GWW 2011

Interoperability of the BIS-Grid Workflow Engine with

Globus Toolkit 4
Guido Scherp! and Wilhelm Hasselbring !

!Software Engineering Group, University of Kiel, 24098 Kiel, Germany

ABSTRACT

In the D-Grid project BIS-Grid we developed the BIS-Grid Workflow
Engine in order to utilize a common WS-BPEL workflow engine for
scientific workflow execution in WSRF-based Grid infrastructures.
The BIS-Grid Workflow Engine itself is built on the Grid middleware
UNICORE 6 to benefit from its security mechanisms and to
automatically gain interoperability with UNICORE 6-based Grid
infrastructures. As beside UNICORE 6 the Grid middleware Globus
Toolkit 4 is prevalent in the D-Grid infrastructure, we decided to
examine the interoperability of the BIS-Grid Workflow Engine with
Globus Toolkit 4.

The interoperability with Globus Toolkit 4 concerns basically the
support of its Grid Security Infrastructure (GSI) by UNICORE 6. In
this paper we describe to what extend GSI is already supported by
UNICORE 6 and what is missing. We furthermore give some details
about our implementation for the BIS-Grid Workflow Engine to allow
Globus Toolkit 4 service invocations within a WS-BPEL workflow
execution.

Contact: gusch@informatik.uni-kiel.de

1 INTRODUCTION

In BIS-Grid!, a project within the German Grid initiative D-
Grid, we developed the so called BIS-Grid Workflow Enginez,
which utilizes the Web Services Business Process Execution
Language (WS-BPEL)[12], a widely accepted standard for service
orchestrations, to execute scientific workflows in WSRF[11]-based
Grid infrastructures. Mainly due to a lack of supported security
mechanisms, common WS-BPEL workflow engines are usually
not interoperable with Grid middleware and Grid clients. Thus,
we implemented a Grid wrapper for arbitrary WS-BPEL workflow
engines through specific BIS-Grid-specific services for the Grid
middleware UNICORE 6, see Figure 1. Based on this architecture
we were able to use solely standard WS-BPEL elements for
workflow execution that in principle allows a free choice of any
WS-BPEL compliant workflow engine. Furthermore, the BIS-Grid-
specific services in UNICORE 6 that wrap a WS-BPEL workflow
engine could be implemented by solely using UNICORE 6 built-in
mechanisms.

The BIS-Grid-specific services are mainly implemented as
stateful WSRF services in which a state is represented by a WSRF
instance. For this paper it is sufficient to know that for each
workflow execution one WSREF instance is located in UNICORE 6

! http://www.bisgrid.de
2 http://bis-grid.sourceforge.net/

UNICORE 6 ActiveBPEL

{]
) X | UNICORE Atomic Services 1
compute jobs / file transfers | :

[| é

! &

[! =

uses | 1 g

: BIS-Grid-specific services 1 =

T] =

workflow deployment / execution | ' 'E_

&5

| =

1 ‘ 2

uses | ! s

| other UNICORE 6 services : ag,

‘ 8
777777777777777 \ A]
! - !
} \ other UNICORE 6 services \] }

Fig. 1. General Architecture of the BIS-Grid Workflow Engine

-
eta | o 3 |) GT4
client — - — service
=ENGiNE

Fig. 2. Aspects regarding GT4 interoperability by the BIS-Grid Workflow
Engine

and one corresponding WS-BPEL workflow instance in the WS-
BPEL workflow engine. It is technically assured that incoming and
outgoing messages within a workflow execution are automatically
mapped to and handled by the correct WSRF instances and
corresponding WS-BPEL workflow instances. For more details
about the BIS-Grid Workflow Engine architecture and the handling
of instances please refer to [7, 8].

The decision to built on UNICORE 6 enables the BIS-Grid
Workflow Engine to execute scientific workflows in UNICORE 6-
based Grid infrastructures. As the Grid middleware Globus
Toolkit 4 (GT4) is also a prevalent middleware in the D-Grid
infrastructure, we decided to extend the BIS-Grid Workflow Engine
respectively UNICORE 6 by the interoperability with GT4. Both
Grid middleware provide (WSRF) services built on similar SOAP
stacks and service containers, but they differ in the applied
security mechanisms. Thus, establishing the interoperability with
GT4 comes with the need that UNICORE 6 supports its security
mechanism called Grid Security Infrastructure (GSI). Therefore,
two interoperability aspects have to be considered, see Figure 2.
First, the invocation of services deployed in UNICORE 6 by a GT4
client. Second, the invocation of GT4 services within a workflow
execution. We decided in BIS-Grid to focus on the second aspect
mainly due to its major relevance compared to the first aspect and
its less effort required for implementation.

