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Abstract

One of the main problems raising up in the frequent
closed itemsetsmining problem is the duplicate detection.
In this paper we propose a general technique for promptly
detecting and discarding duplicate closed itemsets, with-
out the need of keeping in the main memory the whole set
of closed patterns.

Our approach can be exploited with substantial perfor-
mance benefits by any algorithm that adopts a vertical
representation of the dataset. We implemented our tech-
nique within a new depth-first closed itemsets mining al-
gorithm. The experimental evaluation demonstrates that
our algorithm outperforms other state of the art algo-
rithms like CLOSET+ and FPCLOSE.

1. Introduction

Frequent itemsets mining is the most important and
demanding task in many data mining applications. To
describe the mining problem we introduce the follow-
ing notation. Let I = {a1, ..., aM} be a finite set of
items, and D a finite set of transactions (the dataset),
where each transaction t ∈ D is a list of distinct items
t = {i0, i1, ..., iT }, ij ∈ I. A k-itemset is a sequence of k
distinct items I = {i0, i1, ..., ik} | ij ∈ I, sorted on the
basis of some total order relation between item literals.
The number of transactions in the dataset including an
itemset I is defined as the support of I (or supp(I)).
Mining all the frequent itemsets from D requires to dis-

cover all the itemsets having support higher than (or
equal to) a given threshold min supp.

The paper is organized as follows. In Sect. 2 we in-
troduce closed itemsets and describe a framework for
mining them. This framework is shared by all the algo-
rithms surveyed in Sect. 3. In Sect. 4 we formalize the
problem of duplicates and propose our technique. Sec-
tion 5 proposes an implementation of our technique
and discusses the experimental results obtained. Fol-
low some concluding remarks.

2. Closed itemsets

The concept of closed itemset is based on the two
following functions f and g:

f(T ) = {i ∈ I | ∀t ∈ T, i ∈ t}
g(I) = {t ∈ D | ∀i ∈ I, i ∈ t}

where T and I, T ⊆ D and I ⊆ I are, respectively,
subsets of all the transactions and items occurring in
dataset D. Function f returns the set of itemsets in-
cluded in all the transactions in T , while function g re-
turns the set of transactions supporting a given item-
set I. Since the set of transaction g(I) can be repre-
sented by a list of transaction identifiers, we refer to
g(I) as the tid-list of I. We can introduce the follow-
ing definition:

Definition 1 An itemset I is said to be closed if and
only if

c(I) = f(g(I)) = f ◦ g(I) = I



where the composite function f ◦ g is called Galois oper-
ator or closure operator.

The closure operator defines a set of equivalence
classes over the lattice of frequent itemsets: two item-
sets belong to the same equivalence class iff they have
the same closure, i.e. they are supported by the same
set of transactions. We can also show that an itemset I
is closed if no superset of I with the same support ex-
ists. Thus, a closed itemset is also the maximal itemset
of an equivalence class. Mining all these maximal ele-
ments of each equivalence class corresponds to mine all
the closed itemsets.

Figure 1.(a) shows the lattice of frequent itemsets
derived from the simple dataset reported in Fig. 1.(b),
mined with min supp = 1. We can see that the item-
sets with the same closure are grouped in the same
equivalence class. Each equivalence class contains ele-
ments sharing the same supporting transactions, and
closed itemsets are their maximal elements. Note that
the number of closed itemsets (five) is remarkably lower
than the number of frequent itemsets (fifteen).
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Figure 1. (a) Lattice of frequent itemsets with
closed itemsets and equivalence classes given by
the dataset (b).

The algorithms for mining frequent closed itemsets
adopt a strategy based on two main steps: Search space
browsing, and Closure calculation. In fact, they browse
the search space by traversing the lattice of frequent
itemsets from an equivalence class to another, and they
calculate the closure of the frequent itemsets visited in
order to determine the maximal elements (closed item-
sets) of the corresponding equivalence classes. Let us
analyze in some depth these two phases.

