
Compositional analysis of modular Petri nets
using hierarchical state space abstraction

Yves-Stan Le Cornec

IBISC, University of Évry, 23 bd de France, 91037 Évry, France
yves-stan.lecornec@ibisc.univ-evry.fr

Abstract. We propose an approach to perform efficient model-checking
of µ-calculus formulae on modular Petri nets. Given a formula ϕ, each
module can be analysed separately, possibly yielding a conclusion about
the truth value of ϕ on the global system. When no conclusion can be
drawn locally, a minimal state space preserving ϕ is computed for the
module and can be incrementally composed with others, thus enabling
for hierarchical analysis of a modular Petri net in a bottom-up fashion.

1 Introduction

State space explosion is a well known problem when dealing with model-checking
of large systems. One way to address this problem in the context of Petri nets
is modularity : a large Petri net is decomposed into subsystems which are then
synchronised on shared places or transitions [2]. When only transitions are shared
across sub-systems, like in [6], one way to alleviate state space explosion is to
build a modular state space that consists of the state space of its subsystems (i.e.,
its modules) and a synchronisation graph of them. This is usually a much smaller
object than the state space of the full Petri net (i.e., with all modules combined).

In this paper, we propose another way to analyse modular Petri nets when
the goal is to model-check properties expressed as modal µ-calculus formulae,
i.e., to verify whether the state space of a modular Petri net is a model for
a given formula ϕ. Our approach allows to analyse modules independently of
each other. When the formula depends only on one module, only this particular
module needs to be analysed. When the formula depends on several modules,
each can be processed separately and its state space minimised before being
combined with the others, i.e., we compute a smaller transition system that is
equivalent to the initial one with respect to the formula ϕ. This minimisation
is an extension to the modal µ-calculus of the approach defined in [1] for CTL.
Furthermore, our approach is fully compositional: on the one hand, the seman-
tics of any composition of modules is equivalent to the synchronised product
of the individual semantics of each module; on the other hand, minimisation of
the semantics preserves the truth value of ϕ. So, a system composed of several
modules can be decomposed into an arbitrary hierarchy forming a tree in which
each leaf is a module and each internal node corresponds to the composition of
the modules below it. Analysis can be performed by traversing this tree bottom-
up in such a way that, at each node, we consider a particular subsystem whose

semantics can be computed and analysed so that, either we can raise some global
conclusion about the truth of ϕ, or we can minimise the semantics (which will
be reused at the upper level) while preserving the truth of ϕ. This approach
leaves a lot of room to define strategies to choose an optimal order of analysis of
modules in order to minimise the amount of work necessary to bring the conclu-
sion. The current paper concentrates on defining the analysis method, this kind
of optimisations being left to future work.

The rest of the paper is organised as follows. In the next section, we recall
main definitions about modular Petri nets and define the semantics in terms of
labelled transition systems. Next, we define the modal µ-calculus logic and its
semantics. Section 4 forms the core of our contribution, defining the formula-
dependent abstraction and giving the main results that enable hierarchical anal-
ysis and abstraction. For readability, proofs are moved in the appendix, after a
conclusion section with perspectives.

2 Modular Petri nets

In the following, we consider place/transitions nets for simplicity, but a general-
isation to high-level Petri nets (in particular to coloured Petri nets) is straight-
forward because our work is based on the labelled transitions systems used for
the Petri nets semantics. To start with, let us recall the definition of Petri nets
to fix the notations.

Definition 1. A Petri net N
df
= (P, T,W) is a tuple such that:

– P is the finite set of places;
– T is the finite set of transitions, such that P ∩ T = ∅;
– W is a multiset over (P × T) ∪ (T × P) defining the arcs weights;

For t ∈ T , we denote by •t (resp., t•) the multiset over P such that for all
s ∈ P , •t(s)

df
= W (s, t) (resp., t•(s) df

= W (t, s)).
A marking M of N is a multiset over P indicating how many tokens each

place holds. A transition t is enabled at marking M iff •t ≤ M , in which case
the firing of t yields a new marking M � df

= M − •t + t•. This is denoted by
M [t� M �, moreover, we denote by [M� the smallest set containing M such that
if M � ∈ [M� and M � [t� M �� then M �� ∈ [M�. We assume that [M� is finite.

Our definition of modular Petri nets is adapted from [6]. We use here non-
disjoint sets of transitions instead of explicit transitions fusion sets to define
the transitions shared across modules. This especially means that we would
have to make copies of a transition in order to model a choice between different
synchronizations.

Definition 2. A modular Petri net is a collection of modules (N1, . . . Nn) where
each Ni is a Petri net (Pi, Ti,Wi), and such that the Pi’s are pairwise disjoint.
Transitions that belong to only one Ti are called local while those shared among
at least two Ti’s are called fused. Such a modular net is equivalent to a flat Petri

net obtained as the component-wise union of its modules. Because this union is
commutative and associative, we shall use a binary notation for it: N1⊕· · ·⊕Nn.

Example 1. Figure 1 shows two modules which are part of a modular Petri net.
Transition f3 is assumed to be fused with another module not shown here. �

•a

b

c

d

e

f

gl1

l2 f1

f2

l3

l5

l4

• •

h i
j k

l

f2 f1

f3

Fig. 1. Two modules part of a modular Petri net.

The semantics of Petri nets and modular Petri nets can be defined in terms
of labelled transitions systems (LTS).

2.1 LTS semantics of Petri nets and modular Petri nets

A LTS is a tuple S
df
= (Q, q0, A,R, L) where Q is a set of states, q0 ∈ Q is the

initial state, A is the set of actions used as transition labels, R ⊆ Q × A × Q
is the set of transitions and L is a labelling of states with Boolean formulae on
propositional variables from a set V. A transition (q, a, q�) ∈ R is usually denoted
by q

a−−−−−−−−→ q�.

