A Context Theory for Intensional Programming *

Kaiyu Wan, Vasu Alagar, and Joey Paquet

Department of Computer Science and Software Engineering
Concordia University
Montreal, Quebec H3G 1M8, Canada
{ky _wan,alagar,paquet@cse.concordia.ca }

Abstract. In this paper, we give an overview of our current work on introduc-
ing context as first-class objects in Lucid. It allows us to write programs in Lucx
(Lucid enriched with context) in a high level of abstraction which is closer to
the problem domain. We include a discussion on context theory, representation
of context aggregations, and the syntax and semantic rules of Lucx. The imple-
mentation of Lucx in GIPSY, a platform under development for compiling Lucid
family of languages, is also discussed.

Keywords: Context, Context Theory, Intensional Programming

1 Introduction

Contextis a rich concept and is hard to define. The meaning of “context” is tacitly un-
derstood and used by researchers in diverse disciplines. In modelling human-computer
interaction [5], context includes thphysical placeof the user, théime constraintsand

the system’s assumption about users interests. In Ubiquitous computing [3], context
is understood as bosituatedandenvironmentalln natural language processing, con-
texts arise asituationsfor interpreting natural language constructs. In imperative pro-
gramming languages, context introduces index, constants, and pointers. In functional
languagesstatic context introduces definitions and constraints, dgdamiccontext
processes the executable information for evaluating expressions. In Atrtificial Intelli-
gence(Al), the notion ofontextwas introduced by McCarthy and later used by Guha [4]

as a means of expressing assumptions made by natural language expressions. Hence, a
formula, which is an expression combining a sentence in Al with contexts, can express
the exact meaning of the natural language expression. Intensional logic [7] is a branch
of mathematical logic which is used to describe precisely context-dependent entities. In
Intensional Programmin@P) paradigm, which has its foundations in Intensional Logic,
the real meaning of an expression, caliegénsion is a function from contexts to val-

ues, and the value of the intension at any particular context, calledxtieasionis
obtained by applying context operators to the intension. Although the notion of context
was implicit in Lucid, an Intensional Programming Language, context cannot be explic-
itly declared and manipulated in Lucid. By introducing context as a first class object in
Lucid, we remove this limitation. The language, thus extended, is chlies(Lucid
extended witlcontexs).

* This work is supported by grants from the Natural Sciences and Engineering Research Council
of Canada.

The goal of this paper is to illustrate how context is formally defined and introduced
as first class objects in Lucx and as a result, how Lucx can be used for programming
diverse application domains. The context theory that we are developing provides a se-
mantic basis for context manipulation in Lucx. The paper is organized as follows: In
Section 2 we review briefly contexts in Intensional Programming Paradigm. Section 3
discusses the context theory applied in Lucx. In Section 4 we discuss the syntax and
semantics of Lucx. An example of Lucx programming and implementing Lucx are also
illustrated. We conclude our work in Section 5.

2 Contextin Intensional Programming Paradigm

Intensional Logic, a family of mathematical formal systems that permits expressions
whose value depends tnidden contextcame into being from research in natural lan-
guage understanding. Basically, intensional logics ditldensiongo logical expres-

sions, and non-intensional logics can be viewedasstantn all possible dimensions,

i.e. their valuation does not vary according to their context of utterantensional
operatorsare defined taavigatein the context space. In order to navigate, some di-
mensiortags(or indexes) are required to provide place holders along dimensions. These
dimension tags, along with the dimension names they belong to, are used to define the
context for evaluating intensional expressions. For example, we can have an expression:

E: the average temperature this month here is greaterdtt@n

This expression is intensional because the truth value of this expression depends on
the context in which it is evaluated. The two intensional natural language operators in
this expression arthis monthandhere which refer respectively to the time and space
dimension. If we evaluate the expression in different cities in Canada and in the months
of a particular year, the extension of the expression varies. Hence, we have the following
valuation for the expression:

[Ja Fe Mr Ap Ma Jn JI Au Se Oc No De
MontrealF F F F T TTT TF F F
E= OttawagF FF T TTTTTFF F
TorontaF F T T T TTTTT F F
VancouvefF T T T T TTTTT T T

The intension of the expression is the above whole table; and the extension of the
expression in the time poitp and in the space poil@ttowais T.

