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1 Introduction and the Likelihood

This report presents the mathematical definition of a doubly-hierarchical
one-way random effects model for multivariate data. Multivariate data
with m components yi (i = 1, . . . , n) arise from G groups with the vector
ĝ[i] ∈ {1, . . . , G} denoting the group of the i-th observation. Data within
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each group are modeled as independent samples from a multivariate normal
distribution specific to that group. Thus, the likelihood for the multivariate
datum yi is, [

yi | θbg[i],Σbg[i]] ind∼ Normal
(
θbg[i],Σbg[i]) , (1)

where, θg and Σg are, respectively, the unknown mean vector and covariance
for the g-th group1.

2 The Hierarchical Prior for the Group Means

If we were simply doing Bayesian inference on each group separately, then
we would pick priors for the mean vectors and covariance matrices of each
group2 and use Bayes law to obtain posterior distributions for the means
and standard deviations. Such priors could potentially be different for each
group but, in the simplest case, we could pick common priors for all groups.
For example, we could pick a normal prior for the group means,

[θg | µθ,Σθ]
ind∼ Normal (µθ,Σθ) , (2)

where µθ and Σθ are, respectively, the mean vector and the covariance matrix
for the prior for the group means.

In such a separate analysis, µθ and Σθ are fixed and therefore known
inputs to the analysis. However, if we believe that the distributions of the
separate groups should be similar to each other and that the data from
one group should therefore provide us with information about other groups
(especially groups for which we do not yet have any data), then we can
treat the inputs to the above common prior for the group means as them-
selves unknown, and use the data to make inferences about these unknown
“hyperparameters”3.

Because µθ and Σθ are now unknown and are to be inferred from the
data, we need priors for them. We choose a non-informative, improper prior
for the location hyperparameter µθ,

µθ ∝ 1m
(
[−∞,∞]

)
, (3)

1Note that, in this and all later equations specifying the model, all quantities are
assumed statistically independent except as explicitly stated conditionally.

2Or, more generally, we would pick a joint prior for the mean and covariance of each
group.

3Note that another way to come to the same approach is to assume that the separate
group means, θg, are themselves independently sampled from the normal distribution in
Equation 2.
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where 1m
(
[a, b]

)
is the function that is equal to one on the m-dimensional

hypercube defined by vectors a of lower limits and b of upper limits and zero
elsewhere.

In order to find an appropriate prior for Σθ, we follow the recommen-
dations in [5, Section 6.12] and begin by decomposing it into a correlation
matrix and a diagonal matrix of variances,

Σθ = diag
(√

Tθ

)
Cθ diag

(√
Tθ

)
(4)

where:

• Tθ is the diagonal of Σθ (in other words, the vector of variances);

• We can take the square root of Tθ because it contains only nonnegative
elements;

• The operator diag converts a vector to a diagonal matrix; and

• Cθ is the correlation matrix corresponding to Σθ.

We must now choose priors for Tθ and Cθ. We begin by choosing proper
priors for the components of Tθ that we will subsequently make quite broad
and, thus, “weakly informative” [2, Section 2.9][

Tθj | αθj , βθj
]
∼ Γ−1

(
αθj , βθj

)
, (5)

where,

• Γ−1 is the inverse-gamma distribution, the conjugate prior for the
normal variance;

• αθ and βθ are vectors of length m that specify the standard shape
and scale parameters, respectively, for the inverse-gamma distributions
that are the priors for the components of Tθ;

Here, αθ and βθ are fixed and known inputs to the analysis. We will choose
them based on our experience with choosing parameters for the inverse-
gamma prior for the variance in the univariate case.

As in the univariate case, we choose,

αθj ≡ 0.3, ∀j. (6)

This specifies a very wide prior with a very long tail as the variance goes to
infinity.
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As for the scale βθ, we want to choose it based on a (vague) prior estimate
of a typical value of the variance in the group means. However, we cannot
simply set βθ to such a scale because, as discussed at greater length in [4], the
parameter β in the inverse-gamma distribution is not a “typical” value from
the distribution because reasonable measures of central tendency like the
mean, median, and mode all depend strongly on α as well as β. In addition,
neither the mean nor the mode of the distribution are always appropriate
because the mean does not even exist for α ≤ 1, and the mode goes to a
fixed value of β as α → 0, even though the distribution is becoming more
and more weighted toward ∞ without limit. In practice then, the only
reasonable choice for a typical value from the inverse-gamma distribution is
the median because it always exists and scales reasonably with α over the
entire range from 0→∞.