Definition 3. The LTS semantics of a Petri net N df
= (P, T,W) initially marked

by M0 is the LTS �N� df
= (Q, q0, A,R, L) such that: Q df

= [M0�; q0
df
= M0; A

df
= T ;

R
df
= {M t−−−−−−−−→ M � | M [t� M �}; and L(M)

df
=

�
M(p)>0 p=M(p) with V df

= {p=k|p ∈
P, k ∈ N+}.

In this definition, states are labelled by a conjunction of propositional vari-
ables of the form s=k denoting the number of tokens in each non void place.
This choice is arbitrary and can be changed in many ways, this will not affect
the current work as long as we are able to evaluate atomic formulae. In order to
bring modularity at the semantics level, we shall partition A as Aloc�Afus corre-
sponding respectively to the local and fused transitions of a modular Petri net.

Example 2. Figure 2 shows the LTS semantics of the modules from example 1.�

Definition 4. The modular LTS semantics of a modular Petri net (Ni)1≤i≤n,
where Ni

df
= (Pi, Ti,Wi) for all i, is a collection of LTS (Qi, q0i, Ai, Ri, Li)1≤i≤n

where each Ai is partitioned as Aloc
i �Afus

i such that, for 1 ≤ i ≤ n:

– (Qi, q0i, Ai, Ri, Li) = �Ni� is the LTS semantics of Ni considered alone;
– Aloc

i
df
= Ri \

�
j �=i Rj and Afus

i
df
= Ai \Aloc

i .

a 1

b2 b ∧ c 3

c ∧ d ∧ e 7

c ∧ d ∧ f

8

c ∧ d ∧ g 9

d ∧ e 4

d ∧ f5

d ∧ g 6

e10

f

11

g

12

f1
f2

l3

l4

l5

l3

l4

l5

l3

l4

l5

l2 l1

f1

l 4

h ∧ i 1

j2 h ∧ k 3

f2 f1

f3

Fig. 2. LTS semantics of the modules from figure 1. For the left LTS, we have Aloc df
=

{l1, l2, l3, l4} and Afus df
= {f1, f2}; for the right LTS we have Aloc df

= ∅ and Afus df
=

{f1, f2, f3}. As there is at most one token per place, we write a instead of a = 1.

The collection of LTS obtained from a modular Petri net can be transformed
into a single LTS by taking the synchronised product of its components, where
synchronisation takes place on the fused transitions, which is the usual definition
of a n-ary synchronised product. We denote by x[i] the i-th component of a tuple
x and by x[i ← yi] the tuple x in which the i-th component has been replaced
by yi, this latter notation is naturally extended to the replacement of several
components.

Definition 5. Let (Si)1≤i≤n be the LTS semantics of a modular Petri net with
Si

df
= (Qi, q0i, Ai, Ri, Li) and Ai

df
= Aloc

i � Afus
i , the synchronised product of the

Si’s, is the LTS (Q, q0, A,R, L) defined by:

– Q
df
=

�
1≤i≤n Qi;

– q0
df
= (q01, . . . , q0n);

– A
df
=

�
1≤i≤n Ai;

– R is the smallest subset of Q×A×Q such that x a−−−−−−−−→ y ∈ R iff either
• it exists i such that a ∈ Aloc

i , x[i] a−−−−−−−−→ yi ∈ Ri and y = x[i ← yi],
• or, for all i such that a ∈ Afus

i , we have x[i]
a−−−−−−−−→ yi ∈ Ri and y = x[i ←

yi].
– for all x ∈ Q, L(x) df

=
�

1≤i≤n Li(x[i]).

Because this product is associative and commutative, we shall also use a binary
notation for it: S1 ⊗ · · · ⊗ Sn.

In the definition of R above, the first point corresponds to the cases where a
module evolves on a local transition. So only one component of the compound
state evolves. The second point corresponds to the firing of a fused transition,
in which case all the modules sharing this transition must simultaneously fire
and the corresponding components of the compound state will simultaneously
evolve. Notice that, by definition of a fused transition, if a ∈ Afus

i for some i,

then there exists at least one j �= i such that a ∈ Afus
j also (otherwise, we would

have a ∈ Aloc
i).

From the definitions above, it immediately follows that the synchronised
product of the LTS semantics of a modular Petri net is equivalent to the LTS
semantics of the flat Petri net.

Theorem 1. Let (Ni)1≤i≤n be a modular Petri net. We have

�N1 ⊕ · · · ⊕Nn� ∼ �N1� ⊗ · · · ⊗ �Nn�

where ∼ denotes the isomorphism of LTS. ��

Because of this, we can define the notation �N1, . . . , Nn� df
= �N1�⊗· · ·⊗�Nn�.

These notations are intended to put into light a first level of compositionality.
For example, consider a modular Petri net (N1, . . . , N5). It is possible to see it
as, e.g., three subsystems (N1, N2), (N3, N4) and N5 and to compute �N1, N2�⊗
�N3, N4�⊗ �N5�, just like if we would have considered (N1⊕N2, N3⊕N4, N5) as
the initial system, which is also equivalent to (N1⊕N2)⊕(N3⊕N4)⊕(N5). So we
can decompose a modular Petri net into a hierarchy and compute the semantics
at any level of this hierarchy. This is the first step towards full compositionality;
the next step will be to introduce LTS minimisation with respect to a µ-calculus
formula in order to be able to apply minimisation hierarchically.

3 The modal µ-calculus

The modal µ-calculus (or simply µ-calculus) is a temporal logic that encom-
passes widely used logics such as, in particular, CTL* (and thus also LTL and
CTL) [5]. A µ-formula is derived from the following grammar, where B is a
Boolean formula, X is a propositional variable and α is a set of actions:

ϕ ::= B | ¬ϕ | ϕ ∨ ϕ | �α�ϕ | µX.ϕ | X

Moreover, in a formula µX.ϕ, ϕ must be positive in the variable X, i.e., every
free occurrence of X must be in the scope of an even number of negations ¬.