Intensional programming paradigm has its foundations on intensional logic. It re-
tains two aspects from intensional logic: first, at the syntactic level, are context-switching
operators, callethtensional operatorssecond, at the semantic level, is the uspas-
sible worlds semantids].

Lucid was a data-flow language and evolved into a Multidimensional Intensional
Programming Language [1]. In extending Lucid with contexts we preserve the inten-
sionality in Lucx. Moreover, contexts exist independent of any objects in the system.
That is, one context may be used to evaluate different expressions, at the same time
expressions can also be evaluated at different contexts. This feature distinguishes the
language Lucx from other imperative languages or functional languages, where index

(for imperative languages) or evaluation environment(for functional language) are al-
ways bound to statements or expressions. Because of the separation of the definition of
expressions from contexts, Lucx has provided more power of representing problems in
different application domains and given more flexibility of programming.

3 Context Theory in Lucx

Context theory provides a semantic basis for Lucx programs. A context in the theory
need not be finite. However, context in Lucx hadirite number of dimensions and
along each dimension is associated a tag set, which is enumerable. This is in contrast
to Guha’s notion, wherein contexts drdinite, rich, andgeneralizedobjects. We are
motivated by Guha’s work. However not all contexts studied by Guha can be dealt
within our language. On the other hand, every context that we can define in Lucx is
indeed a context in Guha'’s sense, but restricted to well-formed Lucx expressions.

3.1 Context Definition

In Intensional Programming context is a reference to the representation of the “pos-
sible worlds” relevant to the current discussion. The “possible world” is a multidi-
mensional space enclosing all possible information pertaining to the discussion. Mo-
tivated by this, we formalize contexts assubset of a finite union of relationghe
relations are defined oveimensiorandtag sets. LeDIM = {d;, ds,...,d,} denote a

finite set of dimension names. We associate with eheh DIM a unique enumerable

tag setX;. Let TAG = {Xi,..., X} denote the set of tag sets. There exists functions
fdimtotag : DIM — TAG, such that the functiofyimwtag @ssociates with evely € DIM
exactly one tag in TAG.

Definition 1 Consider the relations
Pi = {di} x faimtotag(di) 1<i<n

A context C, givefiDIM, fgimtotag), iS @ finite subset Qﬂi”:l Pi. Thedegreeof the context
Cis| A |, whereA C DIM includes the dimensions that appear in C.

A context is written usingnumeratiorsyntax, asd; : Xy, ..., dn : X], whered,, ..., d,

are dimension names, amdis the tag for dimension;. We say a contex€ is sim-

ple (s_context), if(d;, %), (d,%) € C = d # d. Asimple contexC of degree 1 is
called amicro (m_context) context.

Example 1 As an example consider a system in which computations involve pressure,
volume, and time, where pressure is observed by different sensors, volume is mea-
sured by different devices, and the sampling frequencies are different. The three dis-
tinguished dimensions are: ($ampling Time SWith indexN; (2). Pressure Pwith

index se{s, ..., s}, wheresy, ..., s are named sensory devices; and {&)lume V

with index set{my, ..., my}, wheremy, ..., my are named measuring devices. A con-
textc = [ST: 1,P: s,V : my] for one streany may be interpreted as a reference

to the tuple(t;, p2, v3), where at the first sampling tinte the value of volume mea-
sured byms is v3 and the value of pressure observed by the sessisrp,. Supposing
t1,p2, V3 € R, the domain for the entities in the streams R x R x R. The same
context may also be used as a reference to another possible world containing the ex-
pressiony’ = B, Such a reference will produce the resft, which is the result of
evaluating the expressiari with the substitutior]t — t1; p — pa; v — vs]. In this

case, the domain for the entities in the stresns R.

Several functions on contexts are predefined in [2]. The basic funafiomandtag

are to extract the set of dimensions and their associate tag values from a set of con-
texts. Since we are still developing the Lucx language, the set of predefined functions
is not exhaustive. Functions on contexts using functions already defined in Lucx can be
introduced.

3.2 Context Operators

In [9], we have formally defined the following context operators:dierride is sim-
ilar to function overridedifferencec, comparison=, conjunctionm , anddisjunction
LI are similar to set operatorprojection| andhiding T are selection operatorson-
structor[- : _] is used to construct an atomic contesdpstitution /is used to substitute
values for selected tags in a contestipice| accepts a finite number of contexts and
nondeterministically returns one of themmdirected range= anddirected range—
produce a set of contexts.

