are visible from any viewing direction. Thus, we can 
keep all processors busy in rendering. In addition, each proces­
sor is still assigned an equal number of quadrants, and each quad­
rant corresponds to a nearly equal amount of rendering cost. This 
assignment enables our solution to achieve load balancing during 
users’ interactive exploration.
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4.3 Ray-Casting of Local Geodesic Grids
After we partition and distribute geodesic grids among the proces­
sors, each processor starts to render its local regions, where the 
GPU-based ray-casting algorithm developed by Xie et al. [25] is 
employed in this stage.

The algorithm is tailored to process geodesic grids with mini­
mal overhead. First, we directly use the original Voronoi polygo­
nal mesh of simulations in rendering without any intermediate grid 
transformation. In particular, a set of table-based representations 
are deployed to manage the mesh in GPU memory for efficient data 
access. Then, during the process of ray-casting, we leverage the 
properties of geodesic grids and march rays using the 2D connec­
tivity information of the outer layer. Hence, we do not need to re­
construct full 3D connectivity information, and can further reduce 
memory and computing overhead. To achieve high quality render­
ing, an analytic solution has been designed to reconstruct the signal 
within a geodesic grid cell for scalar value interpolation, gradient 
estimation, and ray integration. The accuracy of the analytic scalar 
and gradient interpolation is comparable to the results achieved by 
central difference numerical computations in simulations.

Each processor iterates through its assigned quadrants and ren­
ders the grid cells of each quadrant into a partial image using Xie's 
algorithm. The rendered results feature high image quality, less 
memory overhead, and higher computing performance. In addition, 
no communication is needed in this stage, and thus local grid ren­
dering can scale well given our partitioning and distribution scheme 
for load balancing.

4.4 Parallel Image Compositing
The partial images rendered by each processor need to be compos­
ited (i.e. back-to-front alpha blending) to generate the final image. 
The parallel image compositing stage requires inter-processor com­
munication, and can become expensive when the number of partial 
images increases. The most representative parallel image composit­
ing algorithms include direct send [14] and binary swap [11]. Di­
rect send is simple and easy to implement; however in the worst 
case it needs to exchange N(N — 1) messages among N com­
positing processors, introducing link contention due to its nature 
of all-to-all communication pattern. Binary swap uses a binary 
tree style compositing process and reduces the number of messages 
from N(N — 1) to Nlog(N). However, to achieve the best perfor­
mance, binary swap needs the number of processors to be an exact 
power-of-two.

Yu et al. [27] presented the 2-3 swap image compositing algo­
rithm that combines the advantages of direct send and binary swap. 
On one hand, 2-3 swap can be as flexible as direct send in that it 
can use any number of processors. On the other hand, 2-3 swap 
involves the number of messages bounded by O(Nlog(N)), which 
is as efficient as binary swap. Peterka [16] presented the Radix- 
k algorithm that also unifies direct-send and binary swap and has 
the similar complexity as 2-3 swap. However, it is non-trivial to 
configure Radix-k for achieving optimal performance [22].

We use 2-3 swap in this work for parallel image compositing. 
This algorithm has been used in several large-scale parallel render­
ing applications, and demonstrated its great flexibility and scala­
bility over ten thousands of processors [26]. As we discussed in 
Section 4.1, each processor can be assigned m quadrants, and the 
total number of partial images is mN for N processors. Because 
of the spatial discontinuity of the quadrants assigned to each pro­
cessor, these partial images are not necessarily contiguous in depth 
on a processor, and cannot be blended locally before being sent to 
the other processors. Therefore, one message is required for one 
partial image in the worst case, and the total number of messages is 
bounded by O(mNlog(mN)). Compared to the fine-grained parti­
tioning and distribution scheme discussed in Section 4, our scheme 
can minimize the value of m by leveraging spherical quadtrees, and

GCRM MPAS
resolution 28km 15~75km
# cells 655362 253746
# vertices 1310720 517338
# edges 1966080 771377
# layers 60 40
# time steps 40 12

Table 1: The GCRM and MPAS data sets used in our evaluation. Both data 
sets contain multiple variables.

significantly reduce the image compositing cost.