A formula ϕ is evaluated over a LTS S
df
= (Q,A,R,L) and can be seen as a

function of its free variables to 2Q. In particular, if ϕ is a closed formula then it
is a function with no arguments that returns the subset of Q where ϕ holds. In
formula µX.�a�X ∨ B, the sub-formula �a�X ∨ B defines a function that, given
X ⊆ Q, returns the states y such that either y

a−−−−−−−−→ x for some x ∈ X, or B
holds on y. From this point of view, µX.ϕ is the least fixed point of function ϕ.
More generally, the semantics ϕN of ϕ over S is defined as follows:

– B holds in every state whose label implies B: BS df
= {x ∈ Q | L(x) ⇒ B};

– ϕ1 ∨ ϕ2 holds in every state where ϕ1 or ϕ2 holds: (ϕ1 ∨ ϕ2)S
df
= ϕS

1 ∪ ϕS
2 ;

– ¬ϕ holds in every state where ϕ does not: (¬ϕ)S df
= Q \ ϕS ;

– �α�ϕ holds in every state where a transition labelled by a ∈ α leads to a
state where ϕ holds: (�α�ϕ)S df

= {x ∈ Q | ∃y ∈ ϕS , ∃a ∈ α, x
a−−−−−−−−→ y ∈ R};

– µX.ϕ is the least fixed point of function ϕ: (µX.ϕ)S
df
=

�
ρ∈2Q∧ϕ(ρ)⊆ρ ρ;

– XS df
= X, can be seen as the identity function.

For closed formulae, ϕS is a subset of Q, which can be equivalently seen as the
image of a function with no arguments. But for formulae with free variables, ϕS is
a function exactly like ϕ is and the above definition can be read as transformation
of functions. For instance, for a ϕ with a single free variable X, the definition of
(¬ϕ)S can be reformulated as (¬ϕ)S(X)

df
= Q\ϕS(X). Note that, to simplify the

definitions in the sequel, we have considered α as a set of actions in �α� instead
of as a single action as more usual. Moreover, because the semantics of a formula
is a set of states, we may use one or the other form interchangeably.

The effective construction of µX.ϕ is made inductively by defining 0X.ϕ
df
= ∅,

and nX.ϕ
df
= ϕ[X ← (n − 1)X.ϕ] where ϕ[X ← Y] denotes ϕ in which variable

X is substituted by Y everywhere. Knaster-Tarski’s theorem ensures that there
exists k ∈ N such that kX.ϕ = µX.ϕ. Indeed, ϕ is a monotonous function over a
complete lattice, and thus the set of its fixed-points is also a complete lattice [8].

Example 3. Let us consider the LTS from the left of figure 2 and the formula
µX.(�A�X ∨ d) (which means that the module can reach a state where place d
is marked). We can compute the least fixed-point of ϕ df

= �A�X ∨ d as follows:

– 0X.ϕ
df
= ∅

– 1X.ϕ
df
= ϕ(0X.ϕ) = (�A�X)(∅) ∪ d() = ∅ ∪ {4, 5, 6, 7, 8, 9}

– 2X.ϕ
df
= (�A�X)(1X.ϕ) ∪ {4, 5, 6, 7, 8, 9} = {2, 3, 4, 5, 6, 7, 8, 9}

– 3X.ϕ
df
= (�A�X)(2X.ϕ) ∪ {4, 5, 6, 7, 8, 9} = {1, 2, 3, 4, 5, 6, 7, 8, 9}

– 4X.ϕ
df
= (�A�X)(3X.ϕ) ∪ {4, 5, 6, 7, 8, 9} = 3X.ϕ �

To write formulae more comfortably, we can use the following operators:

– ϕ1 ∧ ϕ2
df
= ¬(¬ϕ1 ∨ ¬ϕ2);

– [α]ϕ
df
= ¬�α�¬ϕ, which yields ([α]ϕ)S

df
= {x ∈ Q | ∀y ∈ ϕS , x

a−−−−−−−−→ y ∈ T};
– νX.ϕ

df
= ¬µX.¬ϕ[X ← ¬X] is the greatest fixed-point of ϕ.

Finally, for q ∈ Q, we write S, q |= ϕ iff q ∈ ϕS , and S |= ϕ iff S, q0 |= ϕ.

4 Formula-dependent abstraction

In this section, we introduce an operation �S�ϕ that, given the LTS S of a module
and a formula ϕ, returns a LTS, (usually) smaller that S without changing the
truth of ϕ, neither over S, nor over the global system (i.e., S synchronised
with the LTS of the other modules). To do so, we define an equivalence relation
(initially between states of a same LTS, then extended to LTS), denoted by ∼ϕ,
that preserves the truth value of ϕ on the global system and is a congruence
with respect to synchronised product ⊗.

Let S = (q0, Q,A,R,L) with A
df
= Aloc �Afus be the LTS of a module, q ∈ Q

a state, and ϕ a formula. Let also Ex be the actions appearing in ϕ but not in
A, which corresponds to the context of S, i.e., the other modules. To start with,

we define the set Passϕ such that if q ∈ Passϕ then ϕ is necessarily true on any
bigger system in which S is a module in state q. Similarly, we define Failϕ such
that if q ∈ Failϕ then ϕ is necessarily false on any bigger system encompassing
S in state q. We shall write Passϕ(S) or Failϕ(S) when the LTS of interest needs
to be precised. We say that formula ϕ can be evaluated on a state q belonging
to S if q ∈ Passϕ ∪ Failϕ, which is denoted by ϕ ? |=S, q. This means that we can
conclude about the truth of ϕ in state q independently of the context in which
S may be embedded as a module. Similarly, ϕ can be evaluated on S if it can
be evaluated it on its initial state, which is denoted by ϕ ? |=S.

The definition below is made with respect to a context Σ that is a map from
the free variables of a formula to sets of states (when needed, Σ may be seen
as a set of pairs). For a formula ϕ that contains free variables X1, . . . , Xn that
do not appear in the environment Σ, PassΣ,ϕ is the function (x1, . . . , xn) �→
PassΣ∪{(Xi,xi)|1≤i≤n},ϕ.