Browsing the search space. The goal of an effec-
tive browsing strategy should be to devise a spanning
tree over the lattice of frequent itemsets, visiting ex-
actly a single itemset in each equivalence class. We
could in fact mine all the closed itemsets by calculat-
ing the closure of just an itemset per equivalence class.
Let us call the itemsets used to compute closures dur-
ing the visit closure generators.

Some algorithms choose the minimal elements (or
key patterns) of each equivalence class as closure gen-
erators. Key patterns form a lattice, and this lattice can
be easily traversed with a simple apriori-like algorithm.
Unfortunately, an equivalence class can have more than
one minimal element leading to the same closed item-
set. For example, the closed itemset {ABCD} of Fig.
1 may be mined twice, since it can be obtained as clo-
sure of the two minimal elements of its equivalence class
{AD} and {CD}.

Other algorithms use instead a different technique
that we call closure climbing. As soon as a generator
is devised, its closure is computed, and new genera-
tors are built as supersets of the closed itemset discov-
ered. Since closed itemsets are maximal elements, this
strategy always guarantees to jump from an equiva-
lence class to another. Unfortunately, it does not guar-
antee that the new generators belong to equivalence
classes that were not previously visited.

Regardless of the strategy adopted, some kind of
duplicate check has thus to be introduced. A naive ap-
proach to check for duplicates is to search for each gen-
erated closed itemset among all the ones mined so far.
Indeed, in order to avoid to perform a lot of expen-
sive closure operations, several algorithms exploit the
following lemma:

Lemma 1 Given two itemsets X and Y , if X ⊂ Y and
supp(X) = supp(Y ) (i.e. |g(X)| = |g(Y )|), then c(X) =
c(Y ).

Proof. If X ⊂ Y , then g(Y ) ⊆ g(X). Since |g(Y )| =
|g(X)| then g(Y ) = g(X). g(X) = g(Y ) ⇒ f(g(X)) =
f(g(Y ))⇒ c(X) = c(Y ).
�

Therefore, given a generator X, if we find an al-
ready mined closed itemsets Y that set-includes X,



and the supports of Y and X are identical, we can
conclude that c(X) = c(Y ). Hence we can prune the
generator X without actually calculating its closure.
Also this duplicates checking strategy is however ex-
pensive, both in time and space. In time because we
may need to search for the inclusion of each genera-
tor in a huge number of closed itemsets, in space be-
cause to perform it we need to keep all the closed item-
sets in the main memory. To reduce such costs, closed
sets can be stored in compact prefix tree structures, in-
dexed by one or more levels of hashing.

Calculating Closures. To calculate the closure of an
itemset X, we have to apply the Galois operator c. Ap-
plying c requires to intersect all the transactions of the
dataset including X. Another way to calculate the clo-
sure is given by the following lemma:

Lemma 2 Given an itemset X and an item i, if g(X) ⊆
g(i)⇒ i ∈ c(X).

Proof. Since g(X ∪ i) = g(X) ∩ g(i), g(X) ⊆ g(i) ⇒
g(X ∪ i) = g(X). Therefore, if g(X ∪ i) = g(X) then
f(g(X ∪ i)) = f(g(X))⇒ c(X ∪ i) = c(X)⇒ i ∈ c(X).
�

From the above lemma, we know that if g(X) ⊆ g(i),
then i ∈ c(X). Therefore, by performing this inclusion
check for all the items in I not included in X, we can
incrementally compute c(X). Note that, since the set
g(i) can be represented by the tid-list associated with
i, this suggests the adoption of a vertical format for the
input dataset in order to efficiently implement the in-
clusion check: g(X) ⊆ g(i).

The closure calculation can be performed off-line or
on-line. In the first case we firstly retrieve the com-
plete set of generators, and then we calculate their clo-
sures. In the second case, as soon as a new generator
is discovered, its closure is computed on-the-fly.

The algorithms that compute closures on-line are
generally more efficient. This is because they can adopt
the closure climbing strategy, according to which new
generators are created recursively from closed itemsets.
These generators are likely longer than key patterns,
which are the minimal itemsets of the equivalence class
and thus are the shorter possible generators. Obviously,
the longer the generator is, the fewer checks (on fur-
ther items to add) are needed to get its closure.