Copyright © 2011 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. 1

Guido Scherp and Wilhelm Hasselbring

Message-
Message-level Message-level Transport-level

Security Security Securit
Y& wiUsernames and ~ v
WiX.509 Credentials P biiords WiX.509 Credentials
Authorization SAML and grid-mapfile SAML and
grid-mapfile grid-mapfile
X508 Proxy
Delegation NS Certificates/ WS-
51
Authentication X509 End Entity Username. X.509 End Entity
" Certificates Password Cenificates
Message WS-Security
Protection WS-SecureConversation WS-Security s
Message format SOAP SOAP SOAP

Fig. 3. Overview of GSI (from [14])

Fig. 4. Chain of
http://www.globus.org/security/overview.html)

Proxy Certificates (from

In Section 2 we give a brief introduction into GSI. Details about
GSI support in UNICORE 6 and our reasons to focus on GT4
service invocations within a workflow execution are discussed in
Section 3. Implementation details to enable GT4 service invocations
in the BIS-Grid Workflow Engine are presented in Section 4.1. After
discussing related work in Section 5 we conclude the paper with an
outlook to future work in Section 6. Additional details about GT4
interoperability in the BIS-Grid Workflow Engine can also be found
in [9].

2 GRID SECURITY INFRASTRUCTURE

Security in Globus Toolkit 4 is based on the so called Grid
Security Infrastructure (GSI) which itself utilizes many existing
security standards, see Figure 3. It provides three kinds of message
protection, based on WS-Security, WS-SecureConversation and
Transport Layer Security (TLS)?, in which different mechanisms
for authentication, authorization and delegation are supported,
Delegation utilizes so called X.509 proxy certificates. Technically, a
proxy certificate is a self-signed certificate which is initially derived
from a personal X.509 end entity (user) certificate (EEC) issued by
a trusted certificate authority (CA). Such a (first) proxy certificate
allows the creation of an arbitrary number of succeeding proxy
certificates, see Figure 4.

A proxy certificate is used as an user’s authentication credential
that can be delegated to a GT4 resource allowing it to act on behalf
of an user using its identity. Proxy certificates have the advantage
that the private key of a user certificate is always kept locally,
but proxy certificates lacks of a revocation mechanism. Thus, a
proxy certificate has usually a short lifetime to minimize misuse
in case of its interception. Finally, to allow a basic management
of delegated credentials GT4 provides a delegation service. For
additional information about GSI, please refer to [14].

3 Also known as Secure Sockets Layer (SSL)

3 GSI SUPPORT IN UNICORE 6

As already mentioned, GT4 interoperability in the BIS-Grid
Workflow Engine implies to support GSI by UNICORE 6. Thereby,
the following interoperability aspects are relevant.

1. GT4 client: A GT4 client invokes a service of the BIS-Grid
Workflow Engine respectively UNICORE 6.

2. GT4 service invocation: The BIS-Grid Workflow
Engine respectively UNICORE 6 invokes a GT4 service
(within a workflow execution).

Thus, the technical issues concerning the two interoperability
aspect are:

e Support of WS-Security, WS-SecureConversation and TLS for
message protection.

e Support of proxy certificates for delegation.

e Support of the GT4 delegation service for credential
management respectively proxy certificate management.

e Support of SAML and grid-mapfile for authorization.

The UNICORE 6 security stack is based on standard X.509
certificates and TLS. Support of WS-SecureConversation and proxy
certificates for message protection and delegation, for example,
are not covered by UNICORE 6 security mechanisms. However,
a UNICORE 6 client can generate a proxy certificate which is
added to the header of a SOAP message. This proxy certificate
is extracted from the SOAP message within UNICORE 6 and
attached to the corresponding internal WSREF instance. It is obvious
that central authentication and delegation mechanisms of GSI are
not supported by UNICORE 6. And it needs no further technical
details to conclude that supporting the first interoperability aspect
(GT4 client) results in a major refactoring and extension of the
UNICORE 6 security stack. Consequently, we skipped that aspect
mainly due to limited project resources. But we can utilize the
UNICORE 6 mechanism to create and store proxy certificates in the
second interoperability (GT4 service invocation) aspect,
which is described in the following.

Regarding the second interoperability aspect (GT4 service
invocation) the BIS-Grid Workflow Engine respectively
UNICORE 6 acts as a GT4 client. Generally, a GT4 client must
support GSI message protection mechanisms as well as proxy
certificates*. GT4 already offers client libraries to invoke a GT4
service. Thus, in our approach we built on those GT4 client libraries
when a GT4 service has to be invoked within a workflow execution.
The needed proxy certificate can be fetched from the internal WSRF
instance of the workflow execution, which was previously attached
by a UNICORE 6 client. As the invocation of GT4 services within
the BIS-Grid Workflow Engine has a major relevance for the project
and its implementation effort is significantly less than to support
GT4 clients, we implemented this approach. Implementation details
are described in the following Section.