Example 2 illustrates an overall example for some of those operators.

Example 2 :

Let ¢ =[X:2,X:3,Y:4],cc=[X:2,Y:4,Z:5],c3=[Y:2],D={Y,Z},

Theng@®c; =[X:2,Y:4,Z:5], ¢oc;=[X:3],¢ | D=][Y:4],
CiMce=[X:2,Y:4],coUcy=[X:2,X:3,Y:4,Z:5,c1D=[X:2],
Co=0C3={[X:2,Y:2,Z:5],[X:2,Y:3,Z:5],[X:2,Y:4,Z:5]},
Cg—~C={[X:2,Y:2,Z:5],[X:2,Y:3,Z:5],[X:2,Y:4,Z:5]},
C/(Y,3) =[X:2,Y:3,Z:5],, ~C3=0

In order to provide a precise meaning for a context expression, we have defined the
precedence rules for all the operators in Figure 1[a] (right column) (from the highest
precedence to the lowest) and described a set of evaluation rules for context expressions
in [9]. Parentheses will be used to override this precedence when needed. Operators
having the same precedence will be applied from left to right. The formal syntax of
context expressions is shown in Figure 1[a](left column).

3.3 Box and Box Operators

A context which is not a micro context or a simple context is called a non-simple con-
text. For example, context; = [X : 3,X : 4,Y : 3,Y : 2,U : blug is a non-simple
context. In general, a non-simple context is equivalent to a set of simple contexts [2]. In
several applications we deal with contexts that have the same dimensidinGebDIM

and the tags satisfy a predicate formplaThe short hand notation for such a set is
BoxA | pl.

| syntax [precedende

Cu=c |C=C syntax recedende
CCcoclccc ;|H/ IB”_b y‘B‘B [p g
| clc |¢/c 3.mu | BOB|BXB LLT
| CeC |[CoC 2.
4.9,0 | BEHB|B|D

| CncC |cucC 3.0,B KX
5=, — | B1D|B/(dt)

| C=Cc|C—~C _

cip |cip | 852 .
| (b) Rules for Box Expression
(a) Rules for Context Expression
Fig. 1. Rules for Contex and Box Expressions
Definiton 2 Let A = {d,...,d}, whered € DIMi = 1,....,k,andpisa

predicate formula defined on the tuples of the relatiéinc A faimtotag(d). The syntax
BoX{A |p] = {s|s = [di : %,-.-, 0, : %,]},

where the tuplé€x;, ..., X), X € faimwotagdi), i = 1,. ..k satisfy the predicate formula
p, introduces a set S of contexts of degree k. For each contes the values in ta@)
satisfy the predicate formula p.

The context operators projectiof)(hiding (1), choice (), and substitution (/) intro-
duced in Section 3.2 can be naturally lifted to sets of contexts, in particul&ofas.

As an example 1 and | can be lifted for BoxB: B 1 D = {c 1 D | ¢ € B},

B | D= {c| D|c e B}. However not all context operators have natural exten-
sions. Instead, the following three operatiéggjoin), [(intersection), anéd (union)

are defined [2] for sets of contexts introducedBiyx

Example 3 :
Let DIM = {X, Ya Z}, fdimtotag(x) = fdimtotag(Y) = fdimtotag(z) =N
Bi =BoXX,Y |x,ye NAX+y=5],B, =BoxXY,Z|y,ze NAy=22Az< 3]
ThenB ={[X:1,Y:4],[X:2,Y:3],[X:3,Y:2],[X:4,Y:1]}
Bo={[Y:1,Z:1],[Y:4,Z:2],[Y:9,Z: 3]}
Hence B X B, = BoXX,Y,Z | x+y=5A(y=22 Az<3)]
={[X:1,Y:4,Z:2],[X:4,Y:1,Z:1]}

B B By =BoXY | Xx+y=5A(y=22Az<3)]={[Y:1],[Y:4]}

By B By — BoXX,Y,Z | X+y =5V (y=2Az<3)] = {X:1,Y:4,Z:1.3],
X:2,Y:3,2:1..3],[X:3,Y:2,Z2:1..3],[X:4,Y:1,Z:1..3],
X:1.3,Y:1,Z:1],[X:2.4,Y:4,Z:2],[X:1..4,Y:9,Z: 3]}

We define these three operatds fH, and(]) have equal precedence and have seman-
tics analogous to relational algebra operators.