3. Related Works

The first algorithm proposed for mining closed item-
sets was A-CLOSE [5] (N. Pasquier, et al.). A-CLOSE
first browses level-wise the frequent itemsets lattice by
means of an Apriori-like strategy, and mines all the

minimal elements of each equivalence class. Since a k-
itemset is a key pattern if and only if no one of its
(k − 1)-subsets has the same support, minimal ele-
ments are discovered with an intensive subset check-
ing. In its second step, A-CLOSE calculates the closure
of all the minimal generators previously found. Since a
single equivalence class may have more than one min-
imal itemsets, redundant closures may be computed.
A-CLOSE performance suffers from the high cost of
the off-line closure calculation and the huge number of
subset searches.

The authors of FP-Growth [2] (J. Han, et al.) pro-
posed CLOSET [6] and CLOSET+ [7]. These two algo-
rithms inherit from FP-Growth the compact FP-Tree
data structure and the exploration technique based on
recursive conditional projections of the FP-Tree. Fre-
quent single items are detected after a first scan of the
dataset, and with another scan the pruned transactions
are inserted in the FP-Tree stored in the main memory.
With a depth first browsing of the FP-Tree and recur-
sive conditional FP-Tree projections, CLOSET mines
closed itemsets by closure climbing, and growing up
frequent closed itemsets with items having the same
support in the conditional dataset. Duplicates are dis-
covered with subset checking by exploiting Lemma 2.
Thus, all closed sets previously discovered are kept in
the main memory, and are indexed by a two level hash.
CLOSET+ is similar to CLOSET, but exploits an
adaptive behaviour in order to fit both sparse and dense
datasets. As regards the duplicate detection technique,
CLOSET+ introduces a new one for sparse datasets
named upward checking. This technique consists in the
intersection of every path of the initial FP-Tree leading
to a candidate closed itemset X, if such intersection is
empty then X is actually closed. The rationale for us-
ing it only in sparse dataset is that the transactions
are short, a thus the intersections can be performed
quickly. Note that with dense dataset, where the trans-
actions are usually longer, closed itemsets equivalence
classes are large and the number of duplicates is high,
such technique is not used because of its inefficiency,
and CLOSET+ steps back using the same strategy of
CLOSET, i.e. storing every mined closed itemset.

FPCLOSE [1], which is a variant of CLOSET+, re-
sulted to be the best algorithm for closed itemsets min-
ing presented at the ICDM 2003 Frequent Itemset Min-
ing Implementations Workshop.

CHARM [9] (M. Zaki, et al.) performs a bottom-up
depth-first browsing of a prefix tree of frequent item-
sets built incrementally. As soon as a frequent itemset
is generated, its tid-list is compared with those of the
other itemsets having the same parent. If one tid-list
includes another one, the associated nodes are merged



since both the itemsets surely belong to the same equiv-
alence class. Itemset tid-lists are stored in each node of
the tree by using the diff-set technique [8]. Since differ-
ent paths can however lead to the same closed itemset,
also in this case a duplicates pruning strategy is imple-
mented. CHARM adopts a technique similar to that of
CLOSET, by storing in the main memory the closed
itemsets indexed by single level hash.

According to our classification, A-CLOSE exploits a
key pattern browsing strategy and performs off-line clo-
sure calculations, while CHARM, CLOSET+ and FP-
CLOSE are different implementations of the same clo-
sure climbing strategy with incremental closure com-
putation.

4. Removing duplicate generators of
closed itemsets

In this Section we discuss a particular visit of the lat-
tice of frequent sets used by our algorithm to identify
unique generators of each equivalence class, and com-
pute all the closed patterns through the minimum num-
ber of closure calculations.

