
Versioning in Adaptive Hypermedia

Evgeny Knutov, Paul De Bra, Mykola Pechenizkiy

Eindhoven University of Technology, Department of Computer Science

PO Box 513, NL 5600 MB Eindhoven, The Netherlands

debra@win.tue.nl, {e.knutov, m.pechenizkiy}@tue.nl

Abstract. This paper presents an approach that uses the terms, operations and

methods of versioning applied to the Adaptive Hypermedia (AH) field. We

show a number of examples of such a use which helps to facilitate authoring,

managing, storing, maintenance, logging and analysis of AHS behaviour,

providing extensive flexibility and maintainability of the systems.

Keywords: Adaptive Hypermedia, Versioning Systems, Revision Control,

Authoring, User Model Updates, Context Changes.

1 Introduction

Versioning (also known as revision control, source control or code management) is

the management of multiple revisions of the same unit of information. It is commonly

used in engineering and software development to manage the development of digital

documentation/code that are usually produced and maintained by a team of software

developers. Changes to these pieces of information are usually identified by

incrementing an associated version and binding it historically with the person, group

or system making the change. On a large scale it is becoming the only way to keep

track of all the changes, perform roll back operations if needed, merge modifications

between different systems, individual users and groups and facilitate provenance

analysis.

It is becoming obvious that tracking all the changes and operations over evolving

structures makes reasonable and feasible to apply versioning methodologies in

adaptive hypermedia systems. In this paper we will consider basic principles and

operations of revision control applications in Adaptive Hypermedia Systems (AHS).

We will not only start investigating the use of versioning for designing the structure

and content of AHS applications but also take a look at the user model evolution in a

versioning context.

2 Background

Engineering version control systems emerged from a formalized processes of

tracking document versions. The main idea was to give a possibility to roll back to an

early state of the document. Moreover, in software engineering, version control was

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

61

introduced to track and provide access and control over changes to source code.

Nowadays it is widely used to keep track of documentation, source files,

configuration settings, etc.

As a system is designed, developed and deployed, it is quite common for multiple

versions of the same system to be deployed with minor or major differences within

different environments, furthermore system configuration/settings, state or/and

context evolve which results in multiple co-existing system versions as well.

If we look at the revision control system as a system used to deliver a certain

version of source code, documents, tables, or any file type or folder to a particular

user at a given time or on request it may resemble delivering adapted content to a user

in an Adaptive Hypermedia System. Of course version control systems are

straightforward and don’t take into account any user model or context changes, don’t

have any semantic or proof layers or any conceptual knowledge representation, but on

the other hand provide very flexible techniques to deliver selected content in a certain

context to a designated user, and facilitate methods to save and track system changes

in a very efficient way.

At the same time AH systems store and process a lot of information, which is

highly sensible to a context data and vice versa - context data itself, is highly dynamic

and influences the adaptation process. Thus tracking AHS alterations and

environment changes is a tightly connected task which requires storage and

computational resources.

3 Revision Control in AHS

Hereafter we consider basic aspects of versioning in application to AHS, provide

analysis of core terms and operations in parallel with AH. We take up major types of

changes in a context of AH systems, models and process flow, thus coming up with a

taxonomy of AH versioning techniques, types of changes and applications areas. As a

result we come up with two examples typical for the AH field: one is an e-learning

application providing an adaptive course and the other is a recommender system. We

encapsulate these examples in a versioning context.

3.1 Types of Changes and Versioning Flow

In a layered structure of a generic AHS [7, 8] we presume that each layer is

responsible for “answering” a single adaptation question [3], like Why?, What?, To

What?, Where?, When and How?. Each layer may have its own data structure and

thus also have its own way of dealing with evolutionary and versioning concepts of

the system. This versioning structure in its turn can be devised and maintained using

different technologies varying from a source control application to a historical Data

Base. We don’t investigate in the paper which technology is best suited for each of

these layers (or questions), however we will speculate on this question, suggesting

solutions. At the same time we take up basic terms and concepts of versioning and

look at them through the eyes of Adaptive Hypermedia. In figure 1 we sketch the core

components of a layered AH architecture and provide annotations with use-cases. We

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

62

will first discuss versioning terms and operations in section 3.2 and then consider

most of these use-cases in detail in section 3.3 through examples.