Definition 6. Let ϕ be a formula and S
df
= (q0, Q,A,R,L) with A

df
= Aloc �Afus

be a LTS. We set Passϕ df
= Pass∅,ϕ and Failϕ

df
= Fail∅,ϕ, where Pass∅,ϕ and Fail∅,ϕ

are functions defined inductively on the syntax of ϕ:

– PassΣ,X df
= Σ(X);

– PassΣ,B df
= {x ∈ Q | L(x) ⇒ B};

– PassΣ,¬ϕ df
= FailΣ,ϕ;

– PassΣ,ϕ1∨ϕ2 df
= PassΣ,ϕ1 ∪ PassΣ,ϕ2 ;

– PassΣ,�α�ϕ df
= (�α ∩Aloc�X)(PassΣ,ϕ);

– PassΣ,µX.ϕ df
= µX.Passϕ.

– FailΣ,X df
= Σ(X);

– FailΣ,B df
= PassΣ,¬B;

– FailΣ,¬ϕ df
= PassΣ,ϕ;

– FailΣ,ϕ1∨ϕ2 df
= FailΣ,ϕ1 ∩ FailΣ,ϕ2 ;

– FailΣ,�α�ϕ df
= ([α \ Ex]X)(FailΣ,ϕ) ∩ F , where F

df
= Q if A ∩ Ex = ∅ and

F
df
= FailΣ,ϕ otherwise;

– FailΣ,µX.ϕ df
= νX.FailΣ,ϕ.

Together with Passϕ and Failϕ, we aim to define ∼ϕ as a relation between
the states such that if x ∼ϕ y, then, in a larger system embedding S, formula
ϕ does not allow to distinguish the states embedding x or y. (Thus it will be
possible to reduce S by merging these two states.) In order to compute relation
∼ϕ we define FΣ,ϕ and build Fϕ df

= F∅,ϕ.
The computation of F∅,ϕ described in definition 7, yields a triple (p, f, r)

such that at the end of computation, p = Passϕ,f = Failϕ and r
df
=∼ϕ (this is

not necessarily the case at every step). The rules used to build F∅,ϕ, as shown
in exemple 4, operate on elements from Q × Q × Q2. As in the definitions of
Pass and Fail, if ϕ contains free variables X1, . . . , Xn which do not appear in the
environment Σ, then FΣ,ϕ is the function (x1, . . . , xn) �→ FΣ∪{(Xi,xi)|1≤i≤n},ϕ.
However unlike in the previous definition, environment Σ now takes values from
Q×Q×Q2. We also define Σp and Σf as the projections of Σ on its first and
second components, i.e., the smallest environments such that if (X, (p, f, r)) ∈ Σ,
then (X, p) ∈ Σp and (X, f) ∈ Σf .

Definition 7. Let ϕ be a formula and S
df
= (Q,A,R,L) with A

df
= Aloc �Afus be

a LTS. FΣ,ϕ is defined recursively on the syntax of ϕ as follows:

1. FΣ,B df
= (PassΣ,B ,FailΣ,B , {(x, y) | (L(x) ⇒ B) ⇔ (L(y) ⇒ B)}).

2. FΣ,¬ϕ1
df
= FΣ,¬(FΣ,ϕ1)

with FΣ,¬(p, f, r)
df
= (f, p, r).

3. FΣ,ϕ1∨ϕ2
df
= FΣ,∨(FΣ,ϕ1 ,FΣ,ϕ2)

with FΣ,∨((p1, f1, r1), (f2, p2, r2))
df
= (p1 ∪ p2, f1 ∩ f2, r1 ∩ r2).

4. FΣ,�α�ϕ1
df
= FΣ,�α�(FΣ,ϕ1)

with FΣ,�α�(p, f, r)
df
= (PassΣ

p,�α�X(p),FailΣ
f ,�α�X(f), r�) where (x, y) ∈ r� iff

(x, y) ∈ r and either
(a) x ∈ PassΣ

p,�α�X(p) and y ∈ PassΣ
p,�α�X(p),

(b) or, x ∈ FailΣ
f ,�α�X(f) and y ∈ FailΣ

f ,�α�X(f),
(c) or, we have

i. for every a ∈ α ∩ Afus, if x
a−−−−−−−−→ x� ∈ R and x� /∈ f then it exists

y
a−−−−−−−−→ y� ∈ R such that (x�, y�) ∈ r,

ii. and, for every a ∈ α∩Afus, if y a−−−−−−−−→ y� ∈ R and y� /∈ f then it exists
x

a−−−−−−−−→ x� ∈ R such that (x�, y�) ∈ r,
iii. and, for every a ∈ α∩Aloc, if x a−−−−−−−−→ x� ∈ R and x� /∈ f then it exists

y
a�
−−−−−−−−→ y� ∈ R such that a� ∈ α ∩Aloc and (x�, y�) ∈ r,

iv. and, for every a ∈ α∩Aloc, if y a−−−−−−−−→ y� ∈ R and x� /∈ f then it exists
x

a�
−−−−−−−−→ x� ∈ R such that a� ∈ α ∩Aloc and (x�, y�) ∈ r.

5. FΣ,X df
= Σ(X).

6. FΣ,µX.ϕ1 is the fixed-point reached by iterating function FΣ,ϕ1 starting from
(PassΣ

p,µX.ϕ1 ,FailΣ
f ,µX.ϕ1 , r0) with (x, y) ∈ r0 iff either

(a) x ∈ PassΣ
p,µX.ϕ1 and y ∈ PassΣ

p,µX.ϕ1 ,
(b) or x ∈ FailΣ

f ,µX.ϕ1 and y ∈ FailΣ
f ,µX.ϕ1 ,

(c) or x, y ∈ Q \ (FailΣ
f ,µX.ϕ1 ∪ PassΣ

p,µX.ϕ1).