In our algorithm, we use closure climbing to browse
the search space, find generators and compute their
closure. As soon as a generator is found, its closure is
computed, and new generators are built as supersets
of the closed itemset discovered so far. So, each gen-
erator gen browsed by our algorithm can be generally
represented as gen = Y ∪ i, where Y is a closed item-
set, and i, i 6∈ Y is an item in I1.

Looking at Figure 1.(a), we can unfortunately dis-
cover multiple generators gen = Y ∪ i, whose closures
produce an identical closed itemset. For example, we
have four generators, {A}, {A,B}, {A,C} and {B,C},
whose closure is equal to the closed itemsets {A,B,C}.
Note that all these generators have the form Y ∪ i,
since they can be obtained by adding a single items to
a smaller closed itemset, namely ∅, {B} and {C}.

The technique exploited by our algorithm to detect
duplicate generators exploits a total lexicographic or-
der relation ≺ between all the itemsets of our search
space2. Since there exist a relation ≺ between each pair
of k-itemsets, in order to avoid duplicate closed item-
sets, we do not compute the closure of the generators

1 For each closed itemset Y ′ 6= c (∅), it is straightforward to
show that there must exists at least a generator having the
form gen = Y ∪ i, where Y , Y ⊂ Y ′, is a closed itemset, i 6∈ Y ,
and Y ′ = c(gen).

2 This lexicographic order is induced by an order relation be-
tween single item literals, according to which each k-itemset
I can be considered as a sorted set of k distinct items
{i0, i1, ..., ik}.

that do not result order preserving according to the def-
inition below.

Definition 2 A generator X = Y ∪ i, where Y is a
closed itemset and i 6∈ Y , is said to be order preserv-
ing one iff i ≺ (c(X) \X).

The following Theorem shows that, for any closed
itemset Y , it is possible to find a sequence of order pre-
serving generators in order to climb a sequence of clo-
sure itemsets and arrive at Y . The following Corollary
states that this sequence is unique.

Theorem 1 For each closed itemsetY 6= c (∅), there ex-
ists a sequence of n (n ≥ 1) items i0 ≺ i1 ≺ ... ≺ in−1

such that

{gen0, gen1, . . . , genn−1} = {Y0∪i0, Y1∪i1, . . . , Yn−1∪in−1}

where the various geni are order preserving generators,
with Y0 = c (∅), Yj+1 = c(Yj ∪ ij) ∀j ∈ [0, n − 1] and
Y = Yn.

Proof. First of all, we show that given a generic gener-
ator gen ⊆ Y , c(gen) ⊆ Y . More formally, if ∃Y ′ such
that Y ′ is a closed itemset, and Y ′ ⊂ Y , and we extend
Y ′ with an item i ∈ Y \Y ′ to obtain gen = Y ′∪ i ⊆ Y ,
then ∀j ∈ c(gen), j ∈ Y .

Note that g(Y ) ⊆ g(gen) because gen ⊆ Y . More-
over, if j ∈ c(gen), then g(c(gen)) ⊆ g(j). Thus, since
g(Y ) ⊆ g(gen), then g(Y ) ⊆ g(j) also holds, so that
j ∈ c(Y ) too. So, if j 6∈ Y hold, Y would not be closed,
and this is in contradiction with the hypothesis.

As regards the proof of the Theorem, we show it by
constructing a sequence of closed itemsets and associ-
ated generators having the properties stated above.

We have that Y0 = c (∅). All the items in Y0 ap-
pear in every transaction of the dataset and therefore
by definition of closure they must be included also in
Y , i.e. Y0 ⊆ Y .

Since Y0 6= Y by definition, we choose
i0 = min≺ (Y \ Y0), i.e. i0 is the smallest item
in {Y \ Y0} with respect to the lexicographic or-
der ≺, in order to create the first order preserv-
ing generator {Y0 ∪ i0}. Afterwards we calculate
Y1 = c(Y0 ∪ i0) = c(gen0).

Once Y1 is found, if Y1 = Y we stop.
Otherwise we choose i1 = min≺ (Y \ Y1), where

i0 ≺ i1 by construction, in order to build the next or-
der preserving generator gen1 = Y1 ∪ i1 and we calcu-
late Y2 = c(Y1 ∪ i1) = c(gen1).