There is no analytic formula for the median of the inverse-gamma dis-
tribution, but it is shown in [4] that γ(α, β), defined by,

γ (α, β) = β

ε
√(

Aeln(2)/α −A
)ε + 1

ε√
αε + 1

, A ≡ 1.7996, ε ≡ 1.15,

approximates the median to within 4% for α ∈ [10−3, 103], which is more
than good enough for our purposes.

We can therefore invert the definition of γ to obtain β(α, γ),

β (α, γ) = γ
ε√
αε + 1

ε
√(

Aeln(2)/α −A
)ε + 1

, A ≡ 1.7996, ε ≡ 1.15, (7)

and choose γ to be any reasonable prior scale for the variance.
In the case at hand, we therefore use Equation 7 to set

βθj = β
(
αθj , Sθj

)
(8)

where Sθj is a vector of scales for the variances of the group means, one for
each component of the multivariate data, and is another fixed input to the
analysis.

We also have to specify a prior for the correlation matrix Cθ. We choose
to use the LKJ prior for correlation matrices discussed in [2, Appendix A],

p (Cθ | ηθ) ≡ LKJCorr (Cθ | ηθ) ∝ |Cθ|ηθ−1 , ηθ > 0, (9)

where ηθ is another fixed input to the analysis. For ηθ = 1, the univariate
marginal densities in the LKJCorr prior for the correlations are uniform on
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[−1, 1]. For ηθ > 1, the univariate marginals go to zero at −1 and 1, while
for ηθ < 1, they are infinite at 1 and −1. We will start by setting

ηθ = 1 (10)

and change to a somewhat larger value if the MCMC has problems with Cθ
becoming numerically singular (as it will if any of the correlations get too
close to ±1).

3 The Hierarchical Prior for the Group Variances

We next need to specify a statistical model for the Σg, the group covariance
matrices in Equation 1. We choose a common, inverse-Wishart model for
the Σg,

[Σg | ν,Rv]
ind∼ W−1 (ν,Rv) , (11)

where ν is a scalar degrees-of-freedom parameter and Rv is a symmetric
positive-definite scale matrix. We then assume that ν and Rv are unknown
hyperparameters and therefore are to be inferred from the data.4

As was the case with our hierarchical model for the group means, in order
to infer our hyperparameters (in this case ν and Rv) from the data, we need
(hyper)priors for them. We begin with ν. In Section A.3 we note that a
diagonal element, Σvii

, of a covariance matrix Σv distributed according to
Equation 11 will have an inverse-gamma marginal distribution,

Σvii
∼ Γ−1(α, β), α ≡ (ν − k + 1)/2, β ≡ Rvii/2. (12)

where Rvii is the corresponding diagonal element of the scale matrix, Rv.
We therefore choose a minimum value for ν based on the minimum value
for α that we used in the univariate case [6],

νmin ≡ 2αmin + k − 1. (13)

We then set the prior for ν analogously to the prior for α in the univariate
case,

[ν | νmin, Sν ] ∼ Normal+1/2(νmin, Sν), (14)

4Equivalently, we can regard the Σg as sampled independently from the prior in Equa-
tion 11.
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where the subscript +1/2 on a distribution indicates the half-distribution
to the right of the median, and νmin and Sν represent a minimum value
and scale for ν, respectively. We will set these quantities based on our
previous experience with the univariate model through the connection to
the α-parameter for the inverse-gamma distributions for the variances given
by Equation 12,

νmin ≡ 2αmin + k − 1,
Sν ≡ 2Sα + k − 1,

(15)

where αmin and Sα correspond to the quantities used to specify the hyper-
prior for α in the univariate case. We will choose

αmin ≡ 0.2 and Sα ≡ 100, (16)

at least initially, providing a broad hyperprior for ν, with the underlying
α allowed to take values between 0.2 and approximately 200. We do this
with the understanding that we may need to raise αmin or lower Sα if we
experience problems with the MCMC.

As for the hyperprior for the symmetric positive-definite scale matrix Rv,
we will follow the same strategy that we used for the covariance matrix for
the group means and will specify separate priors for the diagonal elements
on the one hand and the corresponding correlation matrix on the other. We
write,

Rv = diag
(√

Tv

)
Cv diag

(√
Tv

)
, (17)

where Tv is the vector of diagonal elements of Rv and Cv is the correlation
matrix corresponding to Rv.