4.5 Implementation
We have employed MPI and CUDA to implement our framework 
on heterogeneous supercomputers where each node contains both 
CPUs and GPUs. Given a spherical geodesic grid data set, we first 
let each processor read the whole mesh information from storage. 
Because only the connectivity information of the 2D outer layer 
is stored in the original Voronoi polygonal mesh, the cost of this 
I/O operation is marginal. Then each processor independently con­
structs a quadtree using CPUs. The maximum depth of the quadtree 
depends on the processor number and the grid cell number. The de­
composition of quadrants is conducted along the latitude and lon­
gitude lines of the sphere. Each processor generates an identical 
quadtree for the same configurations. Given the total processor 
number and its rank, each processor independently traverses the 
tree and finds the set of quadrants that it needs to be responsible for.

The grid cells are organized in the leaf quadrants according to 
the spatial decomposition of the quadtree. For the grid cells cross­
ing the boundaries of the leaf quadrants, we duplicate them in the 
relevant quadrants for interpolating scalar values along the bound­
aries. During the ray-casting of a quadrant, we terminate a ray if we 
step out of the boundary of the quadrant rather than the boundary 
of the cells. In this way, we can generate the partial images aligned 
with the quadrants to facilitate image compositing. After each pro­
cessor determines its own set of cells, all processors collectively 
fetch the simulation data from storage using MPI-IO.

Different from Xie’s work [25], we do not use OpenGL to ren­
der the visible surface of the Voronoi polygonal mesh in this work. 
Instead, we implement the projection, clipping, and rasterization 
stages in CUDA for off-screen rendering. Thus, our implement can 
be executed in an environment without any OpenGL or graphics 
support. The ray-casting of local grids is implemented using the 
same method as Xie’s [25], where ray marching, interpolation, gra­
dient estimation, and ray integration are entirely conducted in GPU 
memory using CUDA. After each processor generates its local par­
tial images, these images are first transferred from GPU memory to 
CPU memory. Then we use the 2-3 swap algorithm to composite 
the partial images from all processors into the final image, where 
the communication of 2-3 swap is implemented using MPI and the 
image blending is performed using CPUs.

We put our CUDA code in a special header file by exploiting the 
similarity between C/C++ code and CUDA code. We can choose 
our code to be complied into a CPU or GPU executable according 
to the availability of GPUs in a system. Thus our implementation is 
more generic and highly compatible to both homogeneous systems 
and heterogeneous systems.

5 Results

We have evaluated our framework using two data sets, where one 
is generated from the Global Cloud Resolving Model (GCRM) and 
the other is from the Model for Prediction Across Scales (MPAS). 
Both GCRM and MPAS are developed based on geodesic grids 
where mesh density varies over the Earth according to the distri­
bution of regions of interest. However, GCRM is mainly used to
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Figure 8: The timing results of the GCRM data set. We measured the timing 
of the rasterization, ray-casting, and image compositing operations with the 
number of GPUs ranging from 4 to 1024 and the output image resolutions 
of 10242 (top), 20482 (middle), and 40962 (bottom). The timing results are 
plotted in a logarithmic scale.

model cloud processes in atmosphere, and a GCRM mesh covers 
the entire sphere. MPAS is mainly used to model ocean processes 
such that the continental areas are not covered in a MPAS mesh. In 
general, compared to a GCRM mesh, a MPAS mesh exhibits more 
variation in grid resolutions over the sphere. Table 1 lists the de­
tailed information of the GCRM and MPAS data sets.

We performed our experimental study on Titan, a Cray XK7 sys­
tem at Oak Ridge National Laboratory. The system contains 18,688 
compute nodes, and each node has a conventional 16-core AMD 
Opteron CPU and an NVIDIA Tesla K20 GPU accelerator with a 
total 38GB of memory. The compute nodes are connected through 
a Cray Gemini interconnect.

We conducted a strong scaling test on our approach with an in­
creasing number of GPUs from 4 to 1024. We rendered the data sets 
using 3 different image sizes, including 10242, 20482, and 40962, 
and from 10 different viewing directions that are evenly distributed 
across the sphere. For each viewing direction, we measured the 
timing results of the major operations, including rasterization, ray­
casting, and parallel image composting. The timing results are then 
averaged over the viewing directions.