Once Y2 is found, if Y2 = Y we stop, otherwise we
iterate, by choosing i2 = min≺ (Y \ Y2), and so on.

Note that each generator genj = {Yj ∪ ij} is order
preserving, because c({Yj ∪ ij}) = Yj+1 ⊆ Y and ij is



the minimum item in {Y \Yj} by construction, i.e. ij ≺
{Yj+1 \ {Yj ∪ ij}}.
�

Corollary 1 For each closed itemset Y 6= c (∅),
the sequence of order preserving generators
{gen0, gen1, . . . , genn} = {Y0 ∪ i0, Y1 ∪ i1, . . . , Yn ∪ in}
as stated in Theorem 1 is unique.

Proof. Since all the items in Y0 appear in every transac-
tion of the dataset, by definition of closure, they must
be included also in Y , we have that Y0 = c (∅).

During the construction of the sequence of genera-
tors, suppose that we choose ij 6= min≺ (Y \ Yj) to con-
struct generator genj . Since genj and all the following
generators must be order preserving, it should be im-
possible to obtain Y , since we can not consider any-
more the item i = min≺ (Y \ Yj) ∈ Y in any other gen-
erator or closure in order to respect the order preserv-
ing property.
�

Looking at Figure 1.(a), for each closed itemset we
can easily identify those unique sequences of order pre-
serving generators. For example, for the the closed
itemset Y = {A,B,C, D}, we have Y0 = c(∅) = ∅,
gen0 = ∅ ∪ A, Y1 = c(gen0) = {A,B,C}, gen1 =
{A,B, C} ∪D, and, finally, Y = c(gen1). Another ex-
ample regards the closed itemset Y = {B,D}, where
we have Y0 = c(∅) = ∅, gen0 = ∅ ∪ B, Y1 = c(gen0) =
B, gen1 = B ∪D, and, finally, Y = c(gen1).

In order to exploit the results of Theorem 1, we need
a fast way to check whether a generator is order pre-
serving.

Lemma 3 Let gen = Y ∪ i be a generator of a closed
itemset where Y is a closed itemset and i 6∈ Y , and let
pre-set(gen) = {j ≺ i | j 6∈ gen}. gen is not order pre-
serving, iff ∃j ∈ pre-set(gen), such that g(gen) ⊆ g(j).

Proof. If g(gen) ⊆ g(j), then j ∈ c(gen). Since, by hy-
pothesis, j ≺ i, it is not true that i ≺ (c(gen)\gen) be-
cause j ∈ (c(gen) \ gen).
�

The previous Lemma introduces the concept of
pre-set(gen), where gen = {Y ∪ i} is a genera-
tor, and gives a way to check the order preserv-
ing property of gen by scanning all the g(j), for all
j ∈ pre-set(gen).

We have thus contributed a deep study on the the
problem of duplicates in mining frequent closed item-
sets. By reformulating the duplicates problem as the
problem of visiting the lattice of frequent itemsets, ac-
cording to a total (lexicographic) order, we have moved
the dependencies of the order preserving check from the

set of closed itemsets already mined to the tid-lists as-
sociated with single items. This new technique is not
resource demanding, because frequent closed itemsets
need not to be stored in the main memory during the
computation, and it is not time demanding, because the
order preserving check is cheaper than searching the set
of closed itemsets mined so far. Note that CLOSET+
needs the initial FP-tree as an additional requirement
the current FP-tree in use, and morover does not use
its upward checking tchnique with dense datasets.

5. The DCI Closed algorithm.

The pseudo-code of the recursive procedure
DCI Closed() is shown in Algorithm 1. The pro-
cedure receives three parameters: a closed item-
sets CLOSED SET, and two sets of items, i.e. the
PRE SET and POST SET.

The procedure will output all the non-duplicate
closed itemsets that properly contain CLOSED SET.
In particular, the goal of the procedure is to deeply
explore each valid new generator obtained from
CLOSED SET by extending it with all the ele-
ment in POST SET.