����������	�

����
���	�

 ���!"	#�$ %	&���!"	#�$

'	�$�

()*#����
!)���!��$)��

(+,��
��
!���)+�)��!	-!

�,�!)���!&	#�$

(����
���
.+�	����
!

)���!�	.)�!	--!�!
�)*

(+	�+�*�!	*�����	��

(��$���	��,�*!	*�����	�

(��-����
!)�#��$/��
!

+	�����

0�1
1!	��	$	
/!�����	���

!

+,��
��
!+)���!+	�����!

	�!���)+�)��2

(
��������
!����$!���3�
!

*��,�

(+,��
��
!#�-�)$�!

���3�

(+,��
�!	-!��+,��4)��.

&��,	#�

5	���6�

(+,��
��
!��
���!�)$��!

0��
���!��-���&���2

(+,��
��
!��
���

(+,��
��
!�6�+)��	�!

�����	�&���

()*#����
!)���.
�)*!

	�$�

(��-����
!0�##��
.

��&	���
2!
	�$�!

7#�*����!8�
���

(+	���6�!+,��
��!

0�����	�&���
!��&�
!

��+12

�

Fig. 1 Versioning process highlights

In figure 2 we outline a versioning taxonomy distinguishing types of changes,

applications of versioning methodologies and we anticipate the set of potentially

suitable versioning technologies. There are two major types of changes: structural and

value changes. Both may take place in every layer/sub-system of AHS. For instance,

refining the Domain Model structure and changing the underlying content or updating

User Model values versus adding new properties to the model. Throughout the

adaptation process, from authoring to presentation generation we anticipate the

following versioning application areas:

Authoring – changes made by authors, to create, refine, update the structure and

value parts of the adaptive application (usually these are the Domain Model and the

Adaptation Model).

UM operations/updates – these refer to the user behaviour in the adaptive

environment, tracking changes of the user knowledge, goals, preferences,

achievements throughout system usage. Our UM versioning approach corresponds to

ideas discussed in [4] and can serve as a back-end solution for ubiquitous user

modeling.

Context changes – keeping track of context changes of the whole system as well as

the context of a particular model, value or operation.

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

63

System deployment and analysis – changes done to an AHS to deploy the system in

different environments, usually performed by the domain experts, whereas taking up

the specifics of the domain to set up system logging, and analysis facilities.

We are not discussing technological aspects in depth, but can speculate about

versioning (and related) applications to be used, and can foresee a number of well-

known methodologies such as conventional source control systems and historical data

bases for storing and querying for changes. OLAP technologies would suit to perform

analysis. In addition a variety of custom-build systems (such as ontology versioning

available in OntoView [2]) could also be considered.

�

Fig. 2 AHS versioning taxonomy

3.2 Concepts and Operations of Revision Control

Here we would like to discuss the basic concepts of revision control and how they

refer to the concept of evolution in AH systems. We will try to give a clear idea of

how a particular concept or operation can be applied and will draw parallels with

evolution and changes in AH through examples.

3.2.1 Basic versioning terms
Baseline – an approved version, usually the most stable, from which all the

consequent versions are derived. In the AH field this is usually the core application,

consequently used in different environment settings, within different user groups and

thus being tuned up for those particular settings, which results in evolution and

therefore new versions of the application. If we talk about UM – then the default

version with which the user started can be considered as the baseline. In case of

further analysis baseline is always the point of comparison of the application

functionality and stability.

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

64

Branch – an instance is considered to be branched at a point in time, when from

that time and on, two concurrent but independent versions of the same instance co-

exist. As we have mentioned above, any AHS may result in a new set of settings or

being used by a completely different group of people, thus a tune-up of the system

will be required to meet the new settings or requirements. In these terms every AH

system or model emerges in a branch of the initial baseline, representing a new

authored version of the application (model/sub-system). Hence these systems may co-

exist.

Branch can be also used as a prior concept of the User Model update, presentation

generation or any other functionality which preview or try-out is desirable to analyze

system behaviour. Even though the branch itself may not be used in the forthcoming

version or update, a preview of a presentation or a try-out version of the application or

engine will help to identify, observe and analyze the “what-if” case, and with the

successful outcome commit branched changes, label as a new baseline or a head

revision or merge them. This can be applied in terms of UM as well, considering the

case when committing user properties to the latest application state is not desirable,

however would be advantageous to see what can happen with the user in the new

application environment. Though this UM case deviates from the original concept of

the branch in a source control, it still uses the same principle of a concurrent instance,

and in our case it is mapped on a context of UM in AH.