Figure 8 shows the timing results for rendering the GCRM data 
set. The rasteraization time is nearly negligible for all three image 
resolutions. Our CUDA-based implementation of rasterization can 
render millions of polygons interactively. For the GCRM data, our 
rasterization approach achieves a rate of 30 frames per second for 
20482 images and a rate of 10 frames per second for 40962 images 
using 4 GPUs. The performance is comparable to an implementa-

Figure 9: The timing results of the MPAS data set. We measured the timing 
of the rasterization, ray-casting, and image compositing operations with the 
number of GPUs ranging from 4 to 1024 and the output image resolutions 
of 10242 (top), 20482 (middle), and 40962 (bottom). The timing results are 
plotted in a logarithmic scale.

lion using the native OpenGL on similar GPUs. We can see that the 
ray-casting time dominates the overall time for a smaller number of 
GPUs, which constantly decreases with the increasing number of 
GPUs. The measured timing results are close to the ideal speedup 
time. For a high resolution image of 40962, our approach achieves 
a parallel efficiency of 85% from 4 GPUs to 64 GPUs, and a parallel 
efficiency of 50% from 4 GPUs to 1024 GPUs.

The compositing time is nearly constant with the increasing 
number of processors because of its logarithmic complexity. As 
shown in Figure 8, when the processor number is less than 64, 
as expected, the compositing time can be hidden by overlapping 
ray-casting and image compositing. However, when the proces­
sor number is larger than 64, the compositing time starts to domi­
nate the overall time. Most existing parallel visualization solutions 
for supercomputers use CPU-based rendering algorithms, and thus 
the rendering time is longer than the image compositing time un­
til a large number of processors are used. In our new GPU-based 
parallel visualization framework, the rendering time can be signif­
icantly reduced by leveraging GPUs available on supercomputers, 
while compositing is still conducted using CPUs and MPT Thus, 
the curve of composting time can quickly intersect with the curve 
of rendering time even for a smaller number of processors. We aim 
to develop optimization techniques for image compositing in sup­
port of parallel GPU-based rendering in the future.

Figure 9 shows the timing results for rendering the MPAS data 
set that features a high variation of mesh density. Even for this 
data set, our approach demonstrates a similar performance trend
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Figure 11: The visualization results of the GCRM data set. The top row of images show the whole global atmosphere vorticity variable over three time steps. The 
bottom row of images show the close-up views of regions of interest.

Image resolution of 20482

—Round Robin —Contiguous

GPU ID

Figure 10: The ray-casting time for each GPU using the MPAS data set and 
different data distribution schemes. The output image resolution is 2048T 
The blue and red curves correspond to the contiguous data assignment (Fig­
ure 7(a)) and our round robin data assignment (Figure 7(b)), respectively.

as for the GCRM data. The ray-casting time is still close to the 
ideal speedup time. Figure 10 shows the ray-casting time for each 
GPU when 128 GPUs are used in rendering of the MPAS data set 
with an output image resolution of 20482. The time is averaged 
over the 10 viewing directions. The difference ratio, defined as 
(rnaxJime — min linn max linn . is 32.5% for the red curve 
and 98.6% for the blue curve. This clearly shows that the workloads 
are well-balanced among the GPUs from different view directions 
using our data partitioning and distribution scheme. Figures 11 
and 12 show the overviews and zoom-in views of the GCRM and 
MPAS data sets for three selected time steps. Our high-resolution 
parallel visualization solution delivers high-quality results that en­
able scientists to interactively explore fine details of the volume 
data. A supplementary video demonstrating an interactive explo­
ration of each time-varying data set using our Tenderer is provided

at http://youtu.be/lbspVTsGSY8.

6 Conclusions

We have introduced a scalable solution for visualizing large-scale 
3D geodesic grid data using massively distributed GPUs on state- 
of-the-art supercomputers. Based on a careful characterization of 
geodesic grids, we use spherical quadtrees to partition and dis­
tribute geodesic data. Our design achieves a balanced workload 
across processors, and makes it practical to interactively visualize 
large geodesic grid data. Our visualization framework directly takes 
the original mesh as input, and thus is ready to be integrated with 
simulations. In the future, we plan to experiment with other data 
partitioning and distribution schemes, including the ones deployed 
by the simulations, to enable in-situ visualization. We also would 
like to develop optimization methods to further reduce the image 
composting cost.
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