Before calling procedure DCI Closed(), the dataset
D is scanned to determine the frequent single items
F1 ⊆ I, and to build the bitwise vertical dataset
VD containing the various tid-lists g(i), ∀i ∈ F1.
The procedure is thus called by passing as arguments
CLOSED SET = c(∅), PRE SET = ∅, and POST SET
= F1 \ c(∅). Note that the itemset c(∅) contains, if
any, the items that occur in all the transactions of the
dataset D.

The procedure builds all the possible generators,
by extending CLOSED SET with the various items
in POST SET (lines 2–3). The infrequent and dupli-
cate generators (i.e., the not order preserving ones) are
however discarded as invalid (lines 4-5). Note that the
items i ∈ POST SET used to obtain those invalid gen-
erators will no longer be considered in the following
recursive calls. Only the valid generators are then ex-
tended to compute their closure (lines 6–15). It is worth
noting that each generator new gen← CLOSED SET
∪ i is strictly extended according to the order preserv-
ing property, i.e. by using all items j ∈ POST SET
such that i ≺ j (line 8). Note that all the items j, i ≺ j,
which do not belong to c(new gen) are included in the
new POST SET (line 12) and are used for the next re-
cursive call. At the end of this process, a new closed set
(CLOSED SETNew ← c(new gen)) is obtained (line
15). From this new closed set, new generators and cor-
responding closed sets can be build, by recursively call-
ing the procedure DCI Closed() (line 16). Finally, it



Algorithm 1 DCI-closed pseudocode
1: procedure DCI Closed(CLOSED SET, PRE SET, POST SET)
2: for all i ∈ POST SET do . Try to create a new generator
3: new gen← CLOSED SET ∪ i
4: if supp(new gen) ≥ min supp then . new gen is frequent
5: if is dup(new gen, PRE SET) = FALSE then . Duplication check
6: CLOSED SETNew ← new gen
7: POST SETNew ← ∅
8: for all j ∈ POST SET, i ≺ j do . Compute closure of new gen
9: if g(new gen) ⊆ g(j) then

10: CLOSED SETNew ← CLOSED SETNew ∪ j
11: else
12: POST SETNew ← POST SETNew ∪ j
13: end if
14: end for
15: Write out CLOSED SETNew and its support
16: DCI Closed(CLOSED SETNew, PRE SET, POST SETNew)
17: PRE SET ← PRE SET ∪ i
18: end if
19: end if
20: end for
21: end procedure
22:

23:

24: function is dup(new gen, PRE SET)
25: for all j ∈ PRE SET do . Duplicate check
26: if g(new gen) ⊆ g(j) then
27: return FALSE . new gen is not order preserving!!
28: end if
29: end for
30: return TRUE
31: end function
is worth to point out that, in order to force the lexico-
graphic order of the visit, the two for all’s (line 2 and
line 8) have to extract items from POST SET while re-
specting this order.

Before recursively calling the procedure, it is neces-
sary to prepare the suitable PRE SET and POST SET
to be passed to the new recursive call of the procedure.
Upon each recursive call to the procedure, the size of
the new POST SET is monotonically decreased, while
the new PRE SET’s size is instead increased.

As regards the composition of the new POST SET,
assume that the closed set X =CLOSED SETnew

passed to the procedure (line 16) has been obtained
by computing the closure of a generator new gen =
Y ∪ i (c(new gen)), where Y =CLOSED SET and
i ∈ POST SET. The POST SETnew to be passed to
the recursive call of the procedure is built as the set of
all the items that follow i in the lexicographic order and
that have not been already included in X. More for-
mally, POST SETnew = {j ∈ F1 | i ≺ j and j 6∈ X}.
This condition allows the recursive call of the proce-

dure to only build new generators X ∪ j, where i ≺ j
(according to the hypotheses of Theorem 1.