4 The support of the GT4 delegation service and grid-mapfile is located on
the Grid middleware side. SAML assertions are omitted as they are generally
not supported in the D-Grid infrastructure.

Interoperability of the BIS-Grid Workflow Engine with Globus Toolkit 4

3id
ENGINE

Unicore
Service

SOAPSerializerHandler
BpelldentifierRerievalHandler

OutMessalgeSender

Fig. 5. Default UNICORE 6 handler chain of the BIS-Grid Workflow
Engine (from [9]).

B

[EX]
@ e

&

(] KeystoraD sscrptiontype.

@ Keystorasalaction Keystores lactiontyps

L] string

)

Y [8] CredentisDalzgation string [1] string

[2] GSICarfigurstion GSIConfigurationiyps [L1] string

[L1] string

orerie f1.a1 sting
orepazamord 1111 string
oretupe [vy
utherticated [L1] boolean
bied (1.1 boslean

Fig. 6. Credential description in the BIS-Grid Deployment Descriptor (from
[9D.

4 INVOCATION OF GLOBUS TOOLKIT 4
SERVICES WITHIN THE BIS-GRID WORKFLOW
ENGINE

Incoming and outgoing messages are processed in UNICORE 6
through handler chains. Such a handler chain can be modified during
runtime, which allows a flexible message handling for receiving and
sending messages. The BIS-Grid Workflow Engine has a default
outgoing handler chain to invoke external UNICORE 6 services®,
see Figure 5. The default handler chain is modified at runtime to
invoke an external GT4 service, which is described in Section 4.1.
This GT4 handler chain was further extended to support the GT4
delegation service, which is described in Section 4.2.

The configuration of external service invocations and its
credentials is located in the so called BIS-Grid Deployment
Descriptor. Figure 6 depicts the configuration of credentials. This
information is used to distinguish between an external UNICORE 6
service and an external GT4 service invocation and to use the correct
credentials. For more details about the BIS-Grid Deployment
Descriptor and especially the configuration of external GT4 service
invocations, please refer to [8, 9].

4.1 GT4 handler chain

The default handler chain of the BIS-Grid Workflow Engine ends
with the handler OutMessageHandler, see Figure 5. This
handler supports TLS and X.509 certificate based authentication
and is responsible for the invocation of an external UNICORE 6

3id
ENGINE

Globus
Service

SOAPSerializerHandler
BpelldentifierRerievalHandler

AxisMessigeSender

GSSHandler
SeConteJtHandler
UsernamIeHandler
XSOQS\g!Handler

><509Encrylpmandler

Fig. 7. GT4 handler chain (from [9]).

service. For a GT4 service invocation the OutMessageHandler
is exchanged by the so called AxisMessageHandler atruntime.
Its name indicates that the GT4 SOAP stack is based on Axis®.
The AxisMessageSender uses the Java GT4 client libraries to
configure and execute a GT4 service invocation. Furthermore, the
GT4 client libraries itself uses a GSI specific Axis client handler
chain, see Figure 7.

Even if UNICORE 6 and GT4 have different security concepts,
both implementations are based on some standard Java libraries as
WSS4J and XMLSec, but in different and incompatible version.
This library version conflicts prevents running both handler chains
in one Java virtual machine. Therefore, we implemented two
solutions to avoid this conflict. In the first solution we implemented
a Java classloader that replaces the default Java class loader in the
GT4 handler chain starting with the AxisMessageHandler. In
the second solution the AxisMessageHandler uses an RMI call
to invoke the GT4 specific part of the GT4 handler chain running
in its own Java virtual machine. The Java virtual machine for the
corresponding RMI server is started and stopped by an additional
section in the UNICORE 6 start-stop-script.

4.2 Support of Globus Toolkit 4 Delegation Service

In order to allow a more flexible delegation mechanism GT4
offers a delegation service for basic credential management. A
credential is usually represented by a proxy certificate. Technically,
the delegation service is implemented as stateful WSRF service.
Each delegated proxy certificate is attached to one WSREF instance
identifiable by an unique resource key. This resource key can be
used, for example, to reference a credential respectively a proxy
certificate used for data staging activities in a job submission. If the
WSREF instance is destroyed the corresponding proxy certificate is
deleted, too.