With regard to ∼ϕ, this definition can be intuitively understood as follows:

1. The labels of two equivalent states must be identical with respect to the
atomic formulae which appear in B.

2. The relations corresponding to a formula and to its negation are the same.
3. Two equivalent states must be equivalent on both sub-formulae.
4. When ϕ involves the next states through �α�, two equivalent states x and y

must be equivalent w.r.t. the sub-formula and either
(a) both x and y ensure that ϕ globally holds,
(b) or, both x and y ensure that ϕ does not hold globally,
(c) or,

i. if from x we can reach x� through a fused transition, then this must
be possible from y through the same action, reaching a state y� equiv-
alent to x�.Note that we only have to consider the x� which are not
in the Fail set of the sub-formula,

ii. and the same thing symmetrically for y.

iii. moreover, if from x we can reach x� (which does not belong to the
Fail set of the sub-formula) through a local action, then this must be
possible from y through the same or another local action from the
set α, reaching a state y� equivalent to x�,

iv. and the same thing symmetrically for y.
5. The value of X is fetched from the environment (by construction, we are

always have every free variable in the environment).
6. Function FΣ,ϕ1 is repeatedly applied starting from the greatest relation

for which PassΣ,µX.ϕ1 and FailΣ,µX.ϕ1 are equivalence classes. Each iter-
ation (which is a composition of the previous rules) will then differenti-
ate some states until we reach a fixed-point. This necessarily occurs be-
cause, for any relation r, we have FΣ,ϕ1(PassΣ

p,µX.ϕ1 ,FailΣ
p,µX.ϕ1 , r) =

(PassΣ
p,µX.ϕ1 ,FailΣ

p,µX.ϕ1 , r�) with r� ⊆ r. So we always eventually reach
a fixed-point when applying FΣ,ϕ1 repeatedly while computing FΣ,µX.ϕ1 .

Definition 8. Let ϕ be a closed formula, ∼ϕ is defined as the third component
returned by Fϕ.

Example 4. Let ϕ
df
= B1 ∨ �α�B2 for some Boolean formulae B1 and B2. As

defined above, we can compute

FB1∨�α�B2 = F∅,∨(F∅,B1 ,F∅,�α�(F∅,B2)) = (Passϕ,Failϕ,∼ϕ) �

The next lemma states that we have indeed defined an equivalence relation.
This equivalence is defined within the context of a single LTS, this can be gen-
eralised to compare two LTS.

Lemma 1. Relation ∼ϕ as defined above is indeed an equivalence relation.

Definition 9. Let ϕ be a formula, and S1 and S2 be two LTS whose initial states
are q0,1 and q0,2 respectively. S1 is equivalent to S2 w.r.t. ϕ, which is denoted by
S1 ∼ϕ S2, iff q0,1 ∼ϕ q0,2 in S defined as the component-wise disjoint union of
S1 and S2.

Using relation ∼ϕ we define the reduction of a LTS by merging its equivalent
states, which is done by considering the quotient set of Q by ∼ϕ.

Definition 10. Let S
df
= (Q, q0, A,R, L) be a LTS with A

df
= Aloc � Afus, and

ϕ be a formula. The reduction of S w.r.t. ϕ, denoted by �S�ϕ, is the LTS
(Q�, q�0, A

�, R�, L�) such that:

– Q� df
= Q/∼ϕ is the quotient set of Q by ∼ϕ;

– q�0
df
= [q0]ϕ is the equivalence class containing q0;

– A� is exactly A and is partitioned the same way;
– R� df

= {(c1, a, c2) ∈ Q� ×A� ×Q� | ∃q1 ∈ c1, ∃q2 ∈ c2, (q1, a, q2) ∈ R};
– L�(c)

df
=

�
q∈[c]ϕ

L(q).

We now introduce several properties of the definitions above, progressively
leading to our main compositionality result. First, we state that Pass and Fail
effectively allow to locally conclude about the global truth value of a formula.

Lemma 2. Let S
df
= S1 ⊗ · · · ⊗ Sn be a product LTS and x

df
= (x1, . . . , xn) one

of its states.

1. If xi ∈ Passϕ(Si) for some 1 ≤ i ≤ n, then x ∈ Passϕ(S).
2. If xi ∈ Failϕ(Si) for some 1 ≤ i ≤ n, then x ∈ Failϕ(S).

Then, we state that ∼ϕ correctly captures the states that are equivalent
w.r.t. the capability to evaluate locally the global truth of ϕ. Moreover, it also
preserves the truth value of ϕ.

Theorem 2. Let S be a LTS, ϕ a formula, and x and y two states of S such
that x ∼ϕ y. If ϕ ? |=S, x, then ϕ ? |=S, y and S, x |= ϕ ⇔ S, y |= ϕ.

Corollary 1. Let ϕ be a formula, and S1 and S2 two LTS such that S1 ∼ϕ S2.
If ϕ ? |=S1 then ϕ ? |=S2 and S1 |= ϕ ⇔ S2 |= ϕ.

Moreover, the reduction w.r.t ϕ yields a LTS that is equivalent to the original
one. Then, we state the consistency of reduction �S�ϕ w.r.t. the synchronised
product, which allows to extend the previous lemma to compound LTS. Finally,
this reduction is a congruence for the product of LTS, which means that we can
replace any LTS of a product by the corresponding reduced LTS while preserving
the equivalence relation.

Lemma 3. Let S be a LTS and ϕ a formula, we have: S ∼ϕ �S�ϕ.

Theorem 3. Let S
df
= S1 ⊗ · · · ⊗ Sn be a product LTS, x

df
= (x1, . . . , xn) and

y
df
= (y1, . . . , yn) two of its states, and ϕ a formula. If xi ∼ϕ yi for all 1 ≤ i ≤ n

then x ∼ϕ y.