The composition of the new PRE SET depends in-
stead on the valid generators3 that precedes new gen =
Y ∪ i in the lexicographic order. If all the generators
were valid, it would simply be composed of all the items
j that precede i in the lexicographic order, and j 6∈ X =
c(new gen). In other words, the new PRE SET would
be the complement set of X ∪ POST SETnew.

While the composition of POST SET guarantees
that the various generators will be produced accord-
ing to the lexicographic order ≺, the composition of
PRE SET guarantees that duplicate generators will be
pruned by function is dup().

Since we have shown that for each closed itemset
Y exists one and only one sequence of order preserv-
ing generators and since our algorithm clearly explores
every possible order preserving generator from every

3 The ones that have passed the frequency and duplicate tests.



closed itemset, we have that the algorithm is complete
and does not produce any duplicate.

5.0.1. Some optimizations exploited in the al-
gorithm. We adopted a large amount of optimizations
to reduce the cost of the bitwise intersections, needed
for the duplication and closure computations (line 10
and 34). For the sake of simplicity, these optimizations
are not reported in the pseudo-code shown in Algo-
rithm 1.

DCI-CLOSED inherits the internal representation of
our previous works DCI[4] and kDCI[3].The dataset is
stored in the main memory using a vertical bitmap rep-
resentation. With two successive scans of the dataset,
a bitmap matrix DM×N is stored in the main memory.
The D(i, j) bit is set to 1 if and only if the j -th trans-
action contains the i -th frequent single item. Row i of
the matrix thus represent the tid-list of item i.

The columns of D are then reordered to profit of
data correlation. This is possible and highly worthwhile
when we mine dense datasets. As in [3][4], columns are
reordered to create a submatrix E of D having all its
rows identical. Every operation (e.g. intersection ones)
involving rows in the submatrix E will be performed
only once, thus gaining strong performance improve-
ments.

This kind of representation fits with our framework,
because the three main operations, i.e. support count,
closure, and duplicates check, can be fastly performed
with cheap bit-wise AND/OR operation.

Besides the DCI optimizations, specifically tailored
for sparse and dense datasets, we exploited more spe-
cific techniques made possible by the depth-first visit
of the lattice of itemsets.

In order to determine that the itemset X is closed,
the tidlist g(X) must have been compared with all the
g(j)’s, for all items j contained in the pre-list (post-
list) of X, i.e. the items that precede (follows) all
items included in X according to a lexicographic or-
der. The PRE SET must have been accessed for check-
ing duplicate generators, and the POST SET for com-
puting the closure. In particular, for all j ∈ PRE SET
∪ POST SET, we already know that g(X) * g(j), oth-
erwise those items j must have been included in X.

Therefore, since g(X) must have already been com-
pared with all the g(j), for all items j contained in
the PRE SET (POST SET) of X, we may save some
important information regarding each comparison be-
tween g(j) and g(X). Such information will be used
to reduce the cost of the following use of g(j), when
these tidlists g(j) will have to be exploited to look for
further closed itemsets that include/extend X. In par-
ticular, even if, for all j, it is true that g(X) * g(j),

we may know that some large portions of the bitwise
tidlists g(X) are however strictly included in g(j). Let
g(X)j be the portion of the bitwise tidlist g(X) strictly
included in the corresponding portion of g(j), namely
g(j). Hence, since g(X)j ⊆ g(j), it is straightforward to
show that g(X ∪ Y )j ⊆ g(j) continues to hold, for all
itemset Y used to extend X, because g(X ∪Y ) ⊆ g(X)
holds . So, when we extend X to obtain a new genera-
tor, we can limit the inclusion check of the various g(j)
to the complementary portions of tid-lists g(j), thus
strongly reducing the cost of them.

5.0.2. Dealing with sparse datasets. It is possi-
ble to show that in sparse datasets the number of closed
itemsets is nearly equal to the number of frequent ones,
so near that they are often the same. This means that
the techniques for mining closed itemsets are of no use,
because almost every duplicate checking or closure cal-
culating procedure is likely to fail.