Head – the most recent commit, in other words the most latest version of the

application/model existing on a single or multiple branches, with the latest

functionality aspects prescribed to this branch(es). For UM the head revision is

always the latest state of the model with all the corresponding values being updated to

the latest state in the application.

Commit – applying changes to a central repository (branched or baselined) from

one or multiple working sources. Usually the authoring and set-up processes require a

number of experts, correspondingly a number of working instances which should

emerge in a baseline version which in turn will require to commit all the authors’

changes. In User Modeling we consider committing the changes to the user model

values. At the same time not all the latest user changes should be committed to the

user model in order to provide system stability (for example as it was done in AHA!

system [5]).

Conflict – conflict occurs when the system can’t reconcile changes made to the

same instance of the structure. E.g. when the same concept properties are changed by

two different authors, trying to commit them in the same course may result in a

conflict which will require reconsideration of a concept structure and manual

interference. Though conflict resolution may not guarantee such a property of the AH

system as confluence, we can anticipate that versioned and annotated structures of the

Domain or Adaptation model will be helpful in confluence analysis.

Change (difference, delta) – represents a specific modification under the version

control. Though the granularity of change may vary from system to system, change

always represents the basic structure of versioning concept. Changes evolve from the

baseline, are branched, become new baselines, are committed, then resolved and

merged. Depending on AH system, different instances can be changed (concepts,

relationships, properties, content, context, rules or even a complete model or sub-

system).

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

65

Moreover considering changes – is the best way to compare system functionality

and settings, which is very important for analysis of inherited and evolved (branched

– in terms of version systems) functionality of AHS.

Merge – in conventional source control systems – merge usually refers to a

reconciliation of multiple changes made to different copies of the same file. In AH

merge can be considered as part of an authoring or set-up process, where all the

development and changes from different authors or domain experts come together. In

general we can perform the merge operation over concepts, relationships, properties,

individual user properties and user groups, ontologies, rule sets, etc. As a result merge

provides a clear picture how (from which sources) the concerned concept or a

property has emerged, facilitating application playback and analysis of changes. In

applications where merge regulates UM values this operation can be granted to the

user as well.

Resolve – is a user intervention in conflict resolution of 2 or more conflicting

versions. We refer this to the authoring stage and let the experts decide on the

outcome, or facilitate end-user resolution when dealing with UM.

Tag, Label – refer to an important snapshot of the system or its part in time

implementing a certain functionality which has to be marked/tagged to settle a new

state of the application.. This may be a stable Domain Model structure or a new user

group with common interests (for instance).

At the same time an explicitly labeled structure of the model may be used in the

context of OLAP (On-Line Analytical Processing). We will elaborate on this case

below.

As we conclude, all aforementioned concepts of versioning and source control as

they are applied purely in software engineering and document control can be

represented in terms of Adaptive Hypermedia Systems, facilitating system flexibility

and extensibility

3.2.2 Versioning operations
Having considered the basic concepts of versioning in the context of AHS, we can

come up with the following classes of operations which will reflect typological and

structural types of changes. The following taxonomy of operations was proposed in

[2] in application to ontology evolution, however here we’re trying to extend and

elaborate it in terms of Adaptive Hypermedia. Hereafter we describe the properties of

versioning operation.

Transformation – is usually a set of actual changes taking place over the evolving

structure. These may be: changing properties of concept, classes (in case of

ontologies), adding or removing concept structures.

Conceptual changes (may include concept and concept relationship changes) will

refer to conceptual and abstract changes of the representation, structure and

relationships within the AH system. This type of changes includes changes of types,

relations, conceptual representation of a knowledge. It may also include relations

between constructs of two versions of the model. Conceptual changes should be

always supervised and carried out manually.

Descriptive changes – usually deal with metadata describing the reason,

intentions, author’s credentials, etc., regarding the new version of the model,

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

66

ontology, relation or a concept. Descriptive changes don’t contribute to the actual

change, however may help to reason over different versions of the same instance.