Corollary 2. S1 ⊗ · · · ⊗ Sn ∼ϕ �S1�ϕ ⊗ · · · ⊗ �Sn�ϕ
Combining these results with theorem 1, we can perform modular analysis with
hierarchical reductions. Indeed, given a formula ϕ and a modular Petri net
(N1, . . . , Nn), let us define �Ni�ϕ

df
= ��Ni��ϕ, we have:

�N1 ⊕ · · · ⊕Nn� ∼ �N1� ⊗ · · · ⊗ �Nn� ∼ϕ �N1�ϕ ⊗ · · · ⊗ �Nn�ϕ

Furthermore, lemma 2 tells us that we can stop building the system as soon as
we find a sub-system on which the formula can be evaluated, i.e., as soon as
ϕ ? |=�Ni�ϕ for some i, because the truth value of that formula over the global
system will be the same as over this sub-system. Finally, because modules can
be freely associated and commuted, we can conduct the analysis hierarchically,
reducing at each level and possibly stopping before the whole system semantics
is constructed.

Example 5. Let us consider again the example 2 (and figure 2) and check that
we can reach a state where the property h ∧ d is true, that is expressed in µ-
calculus as µX.(�A�X∨ (h∧d)). Remember that we assumed there exists a third
module synchronised over f3. We will see that in this case, analysing the first
two modules is sufficient to prove the property.

¬d 1

¬d 2

d3 ¬d 4

l1, l2

f1 f2

l3, l4, l5 l3, l4, l5

h

1

¬h2 h 3

f2 f1

f3

¬d, h 1

¬d ∧ h 2

d ∧ h3 ¬d ∧ ¬h 4

l1, l2

f1 f2

l3, l4, l5 l3, l4, l5, f3

Fig. 3. Left and middle: the semantics of modules from Example 1 reduced w.r.t.
µX.(�A�X ∨ (h ∧ d)). For clarity, only labels involving d and h have been displayed,
a label such as ¬x denotes a real label where x is not involved and thus implies ¬x.
Right: the synchronised product of the two LTS on the left.

We begin by reducing the first LTS w.r.t. the formula. We are in case 6 of def-
inition 7, PassµX.(�A�X∨(h∧d)) = ∅ (we can never conclude without knowing the
value of h which is and external variable) and FailµX.(�A�X∨(h∧d)) = {10, 11, 12}
(we know that from these states we can only access states where d is false). We
now apply function F�A�X∨(h∧d) repeatedly starting from:

– (p0, f0, r0)
df
= (∅, {10, 11, 12}, {{10, 11, 12}, {1, 2, 3, 4, 5, 6, 7, 8, 9}}) where r0

is given as the set of its equivalence classes instead of as a set of pairs, which
is more compact;

– F�A�X(p0, f0, r0) = (∅, {10, 11, 12}, {{10, 11, 12}, {1}, {2, 3}, {4, 5, 6, 7, 8, 9}})
and Fh∧d df

= (∅, {10, 11, 12}, {{10, 11, 12}, {1, 2, 3, 4, 5, 6, 7, 8, 9}}) so we have
(p1, f1, r1)

df
= F�A�X∨(h∧d)(p0, f0, r0) = (∅, {10, 11, 12}, {{10, 11, 12}, {1}, {2,

3}, {4, 5, 6, 7, 8, 9}})
– (p2, f2, r2)

df
= F�A�X∨(h∧d)(p1, f1, r1) = (p1, f1, r1) (We have reached the

fixed-point so we can use r1 to build the reduced LTS from figure 3)

Doing the same with the second LTS, we get the reduced LTS depicted in
figure 3. Their product is depicted on the right of the same figure. To compose
this product with the rest of the system, we shall first try to minimise it. Doing
so, we also compute PassµX.�A�X∨(h∧d), obtaining set {1, 2, 3} that contains the
initial state of the graph. Therefore we know that the formula is true over the
global system and we can stop the analysis. �

5 Conclusion

We have shown that it is possible to define the semantics of a modular Petri
net as a hierarchical composition of the semantics of its modules taken in any
order. At each step, a subset of modules is considered, and its semantics can be
computed and analysed with respect to a modal µ-calculus formula ϕ. Possibly,
this allows to draw a conclusion about the truth value of ϕ on the whole system
without the need to consider the rest of the system. If no conclusion can be

drawn at this step, a minimised semantics can be computed for the subset of
modules at hand, and reused for the sequel of the hierarchical analysis.

In [4], the authors define the decomposition of a Petri net according to a
formula and the verification of this formula in a compositional way. Moreover,
[3] makes use of the modular description of a system to reduce it hierarchically.
The main difference with our work is that they both consider abstractions that
preserve every formula from LTL\X in which chosen actions appear. Our ap-
proach only preserves one formula from the µ − calculus so, on the one hand,
we can express more properties, and on the other hand, targeting a particu-
lar formula let us expects better reductions. But, as a consequence, we have to
recompute the abstraction for each new formula. However more thoroughgoing
comparisons remain to be done. In [7], the author considers the incremental
construction of Petri nets through refinements (of transitions, places and place
types), also allowing for incremental state space construction. Properties may
be verified at an intermediary step avoiding to construct the fully refined state
space. However, these properties are not expressed as logic formulae but are
classical Petri net properties (deadlock, home state, etc.).

Future work will address the question of finding a good order for conducting
such a hierarchical analysis, in order to minimise the computational effort needed
to obtain a result. In particular, it is not clear if we should start by combining
strongly connected modules with the aim of obtaining good reductions at the
beginning, or if we should instead prefer the modules the most involved in the
formula of interest. Another prospect is to find the best form for the formula we
want to verify, in order too increase the efficiency of the reduction. Since we re-
quire equivalent states to be equivalent on every sub-formula, if we can minimize
the number of sub-formulae then we are likely to compute a better reduction.
For instance formula �a�true ∨ �b�true is equivalent to �a, b�true. However if one
state only has one outgoing transition labelled by a, and another state only has
one outgoing transition labelled by b, they will be equivalent w.r.t. the second
formula but not w.r.t. the first one.

So we believe that the current paper defines a framework that is suitable to
perform hierarchical analysis, but also that it is the starting point of a lot more
work to find suitable strategies for efficient analysis.