Based on Equation 12, a diagonal element of Rv, Rvii, corresponds to
2βvi where βvi is the scale parameter of the inverse-gamma marginal distri-
bution for the corresponding diagonal element of a covariance matrix sam-
pled from the inverse-Wishart distribution5. We follow the same strategy
that we used earlier and define a vector of parameters γv ∈ Rm which are
approximations to the medians for the inverse-gamma distributions for each
variance. We choose a hyperprior for γvi,[

γvi | Svi
]
∼ Cauchy+1/2

(
0.0, Svi

)
, (18)

5Note that all of inverse-gamma distributions for the diagonal elements of the sampled
covariance matrices will have the same value for the parameter α, namely α = (ν+k−1)/2,
so there is not need for a vector of αs.
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where Svi is an independent input to the analysis that represents a rough
scale for the group variance of the i-th component.

We can then use Equation 7 to compute,

βνi = β(α, γνi), (19)

and compute the actual diagonal element of Rv, Tvi from Equation 12,

Tvi ≡ 2βvi. (20)

The quantity α used to compute βvi in Equation 7 is, of course, derived
from the parameter ν according to Equation 12,

α = (ν − k + 1)/2. (21)

We also have to specify a prior for the correlation matrix Cv. As in
Equation 9, we use the LKJ prior for correlation matrices,

p (Cv) ≡ LKJCorr(Cv | ηv) ∝ |Cv|ηv−1 , ηv > 0, (22)

where ηv is another fixed input to the analysis. As above, we will start out
trying

ηv = 1, (23)

and change to a somewhat larger value if the MCMC has problems with Cv
becoming singular.

4 Scale Inputs

We are thus left with the following inputs that we need to specify for the
analysis,

1. Sθ, a vector of prior estimates for the scales of the variances of the
group means;

2. Sv, a vector of prior estimates for the scales of the within-group vari-
ances.

We choose to depart from strict Bayesianism and choose both of these inputs
to be equal to the sample variance of the corresponding component of the
multivariate data over the entire dataset,

Sθi ≡ Svi ≡ the variance of the i-th component over the dataset. (24)

Given that the priors that Sθ and Sv specify are weakly informative, this
choice simply insures a reasonable scale for the our hyperpriors.
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5 Parameters, Inputs, and Construction of the Pos-
terior Distribution

We have now provided a complete description of our doubly-hierarchical
model. The unknown quantities that we need to infer are,

θg, Σg : the parameters for each group,
µθ, Tθ, Cθ : the hyperparameters for the prior for the group means, (25)
ν, γv, Cv : the hyperparameters for the prior for the group variances,

where g ∈ {1, . . . , G}
We construct a posterior for these unknowns in accordance with Bayes

law by multiplying the likelihoods for the data in Equation 1 by the prior
for the group means in Equation 2 and the hyperpriors in Equations 5 and 9
for the hyperparameters for the prior for the group means, using Equation 4
to connect the hyperparameters Tθ and Cθ to the covariance matrix Σθ in
the prior in Equation 2.

We then multiply by the prior for the group covariance matrices, Equa-
tion 11, and then by the hyperpriors for the hyperparameters in the prior
for the group covariances in Equations 14, 18, and 22, using Equations 19,
20 and 21 to compute Tv from ν and γv and Equation 17 to assemble the
scale matrix for the inverse-Wishart prior for the group variances from Tv
and Cv.

The fixed inputs to our analysis are,

αθj : (see Equation 6),

Sθi : (see Equation 24),

ηθ : (see Equation 10),
αmin : (see Equation 16),
αscale : (see Equation 16),
Svi : (see Equation 24),

ηv : (see Equation 23),

A Appendix: The Inverse-Wishart Distribution

In this section, we present some facts about the inverse-Wishart distribution
that we use in the body of the report.
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We begin immediately below by defining and relating the two conven-
tions for defining the inverse-Wishart distribution. We then present an im-
portant theorem for marginal distributions for parts of a partitioned matrix
distributed according to an inverse-Wishart, and then specialize the theo-
rem to give the marginal distribution for the variances that are the diagonal
elements of a random matrix from an inverse-Wishart.