Context changes - will describe the environment in which the current update was

made and in which it is going to be valid. At the same time all the environment

settings for a particular change can be considered as a context change. E.g. changing a

concept in the Domain Model we can consider the state of all the concept

relationships as well as some other Domain specific information as a local context of

this change. At the same the complete system environment is a context of embedding

a new adaptive engine or re-organizing user groups. As we can see from these

examples – context changes can be and usually are the most space and effort

consuming, moreover domain experts usually analyze all the modifications in terms

of contextual changes to capture the complete picture of a particular change.

4 Use-Cases

In order to demonstrate our conceptual view of versioning in AH, we present two

examples that are typical for the AH field.

4.1 E-Learning application use-case
Let’s consider the following: the same discipline is taught in two different

universities, where adaptive courses Course 1 and Course 2 on this subject are

provided to the students (see fig. 3). After one year, a curriculum plan in the first

university (University 1) changes and one of the teachers is asked to change (refine)

the course navigation structure and some of the content which results in a new version

of the course (Course 1 ver.2). At the same time one of the students moves from the

second university (University 2) to the first one (University 1), having received the

credits for a first part of the course (Course 2). The aforementioned teacher is creating

a new version of the course, reusing the complete structure and introducing only

designated changes (in navigation structure, updating adaptive engine with the

associated changes in rules and changing content). Thus the initial version of the

navigational structure is preserved to trace back, compare and analyze how the user

behaviour changes (paths, clickstreams). At the same time the student’s User Model

(which has been created in another university) (UM ver.1) emerges into a new version

(UM ver.2), providing the student and his supervisor the possibility to compare basic

concepts of Course 2, perform reconciliation and merge the corresponding UM values

(of the results that the student has achieved taking the similar course in another

university), and at the same time keep the history of his studies. On the other hand the

automatic concordance is also possible if only the changes made in the course are

corroborated with the additional descriptive information (is accompanied by the

descriptive change (see section 3.2.2)) which contains extra explanations how to

reason and update values (in this case UM values) due to the evolved course structure

and/or content.

The complete picture of courses updates and user (student) development becomes

transparent and the course instructor may trace back all the changes done to the

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

67

course, re-use, update, merge any particular part without creating anything from the

scratch. He can analyze differences in and between courses.

Fig. 3 Versioning adaptive courses

4.2 Recommender system use-case
In our second use-case we would like to outline the advantages of applying

revision control in recommender systems. Typically, comparing a UM state to some

reference characteristics, and predicting the user’s choice, the system evolves from

the initial user profile. Each recommendation step (viewing an item, ranking it and

getting recommendations) corresponds to a change in the User Model, which in a

conventional system is committed to the latest state not taking into account user

interactions and updates. Considering a versioning structure, we can store the

difference in UM between two commits, thus logging user behaviour, and annotating

it with the action (ranking) done by the user at each step. Later such a pattern of

successful behaviour can serve as a recommendation to the other users providing the

provenance of each recommendation step (how was this recommended and when, in

what context, what was the user model state at that point in time and what has

influenced the recommendation). The same happens with the recommended items,

which evolve, can be modified and in general can have their own history of ratings.

If the user moves from one system to another, he will face a problem of the user

profile alignment (like in the previous use-case sec. 4.1), where the history of ratings

that he made may help to resolve conflicts. On the other hand labeling and tagging of

user and system behaviour may become a basis for OLAP analysis. Building an

OLAP cube where numeric facts (or measures), categorized by dimensions can have a

set of labels or associated metadata (which is essentially corresponding to the labels

used in the versioning system) will allow to organize everything in a form of

multidimensional conceptual view and apply ‘slice and dice’ operation as the most

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

68

essential analysis tool in this respect, instead of simple system or user logging and

then applying complicated and time-consuming extraction algorithms. This will

facilitate quick extraction of rating information of a particular date or timeframe, or

for example the set of users who rated a certain product a year ago. The same

approach can be undertaken to version rated items in order to trace back the changes

and associated ratings (as well as corresponding UM values) if the product or its

description or properties change. In figure 4 we briefly summarize versioning aspects

of the recommendation use-case.

Fig. 4 Versioning in Recommender system

To conclude this use-case we would like to outline the ideas and principles used in

a context of Recommender System. A new modification of product in the stock can be

designated by a new version, it inherits corresponding properties and ratings.