References
1. A. Aziz, T. Shiple, V. Singhal, R. Brayton, and A. Sangiovanni-Vincentelli. Formula-

dependent equivalence for compositional ctl model checking. Formal Methods in

System Design, 21(2):193–224, 2002.
2. S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Computer

Journal, 43(3):224–242, 2000.
3. K. Klai and L. Petrucci. Modular construction of the symbolic observation graph. In

Application of Concurrency to System Design, 2008. ACSD 2008. 8th International

Conference on, pages 88–97. IEEE, 2008.
4. K. Klai, L. Petrucci, and M. Reniers. An incremental and modular technique for

checking ltl\ x properties of petri nets. Formal Techniques for Networked and Dis-

tributed Systems–FORTE 2007, pages 280–295, 2007.

5. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983.

6. C. Lakos and L. Petrucci. Modular analysis of systems composed of semiautonomous
subsystems. In proc. of ACSD’04. IEEE Computer Society Press, 2004.

7. G. Lewis. Incremental specification and analysis in the context of coloured Petri

nets. PhD thesis, University of Tasmania, 2002.
8. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal

of Mathematics, 5(2):285–309, 1955.

A Proof of theorem 2

Theorem 2 can be rewritten using the property P defined, for any (p, f, r) ∈
2Q × 2Q × 2Q×Q, by P(p, f, r) holds iff (r \ (Q \ p)2 ⊆ p2 and r \ (Q \ f)2 ⊆ f2).

We want to prove that for any formula ϕ, we have P(Fϕ). Let us show that
this property is true for every base case and that it is preserved by the rules
used for building Fϕ.
Case FΣ,B. Take (x, y) in ∼B . We know that L(x) ⇒ B ⇔ L(y) ⇒ B . Then,

– if x (wlog) belongs to PassΣ
p,B then L(x) ⇒ B is true, and so is L(y) ⇒ B

which means that y is in PassΣ
p,B .

– if x belongs to FailΣ
f ,B then L(x) ⇒ B is false, and so is L(y) ⇒ B which

means that y is in FailΣ
f ,B .

Case FΣ,¬. Take (p, f, r) such that P(f, p, r). We then have P(FΣ,¬(p, f, r))
because FΣ,¬(p, f, r) = (f, p, r).

Case FΣ,∨. Take (p1, f1, r1) and (p2, f2, r2) such that P(p1, f1, r1) and P(p2,
f2, r2). We have FΣ,∨((p1, f1, r1), (p2, f2, r2)) = (p1 ∪ p2, f1 ∩ f2, r1 ∩ r2).

– for the first case we have (r1∩r2)\(Q\(p1∪p2))2 = (r1∩r2)\((Q\p1)2∩(Q\
p2)2) = (r1∩r2)\(Q\p1)2∪(r1∩r2)\(Q\p2)2 ⊆ r1\(Q\(p1))2∪r2\(Q\(p2))2 ⊆
p21 ∪ p22 ⊆ (p1 ∪ p2)2

– and for the second case (r1∩r2)\(Q\(f1∩f2))2 = (r1∩r2)\(Q\f1∪Q\f2)2 ⊆
(r1∩ r2)\ ((Q\f1)2∪ (Q\f2)2) ⊆ (r1∩ r2)\ (Q\f1)2∩ (r1∩ r2)\ (Q\f2)2 ⊆
r1 \ (Q \ f1)2 ∩ r2 \ (Q \ f2)2 ⊆ f2

1 ∩ f2
2 ⊆ (f1 ∩ f2)2

Case FΣ,�α�. Take (p, f, r) verifying P and note (p�, f �, r�)
df
= FΣ,�α�(p, f, r).

Then take (x, y) ∈ r�.

– If x ∈ PassΣ
p,�α�(p).

Exists x� ∈ p and a ∈ α ∩Aloc such that x
a−−−−−−−−→ x�.

Because (x, y) belongs to r�, we have y
a�
−−−−−−−−→ y� and (x�, y�) ∈ r. Since we

know that P(p, f, r), y� belongs to p too and y to PassΣ
p,�A�(p).

– If x ∈ FailΣ
f ,�α�(f).

• If x is in f then so is y because P(p, f, r) and r� ⊆ r. This is needed
when α ∩ Ex �= ∅.

• For all y a−−−−−−−−→ y� with a in α we have x
a�
−−−−−−−−→ x� with a� in α and (x�, y�)

in r. Because x ∈ FailΣ
f ,�α�(f) this means that every x� is in f . Then so

is every y�, and finally y ∈ FailΣ
f ,�A�(f).

Case FΣ,X . We only put in the environment values verifying P (see next
case).
Case FΣ,µX.ϕ1 .

– (PassΣ,µX.ϕ1 ,FailΣ,µX.ϕ1 , r0) with (x, y) ∈ r0 iff
1. x ∈ PassΣ

p,µX.ϕ1 and y ∈ PassΣ
p,µX.ϕ1 or

2. x ∈ FailΣ
f ,µX.ϕ1 and y ∈ FailΣ

f ,µX.ϕ1 or
3. both x and y belong to Q \ (FailΣ

f ,µX.ϕ1 ∪ PassΣ
p,µX.ϕ1)

verify P.
– FΣ,ϕ1 is a composition of the above functions, so it preserves proposition P.

B Proof of theorem 3

Let S
df
=

�
i∈I Si be a LTS , ϕ a formula and Σi environments we denote by

πϕ the product relation of the ∼Σi,ϕ
Si

, i.e., (x, y) is in πϕ iff (xi, yi) is in ∼Σi,ϕ
Si

for all i ∈ I. Let us define the property Pπ((p, f, r), Σ, {Σi|i ∈ I}, ψ) which
means: p = PassΣ

p,ψ, f = FailΣ
f ,ψ and πψ ⊆ r. We show that every base case

verify this property and that the various rules preserve it. The part of the prop-
erty about Pass and Fail can almost be obtained by construction so we do not
explicitly mention it in this proof.
Case FΣ,B. Take (x, y) in πP . For all i in I we have the following property:
Li(xi) ⇒ B ≡ Li(yi) ⇒ B. Now, we know that