Let B be a box expression and D be a dimension set. A formal syntax for box
expression B is defined in Figure 1[b] (left column) and the precedence rules for box
operators are defined in Figure 1[b] right column.

3.4 Context Category

Context Regions A context regioris a finite subset of a multidimensional space gen-
erated by a set of dimensions. Boxes can be used to represent different context regions.
For example, Figure 2[a] shows two different context regions, which can be repre-
sented as followsB; = BoXX,Y,Z | x* +22 < 16 Ax = 3z A 2> 0],

B, = BoxXX,Y,Z | X2 +y*+22 <9 A z> 0]. Box B; defines a cone, and Box

B, defines the upper half of hemisphere with the radius 3. If we restrict to integer in-
dices, then the set of contexts defined by Baxconsists of all the points with integer
coordinates within the cone, and the set of contexts defined byBBaonsists of all

the points with integer coordinates within the hemisphere.

V(e)

a17]
a1Q . . al
a9 - - a1s)

az aa a6 as

(a) Differ- ar | 7aal as "]
ent Context Ve ()
Regions .

(b) Clock Regions

Fig. 2. Context Category

In timed systems having continuous time modgdhck regionswhich are equiva-
lence classes of clock valuations arise when several clocks are used. These clock re-
gions are treated as context regions, and can be represented as boxes [8]. As an ex-
ample, consider clocks, andc, when the maximum duration that can elapse in the
clocks arem; = 4, andmy = 6. This gives rise to 59 clock regions, as shown in Fig-
ure 2[b]. The clock regions corresponding to a set of clocks is represented as a set
of Boxes EachBox s defined by the dimension set = {c;,..., ¢}, and a con-
straint on the clock valuations. For exampBaX{A | p;], whereA = {c;,cy} and
pr = (0 <v(cy)(X) < 1)A(0 < v(c)(y) < v(cy)(x)) refers to the region; . The tag
sets for clocks are reals. For discrete time modelled by multiple clocks the tag sets are
integers, and regions become lattice points, vertices of convex regions.

Nested ContextsNested contexts define tineeta relationbetween different contexts.
This is similar to Guha'’s definition of nested context [4]. In his definitions, nested con-
text enables to nesst(f, c) formulas, which define that formufais true in context,
andist(c; ist(¢j, «)),ist(ccist(c ... ist(¢ «) ...)) are all valid. In the former example
ist(c; ist(cj, «)), contextc; is outeror meta tocontextc;. Guha also providesntering
andexiting actions to migrate the interpretation of formulas from contexts. Similarly,
we provide@ operator to navigate the evaluation of expressions between nested con-
texts.

Definition 3 Let px,y) and X, Y, z) be two predicate formulas. i a,b for which
p(a, b) is true, and if3 ¢ such that ¢a, b, ¢) is true, then we call fx,y) as aprojection

of the predicate formula(, y, z) and write @x,y) =], q(x,y, z). Conversely, we say
q(x,y, z) is a simple extension of(x y) and write gXx,y) N q(x,y,2). In general, a
predicate formula extended withrs 1 arguments can be inductively defined as follows:

X
1 mxla' -'aXr) _+)1 q(xla"'axraxf"rl)

Xrd1se- 5%
2. r‘xxla"'axr) r+;r+sq(xl7"'7Xr7"'axr+5)
A X %
= Po(Xi, ..., %) = Pr(Xt, oo X, Xrg1) = P2 Xty Xeg2) .-
Xr+s

= Ps(X1, ..., %+s), Where g = p,ps = q.

Definition 4 We define a relatior- on a set of boxeB as follows: for i, by, € B,
b; = BoXA; | p1], b = Bo{ Az | p2], by C by iff A; € A and p is an extension of
the logic expressionp It is easy to see that is an irreflexive partial order of3. We
define a partially order chain b by ... C by to benestedand refer to the boxes in
the chain amested contexts

We want to study the relationship between nested contexts and sets of expressions
obtained by evaluating a given expressibat the boxes in the nested chain.

Definition 5 Let B= {b;, b, ...} be a finite set of boxes; b- Bo{4; | pi], and E be
an expression. Define the relationon the se{E@b;, E@bs, . ..} as follows:

E@b > E@by

iff for Ej; = E@j, Cj» € by, there exists g = E@yj, & € by, such that g T {Ax —
Ai} = G, and Ekj = Eij/@ckj S Cij’)-

TheoremlIf b; C by thenE@b, > E@bs.