Versioning makes possible for products (product concurrent versions) to co-exist. It

also helps to store product updates and a context of these changes efficiently. Thus we

can create concurrent instances of products and ratings within different applications,

inherit ratings, properties and merge these changes. The User Model versioning

allows to analyze user step-by-step behavior (incl. user trend, etc.), compare changes

with other users in order to provide similar recommendation patterns in a case of

successful outcome.

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

69

4.3 Use-cases conclusions:
For the aforementioned use-cases we would like to conclude with a summary of

approaches we suggested in the introduction and outline the advantages of versioning:

Authoring – versioning helps to create, maintain and re-use concurrent versions of an

application, model or a particular property and value (e.g. course and a corresponding

content), saving authoring effort.

Storing – versioning offers an efficient way to store changes, annotate them, label,

present in a hierarchical structure. This saves space for a large scale system and keep

track of the system history.

Maintenance – structured changes and a set of basic concepts and operations (merge,

resolve, commit, tag/label, head and branch) are sufficient to maintain and reconcile

application conflicts, create concurrent versions or comprise functionality

implemented in different systems in one application (merging changes from different

branches).

Logging – logging incremental changes (of the application, user model or a context)

provides playback possibilities and serves as a ground of system analysis. Logging in

terms of UM updates (or steps taken) will provide a basis for comparison of

behaviour patterns and advance provided recommendations.

Analysis – versioning facilitates analysis of the step-by-step system and user

behaviour to identify trends; tagging and labeling can facilitate more complex

analytical approaches (such as OLAP) providing the required structure and

description of the data; hierarchical incremental logging results in a clear and

transparent structure of system changes and an overall evolution picture.

5 Conclusions and Further Work

In this article we tried to map a conventional versioning approach onto the field of

Adaptive Hypermedia, providing clear parallels in terms of versioning concepts and

operations. We tried to make first steps in this direction in order to show advantages

of this approach and outline the perspective of applying these techniques and

methodologies in order to facilitate the transparency of AHS evolution through

versioning.

Considering further work directions we can think of describing layers of a generic

adaptation framework in a versioning context (or essentially looking at the basics of

adaptation through versioning), investigate technologies (e.g. source control,

historical data bases, etc.) that meet the requirements of the framework and come up

with the detailed structure and operations to devise these versioning facilities.

Acknowledgements. This research is supported by NWO through the “GAF: Generic

Adaptation Framework” project.

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

70

References

1. Altmanninger, K., Gerti Kappel G., Kusel, A., Retschitzegger, W., Schwinger W., Seidl, M.,

Wimmer, M., AMOR – Towards Adaptable Models Versioning. In 1st International

Workshop on Model Co-Evolution and Consistency Management in conjunction with

Models’08, 2008.

2. Klein M., Fensel D., Kiryakov A., Ognyanov D., Ontology versioning and change detection

on the Web. In Proceedings of In 13th International Conference on Knowledge Engineering

and Knowledge Management: Ontologies and the Semantic Web. Berlin, Heidelberg:

Springer, pp. 247-259, 2002.

3. Brusilovsky, P., Methods and techniques of adaptive hypermedia, User Modeling and User

Adapted Interaction 6(2-3), pp. 87-129, 1996.

4. Heckmann, D., Ubiquitous User Modeling, PhD Thesis. Universitat des Saarlandes, 2006.

5. De Bra, P., Calvi, L., AHA! An open Adaptive Hypermedia Architecture. Hypermedia, 4(1),

pp. 115-139, 1998.

6. Herlocker, J., Konstan, J., Terveen, L., Riedl., J., Evaluating collaborative filtering

recommender systems. ACM Transaction on Information Systems, vol.22, No.1, pp.5-23,

2004.

7. De Bra, P., Houben, G.J., Wu, H., AHAM: A Dexter-based Reference Model for Adaptive

Hypermedia, Proceedings of the ACM Conference on Hypertext and Hypermedia, pp. 147-

156. 1999.

8. Cristea, A., De Mooij, A., LAOS: Layered WWW AHS Authoring Model and their

corresponding Algebraic Operators, The Twelfth International World Wide Web

Conference, Alternate Track on Education, 2003.

International Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches and Techniques (DAH'09)

71