�
I Li(xi) ⇒ B ≡

�
I Li(yi) ⇒ B

and therefore (x, y) ∈∼Σ,B . So we have Pπ(FΣ,B , Σ, {Σi|i ∈ I}, B).
Case FΣ,¬. Take (p, f, r) such that Pπ((p, f, r), Σ, {Σi|i ∈ I}, ϕ1). We have
Pπ(F¬(p, f, r), Σ, {Σi|i ∈ I},¬ϕ1) because F¬(p, f, r) = (f, p, r) and (Pass¬Ψ ,
Fail¬Ψ , π¬Ψ) = (FailΨ ,PassΨ , πΨ)

Case FΣ,∨. For any formulae ϕ1 and ϕ2, for any (p1, f1, r1) and (p2, f2, r2)
such that Pπ((p1, f1, r1), Σ, {Σi|i ∈ I}, ϕ1) and Pπ((p2, f2, r2), Σ, {Σi|i ∈ I},
ϕ2), we have Pπ(FΣ,∨((p1, f1, r1), (p2, f2, r2)), Σ, {Σi|i ∈ I}, ϕ1 ∨ ϕ2) because
FΣ,∨((p1, f1, r1), (p2, f2, r2)) = (p1∪p2, f1∩f2, r1∩r2) and (Passϕ1∨ϕ2 ,Failϕ1∨ϕ2 ,
πϕ1∨ϕ2) = (Passϕ1 ∪ Passϕ2 ,Failϕ1 ∩ Failϕ2 , πϕ1 ∩ πϕ2)

Case FΣ,�α�. Take (p, f, r) such that Pπ((p, f, r), Σ, {Σi|i ∈ I}, ϕ1).
Let us consider (x, y) in π�A�ϕ1 , it is indeed true that (x, y) ∈ πϕ1 . We now

have take into account three different possibilities.

– If exists i such that xi and yi are in Pass
Σp

i ,�A�ϕ1

i then x and y are in
PassΣ

p,�A�ϕ1 .
– The same goes for Fail.
– In the third case:

• Let us consider any x
a−−−−−−−−→ x� such that x� �∈ FailΣ

f ,ϕ1 and exists i ∈ I
such that a ∈ α ∩Afus

i , and let’s show that exists y� such that y
a−−−−−−−−→ y�

and (x�, y�) ∈ πϕ1 .
For every i in I:
∗ If a is in Afus

i : We have x[i]
a−−−−−−−−→ x�[i]. Because (x[i], y[i]) is in

∼Σ,�A�ϕ1

i and x�[i] �∈ Fail
Σf

i ,ϕ1

i , there exists y�i such that y[i]
a−−−−−−−−→ y�i

and (x�[i], y�i) ∈∼
Σi,ϕ1
i

∗ If a is not in Afus
i : We have x�[i] = x[i]. Let’s define y�i

df
= y[i]; we

then have (x�[i], y�i) ∈∼
Σi,ϕ1
i because (x�[i], y�i) ∈∼

Σi,�A�ϕ1

i

Now if y�[i] df
= y�i for all i, then y

a−−−−−−−−→ y� and (x�, y�) ∈ πϕ1 .
• Let us consider any x

a−−−−−−−−→ x� such that x� �∈ FailΣ
f ,ϕ1 and exists i ∈ I

such that a ∈ α ∩ Aloc
i . Let’s show that exists a� ∈ α ∩ Ain and y� such

that y
a�
−−−−−−−−→ y� and (x�, y�) ∈ πϕ1 .

∗ We know that we have x[i]
a−−−−−−−−→ x�[i], and a� ∈ (Aloc

i ∩ α) such that
y[i]

a�
−−−−−−−−→ y�i and (x�[i], y�i) ∈∼

Σ,ϕ1
i

∗ For j �= i, we define y�j
df
= y[j]

Now if y�[i]
df
= y�i for all i, we have y

a�
−−−−−−−−→ y� with a� ∈ (Aloc ∩ α) and

(x�, y�) ∈ πϕ1 .

For any of these cases, (x, y) belongs to the third component of FΣ,�α�(p, f, r)
so we have Pπ(FΣ,�α�(p, f, r), Σ, {Σi|i ∈ I}, �α�ϕ1)

Case FΣ,X . We only put in the environment values which verify Pπ(Σ, {Σi|i ∈
I}, X).
Case FΣ,µX.ϕ1 .

– Let us show that if (x, y) is in πµX.ϕ1 and one of them is in PassΣ
p,µX.ϕ1

(resp FailΣ
f ,µX.ϕ1) then so is the other. This means that we have the prop-

erty Pπ((p0, f0, r0), Σ, {Σi|i ∈ I}, µX.ϕ1), where (p0, f0, r0) is the the start-
ing point of the iteration. In order to do this we build the tuple (p, f, r) by
iterating FΣ,ϕ1 starting from (∅, Q,Q2). We then have p = PassΣ

p,µX.ϕ1 ,
f = FailΣ

f ,µX.ϕ1 and r ⊇ πµX.ϕ1 (This is the same proof we are currently
doing, but with an easier base case). We can reuse the proof of theorem 2
(similarly, only the base case is different) to show that if (x, y) ∈ r and one
of them is in PassΣ

p,µX.ϕ1 (resp FailΣ
f ,µX.ϕ1) then so is the other. So the

property Pπ(Σ0(X), Σ0, {Σ0
i |i ∈ I}, X) is true with:

• Σ0 df
= Σ[X ← (p0, f0, r0)] and

• Σ0
i

df
= Σi[X ← (PassΣi,µX.ϕ1 ,FailΣi,µX.ϕ1 ,∼Σi,µX.ϕ1

i)] for all i.

– Fϕ1 is a composition of the previous functions. Therefore if the property
Pπ(Σn(X), Σn, {Σi|i ∈ I}, X) is true, then we have Pπ(FΣn,ϕ1 , Σn, {Σi|i ∈
I}, ϕ1) , which can be rewritten as Pπ(Σn+1(X), Σn+1, {Σi|i ∈ I}, X) where
Σn+1 = Σn[X ← FΣn,ϕ1]. By recurrence, the property is true for any n.