Proof Let by = BoXA; | pi], b = BoX{As | pa], A1 = {Xi,Xo,..., X}, and
Ay = {X1, Xay ooy Xy Xk 1y - - - s Xmby (@, -+, &), P (@, - - -, &) is true,

thenc)j = [X; :ay,..., Xk : & € by.

By propertyb, C by, Jax.1,-..,an suchthaps(ay, . . ., &, &1, - - -, @m) IS true.
Hencecy = [Xi s ap,. .., Xic : &k, Xit1 @ Qg1,-- -, Xm : 8m] € bo.

Itis easy to verify that,j; andcy; satisfycy; T {As — A1} = Cyj

andElj/ = E@lj’y E2j = E@Qi SatiSnygj = Elj’ @CQ]' © Clj/).

Hence it follows thaE@b, > E@hs.

In general ifb; © by ... C by is a chain of nested contexts, we get a corresponding
chain ofcascading expressions

E@b; > E@b, ... > E@b.

This rule gives the base for the reasoning and reducing rules for constraint programming
solver mentioned in [9].

Context Dependent ExpressionsContexts can be passed as parameters to functions.

Definition 6 Let By = BoXA4; | pi], and B = BoX{A,; | ps] define the context
regions in the space generated by the dimensidasJ As. The context-dependent
expression ks defined differently in different regions:

E; in B & B,
MNE = E, in B, © B;
E; in B, M By

1 -E is defined to indicate corresponding context regions, namely,
/JE = {Bl S 827 82 S Bl, Bl M BQ}

An application of Definition 6 is to use contexts as parameters in a function defini-
tion. Letf : X x Y x Z x C — W, whereC is a set of contexts; anfdx, y, z c),x €
X,y eY,ze Z,c € C, be defined such that for different context values, the function’s
definitions are different. For example, functibfx, y, z c) is defined according to dif-
ferent context regions shown in Figure 2[a]. Hepcé = {B; ©By,B; ©B;, B MBs},
andX f = {2x® +y—6,x+Yy?, 22 +y}. The evaluation of functionfsvaries depending
on the actual context value given as input wheés called.

Given contexts as input, context-dependent functions can be used to produce a new
context as a result to achieve adaptation in context-aware system [9].

Dependent ContextWe define context dependency analogous to the functional depen-
dency in relational data models.

Definition 7 Let A = {Xy,..., X} be a dimension set. If there exists a functign:
faimtotag(Xi) — Taimtotag(Xj), We sayy; is a functional dependency in the sét
In general, a functional dependency exists/inif A ¢ A,Bc A, AnB = g, and
there exists a function :

®aB : IIx eafdimtotad Xi) — ITx cBfdimtotad X)-
For a given functional dependengy in A, we define dependent contexts as the set of
contexts:

Su = {c|dim(c) = A’ A ({X, X} C A’ C A)}

As an exampleg = [X; : &, X : ¢jj(a)] € Sa, a € fgimtotag(Xi). This definition is easy to
generalize for the general functional dependepigy.

Dependent context effectively reduces the possible worlds that are relevant to eval-
uate expressions. As an example, let a functio’/ — ST be defined as follows:
d(m) = ¢(Mmy) = 1; ¢(ms) = ¢(My) = 2. Hence context of this fornP : s,V :
ms, ST : 1] need not be considered for evaluating expressions in the example.

Moreover, dependent contexts also help to represent context sets compactly. In [9],
we proved the following: starting with a s&. of contexts, whose dimensions are
subsets ofA and a finite set of functional dependenciesAnwe can represerfiy
as an expressioBy = Sy, X S’Ak, where there is no dependency3n, and S’Ak =
b, Xb,... X by, eachb; is a Box representing one dependency. Since a box has a
compact representation, the representationSgrgiven above is a compact way to

manage the contexts in th&,. The substitutions for tags ihy, ..., bk are subject
to dependencies. However, those tags corresponding to dimensty dan be done
freely. This is analogous teubstitution principlén functional languages.

4 Intensional Language Lucx

Lucx is a conservative extension of Lucid, with context becoming a first-class object

in the language. This way, contexts can be manipulated, assigned values and passed as
parameters dynamically.