For this reason, in case of sparse datasets, we pre-
ferred to exploit our frequent itemset mining algorithm
[3] with an additional closedness test over the frequent
itemset discovered. Given a new frequent itemset X,
every of it subset of length |X| − 1 with the same sup-
port as X is marked as non closed. Experiments showed
that this approach is fruitful (see Fig. 2.b).

5.0.3. Space complexity. For all the algorithms re-
quiring to keep in the main memory the whole set of
closed itemsets to perform the duplicate check, the size
of the output is actually a lower bound on their space
complexity. Conversely, we will show that the amount
of memory required by an implementation based on
our duplicate discarding technique is independent of
the size of the output. To some extent, its memory oc-
cupation depends on those data structures that also
need to be maintained in memory by other algorithms
that visit depth-first the lattice and exploit tid-list in-
tersections adopting a vertical datasets.

The main information needed to be kept in the
main memory is the tid-list of each node in the cur-
rent path along the lattice, and the tid-list of every
frequent single item. In this way we are able to browse
the search space intersecting nodes with single item
tid-lists, and to discard duplicates checking the order
preserving property.

The worst case of memory occupation happens when
the number of generators and frequent single items is
maximal: this occurs when c(∅) = ∅ and every item-
set is frequent and closed. If N is the number of fre-
quent single items, the deepest path has N nodes, and
since one of this node is a single item, the total num-
ber of tid-lists to be kept in the main memory is 2N−1.
Since the length of a tid-list is equal to the number of
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Figure 2. (a) Memory occupation on the connect dataset as a function of the minimum support threshold.
(b-f) Execution times of FPCLOSE, CLOSET+, and DCI-CLOSET as a function of the minimum support
threshold on various publicly available datasets.



transactions T in the dataset, the space complexity of
our algorithm is

O ((2N − 1)× T ) .

Figure 2.(a) plots memory occupation of FPCLOSE,
CLOSET+ and our algorithm DCI-CLOSED when
mining the connect dataset as a function of the sup-
port threshold. The experimental results agree with our
estimates: whereas FPCLOSE and CLOSET+ mem-
ory occupation grows exponentially because of the huge
number of closed itemsets generated, our implementa-
tion needs much less memory (up to two order of mag-
nitude) because its occupation depends linearly on N .

5.1. Experimental results

We tested our implementation on a suite of pub-
licly available dense datasets (chess, connect, pumsb,
pumsb*), and compared the performances with those of
two well known state of the art algorithms: FPCLOSE
[1], and CLOSET+ [7]. FPCLOSE is publicly available
as http://fimi.cs.helsinki.fi/src/fimi06.html,
while the Windows binary executable of CLOSET+
was kindly provided us from the authors. Since FP-
CLOSE was already proved to outperform CHARM in
every dataset, we did not used CHARM in our tests.

The experiments were conducted on a Windows XP
PC equipped with a 2.8GHz Pentium IV and 512MB
of RAM memory. The algorithms FPCLOSE and DCI-
CLOSED were compiled with the gcc compiler avail-
able in the cygwin environment.

As shown in Fig. 2.(b-f), DCI-CLOSED outperforms
both algorithms in all the tests conducted. CLOSET+
performs quite well on the connect dataset with low
supports, but in any other case it is about two orders
of magnitude slower. FPCLOSE is effective in pumsb*,
where it is near to DCI-CLOSED, but it is at one or-
der of magnitude slower in all the other tests.

6. Conclusions

In this paper we provide a deep study on the prob-
lem of mining frequent closed itemsets, formalizing a
general framework fitting every mining algorithm. Use
such framework we were able to analyse the problem
of duplicates rising in this new mining problem.

We have proposed a technique for promptly detect-
ing and discarding duplicates, without the need of keep-
ing in the main memory the whole set of closed pat-
terns, and we implemented this technique into a new
algorithm which uses a vertical bitmap representation
of the dataset.

The experimental evaluation demonstrated that our
approach is very effective. The proposed implementa-
tion outperforms FPCLOSE and CLOSET+ in all the
test conducted and requires orders of magnitude less
memory.
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