A.1 Conventions for the Inverse-Wishart Distribution

There appear to be two distinct conventions for defining the inverse-Wishart
distribution that differ in the specification of the degrees-of-freedom pa-
rameter. In this subsection, we show the correspondence between the two
conventions.

The first convention appears in the text by Muirhead, where we find [3,
problem 3.6, page 113]:

A random m×m positive definite matrix B is said to have the
inverted Wishart distribution with n degrees of freedom and pos-
itive definite m ×m parameter matrix V if its density function
is,

2−m(n−m−1)/2

Γm
[

1
2(n−m− 1)

] (detV )(n−m−1)/2

(detB)n/2
etr
(
−1

2B
−1V

)
, B > 0,

(26)

where n > 2m. We will write that B is W−1
m (n, V ).

Note that, for a matrix A, etr(A) is exp[trace(A)] and Γm is the multivariate
gamma function.

Wikipedia gives what appears to be the current standard convention
for the inverse-Wishart distribution for a symmetric positive-definite p × p
matrix X [7]

W−1(X | Ψ, ν) ≡ |Ψ|
ν
2

2
νp
2 Γp

(
ν
2

) |X|− ν+p+1
2 e−

1
2

tr(ΨX−1), (27)

where ν > p− 1 and Ψ is a symmetric positive-definite p× p scale matrix.
If we make the obvious equivalences,

m = p

B = X

V = Ψ,
(28)
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and remember that matrices commute within a trace, then the two defini-
tions are equivalent if,

ν = n−m− 1 (29)

or, equivalently

n = ν +m+ 1. (30)

As a check, it is trivial to show that the two conditions on the degrees-
of-freedom parameter are equivalent,

ν > p− 1 ⇔ n−m− 1 > m− 1 ⇔ n > 2m.

A.2 Marginal Distribution for a Partitioned Covariance

Given the definition in Equation 26 above (see also [1]), Muirhead states the
following [3, problem 3.6(d), page 114]:

Suppose that B is W−1
m (n, V ) and partition B and V as

B =
[
B11 B12

B21 B22

]
, V =

[
V11 V12

V21 V22

]
,

where B11 and V11 are k×k and B22 and V22 are (m−k)×(m−k).
Show that B11 is W−1

k (n− 2m+ 2k, V11).

According to Wikipedia [7], if A ∈ Rp×p is a symmetric nonnegative-
definite matrix with an inverse-Wishart distribution, W−1(Ψ, ν), and A and
Ψ are partitioned conformably,

A =
(
A11 A12

A21 A22

)
, Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
, (31)

with A11, S11 ∈ Rp1×p1 , A22, S22 ∈ Rp2×p2 , where clearly p1 + p2 = p, then,

A11 ∼ W−1(Ψ11, ν − p2) . (32)

We will now check that the two formulas are equivalent. We begin by
noting the following equivalences (on top of the equivalences in Equations 28,
29, and 30),

Aij = Bij ,

p1 = k,

p2 = m− k = p− p1.

(33)
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We will define,

n′ ≡ n− 2m+ 2k
ν ′ ≡ ν − p2.

(34)

We want to show that Equation 30 applies to the new pair of matrices, B11

and A11. In other words, we want to show that,

n′ = ν ′ + k + 1,

where the m on the right hand side of Equation 30 is now a k because A11

and B11 are k×k matrices. If we then plug the definitions of n′ and ν ′ from
Equation 34 into Equation 30, we have,

n− 2m+ 2k = (ν − p2) + p1 + 1
= (ν − (m− k)) + k + 1
= ν −m+ k + k + 1

which is obviously equivalent to

n−m = ν + 1,

and thus to

n = ν +m+ 1,

so the degrees-of-freedom parameters for B11 and A11 obey Equation 30 if
and only if the original parameters for A and B do.

A.3 Marginal Distributions for Variances (Diagonal Elements)

Adopting the notation from Wikipedia [7], if we set p1 ≡ 1 in Equation 32,
then we have for the first diagonal element of A,

A11 ∼ W−1(Ψ11, ν − p− 1) . (35)

Furthermore, again according to [7], the one-dimensional inverse-Wishart
distribution, W−1

1 (Ψ, ν), where Ψ is now a positive scalar, is equivalent to
the inverse-gamma distribution with α ≡ ν/2 and β ≡ Ψ/2. Thus,

A11 ∼ Γ−1(α, β), α ≡ (ν − k + 1)/2, β ≡ Ψ11/2. (36)
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