Syntax and Semantics of LucxThe syntax of Lucx is shown below.

E:=id S = {Es,...,Em}
| E(E4,...,En) | Box[E | E']
| if E then E' else B’ Q ::= dimension id
| # |id=E
| E @E' |id(id1,...,idn) = E
| [E1:EL, ..., En: E]] |QQ
| (E1,...,En)E
| selectE, E')
|E@ S
| E where Q

The difference between Lucx and original Lucid is highlighted in bold in the above
syntax rules. The symbol@and# are context navigation and query operators. The
non-terminalsE and Q respectively refer texpressionsnd definitions The abstract
semantics of evaluation in Lucx ®, P’ + E : v, which means that in the definition
environmentD, and in the evaluation conte®’ , expressiorE evaluates tos. The
definition environmenD retains the definitions of all of the identifiers that appear in
a Lucid program. FormallyD is a partial functionD : Id — IdEntry , whereld is
the set of all possible identifiers ahdEntry has five possible kinds of value such as:
DimensionsConstantsData Operators Variables andFunction$7]. The evaluation
contextP’, is the result ofP yc, whereP is the initial evaluating context,is the defined
context expression, and the sympdénotes the overriding function.

A complete operational semantics for Lucid is defined in [7]. The new semantic
rules for Lucx are given below.

D,P+HE :P D,P'FE : v

Eat(c) :

D,PFE@ :v
By : —————
YDPr#:P
g . DPFE:idz D(idz) = (dim)
" D,PFEi.E;:tag(E: | {id2})
£ . DPFE:id Difid—(dm)] Piid—0 DPE:v
WD Pk (Er,Es, ..., EnE : v; fbyid Vo fbyid ... va fbyid eod
E=[d:v] E' = (E1,...,En)d P =P i[d— V] D,P' FEwv
Eselect :

D, P+ selectE,E/) : v

D,PFS: {Pi,....Pn} D,PamhtE:V
D,PHE@S: {vi,...,Vm}

Eat(s) :

D,P F Ewi.m: Pm
D,PF{E1,....En}: {P1,...,Pu}

Eset :

D,PHE: A A={V,,... Vi =dim(Py) = ... = dim(Pn)
Evo: D(Vern) = (dim) D, P F E : ftag(Puim) = true
D, P BoXE | E’] :{P1,...,Pm}

D,Pr Ey: i D(id;) = (dim)
Econtext : D, P Eij Y P = Po T [|d1 — V1] T . '|' [Idn — Vn}
D,P+[E4 :E,,Eq, :Es,...,Eq, : Ei] : P’

The evaluation rule for the navigation operaty;_ , which corresponds to the syn-
tactic expressiofle @E’, evaluate<E in contextE’, whereE’ is a context defined in
Section 3.1. The evaluation rule for the set navigation opeEaggrwhich corresponds
to the syntactic expressidh @ S, evaluate<€ in a set of context$. Hence, the eval-
uation result should be a collection of results of evaluafingt each element d.
Semantically speaking, the symbbis a nullary operator, which evaluates to the cur-
rent evaluation contexP. And the symbol is a binary operator, whose left operand
is an expression and the right operand is a single dimension. The semantig,plle
evaluates a tuple as a finite stream whose dimension is explicitly indicatedhahe
corresponding syntax rulés, . .., E,)E. Accordingly, the semantic rulBseject picks
up one element indexed Wy from the tupleE’. The semantic rul€y,,y evaluates a
Box to a set of contexts according to the definition in Sectionf3(8g(7)i—1..m) is a
boolean function. The rulE; evaluate§E;, ..., En} to a set of contexts.

Examples of Lucx Programs We give two examples.

1. The example models the problem of heat transfer in a solid. There is a metal rod
which initially has temperature 0 and whose left-hand end touches a heat source with
temperature 100. As the heat is transfered, the temperature at the various points of the
rod changes. That is, the temperature depends on the time point and the spatial position
on the rod. The following equations illustrate the temperature of the rod as a function
of time and space (wheteis a small constant related to the physical properties of the
rod):

Tempiti1s41 = k X Tempys — (1 —2x k) X Tempysis + k X Tempy sio

Tempy o = 100

Tempo,s+1 =0
The Lucx program that models the above equations and queries the temperature at the
space 10 at time 10 is the following:

Temp @[Time : 10, Space : 10]

where

Temp @[Time : t + 1,Space: s+ 1] = k x Temp @[Time : t,Space : s
—(1 =2 x k) x Temp @[Time : t, Space : s + 1]
+k X Temp @[Time : t,Space : s + 2]

Temp@Time : t,Space : 0] = 100
Temp@Time : 0,Space:s+1] = 0
end

2. Consider the problem of finding the solution in positive integers that satisfy the
following constraints:
x4+ 33+ 23 +ud =100
x<u
X+y=2z
The Lucx program is given below:
Eval.B1,B2,B3 (¥/,y/,z',u) =N
where
N = merge (merge(merge(x,y), z), u)
@B; X B, X Bg;
where
merge(x,y) = if (x <=y) thenxelsey;
B; =Box [X,Y,Z,U | x3+y3 + 2% +u® =100,
x€X,yEY, z€ Z,ueU]
B, =Box[X,U | x<u, x € X,u € UJ;
B; =Box [X,Y,Z | x+y=2,x € X,
yEY, ze€Z]
end
end

Implementing Lucx in GIPSY The GIPSY is an Intensional Programming investiga-
tion platform under development which allows the automated generation of compiler
components for the different variants of the Lucid family of languages [6]. Currently,
the compiler for Indexical Lucid, a variant of Lucid, has been implemented success-
fully in the GIPSY. Lucx is a conservative extension of Lucid. We will provide the Lucx
parser and Lucx AST(Abstract Syntax Tree) translator as a Lucx front end to GIPSY.
Lucx parser can be automatically generated usinglévaCCtool as the Indexical Lu-

cid parser being obtained. In [9], we provide the translation rules for translating Lucx
operators into Indexical Lucid operators. Combined with the translation rules for In-
dexical Lucid operators provided in [7], we achieve a two-pass Lucx AST translator.
Once these two models are integrated into GIPSY, the programs written in Lucx will be
compiled and run in GIPSY.

5 Conclusion

The notion of context is the cornerstone of the intensional programming paradigm. The
previous versions of Lucid were merely using the notion of context of evaluation. They
provided a single operator for the navigation in the context of evaluation, but did not
provide a mechanism to represent and manipulate contexts as first class values.

The use of contexts as first class values increases the expressive power of the lan-
guage by an order of magnitude. It allows the definition of aggregate contexts, which

are a key feature to achieve efficiency of evaluation through granularization of the ma-
nipulated data. It also allows us to use the paradigm for agent communication by allow-
ing the sharing and manipulation of multidimensional contextual information among

agents [2]. In addition, the use of the paradigm for real-time reactive programming is
shown in [8]. We are developing larger application programs that arise in constraint
programming and in context-aware systems [9].

References

1.

2.

E. Ashcroft, A. Faustini, R. Jagannathan, W. Wad§#ultidimensional, Declarative Pro-
gramming.Oxford University Press, London, 1995.

V. S. Alagar, J. Paquet, K. Waimtensional Programming for Agent CommunicatioRro-
ceedings of DALT'04, New York, July 2004, post proceeding will appear in Lecture Notes
in Computer Science, Springer-Verlag.

. A.K.Dey. Understanding and Using ContexPersonal and Ubiquitous Computing Journal

5(1).pp.4-7.2001.

. R. V. Guha.Contexts: A Formalization and Some Applicatiof®h.d thesis, Stanford Uni-

versity, February 10,1995.

. Cheverst, K., N. Davies, K. Mitchell and C. Efstratiolsing Context as a Crystal Ball:

Rewards and PitfallsPersonal Technologies Journal, Vol. 3 No5, pp. 8-11, 2001.

. J. Paquet, P. KropfThe GIPSY ArchitecturedCW 2000, 144-153.
. Joey Paquetintensional Scientific ProgrammingPh.D. Thesis, Bpartement d’Informa-

tique, Universite Laval, Quebec, Canada, 1999

. K.Wan, V.S. Alagar, J. Pagudteal Time Reactive Programming Enriched with Conti&xt.

TAC2004, Guiyang, China, September 2004, Lecture Notes in Computer Science,3407,Page
387-402, Springer-Verlag.

. K. Wan. Lucx: An Intensional Programming Language Enriched With ConteRtsd the-

sis(under preparation), Department of Computer Science, Concordia University, Montreal,
Canada, 2005.