As first step we examined how the mechanisms works to delegate
a proxy certificate as credential via the GT4 delegation service. For
this reason we executed a job submission including file staging via
the GT4 command line tool globusrun-ws with enabled debug
mode and analyzed the exchanged SOAP messages. Furthermore,

5 Standard web services are supported, too.

6 http://axis.apache.org/axis/

Guido Scherp and Wilhelm Hasselbring

GT4 GT4
DelegationFactoryService ManagedJobFactoryService

]

|
getRP: (staging)delegationFactoryEndpoint
<<

getRP: CertificateChain
<CertificateChain>

I
questSecurityToken: <new proxy cert>
D

]

CreateManagedJob: ... <DelegationKey>

iy gy |

Fig. 8. Utilization of the GT4 delegation service in a job submission.

we inspected the source code of globusrun-ws. A proxy
certificate derived from a user certificate was previously generated
with the GT4 command line tool grid-proxy-init. Regarding
the delegation service we identified the following mechanism, cp.
Figure 8:

1. The WSRF resource property delegationFactory-—
Endpoint of the GT4 job submission service called
ManagedJobFactoryService is fetched to get the
endpoint for the associated GT4 delegation (factory) service
called DelegationFactoryService.

2. The endpoint for the DelegationFactoryService is
used to get the WSRF resource property Certificate—
Chain. In our case the host certificate of the GT4 resource
was returned.

3. The proxy certificate of the user is used to generate a new proxy
certificate signed with the public key of the host certificate.

4. The new proxy certificate is delegated to the GT4 resource via
the DelegationFactoryService. It returns the resource
key DelegationKey, which identifies the corresponding
WSRF instance. The DelegationKey is automatically
added to the job description as credential reference, before the
job is submitted via the ManagedJobFactoryService.

5. After the job execution is finished the delegated proxy
certificate is deleted by destroying the corresponding WSRF
instance.

Each WS-BPEL workflow engine is capable to create and handle
the SOAP messages exchanged in this scenario. But to the best of
our knowledge no existing WS-BPEL workflow engine supports
the generation of proxy certificates as described above. Thus,
we developed a solution to locate the proxy generation into the
GT4 handler chain. We assume that a proxy certificate were
previously attached to the corresponding WSRF instance of the
workflow execution. Based on the WS-BPEL workflow perspective
to following mechanism is applied:

1. The WS-BPEL workflow fetches the WSRF resource property
delegationFactoryEndpoint of the ManagedJob-
FactoryService.

2. The WS-BPEL workflow fetches the WSRF resource
property CertificateChain respectively the host
certificate from the corresponding Delegation-—
FactoryService by using dynamic binding based on
the delegationFactoryEndpoint.

3. The WS-BPEL workflow
FactoryService with the host
credential.

4. The GT4 handler chain of the BIS-Grid Workflow Engine
detects the invocation of a GT4 delegation service and
generates a new proxy certificate based on the proxy certificate
from the WSRF instance and signed with the public key of
the host certificate in the SOAP message. Afterwards, the host
certificate in the SOAP message is replaced by the new proxy
certificate.

5. The GT4 handler chain uses the modified SOAP message for
the invocation of the DelegationFactoryService to get
the DelegationKey which is returned to the WS-BPEL
workflow.

6. The WS-BPEL workflow adds the DelegationKey to the
job description as credential reference and submits the job to
the ManagedJobFactoryService.

7. The WS-BPEL workflow deletes the delegated proxy certificate
by destroying the corresponding WSRF instance after the job
execution is finished.

invokes the Delegation-
certificate as

This approach allows a flexible management of delegated proxy
certificates as credentials within a WS-BPEL workflow whereas the
point of delegating or destroying a credential can be chosen by the
workflow designer.

5 RELATED WORK

The general suitability for WS-BPEL to execute scientific
workflows, especially in WSRF-based infrastructures, is shown in
several publications [15, 4, 16, 5, 10, 13, 1, 2, 3]. Regarding the
complexity to invoke stateful WSRF services some approaches as
[15, 10, 2, 3] suggest extensions to WS-BPEL’ or its predecessor
BPEL4WS. Consequently, both a WS-BPEL/BPEL4WS workflow
editor and a WS-BPEL/BPEL4WS workflow engine must be
provided that supports those language extensions. A language
extension for BPEL4WS, for example, is presented in [2, 3] that
allows the invocation of stateful, WSRF-based GT4 services. To
support these new language elements an existing workflow editor
and workflow engine were extended. This approach hampers a
migration to newer versions of the workflow editor or workflow
engine. However, we reused the solution to utilize the GSI specific
Axis client handler chains of the GT4 client libraries for GT4 service
invocations.

7 The standard provides an extension mechanism to define language
extensions.

Interoperability of the BIS-Grid Workflow Engine with Globus Toolkit 4

In [6] the utilization of conventional workflow technology as WS-
BPEL for scientific simulations is discussed. A discussion about the
interoperability with GSI is not included.

To the best of our knowledge, no comparable solution exists to
invoke the GT4 delegation service within WS-BPEL.

6 CONCLUSION AND FUTURE WORK

In this paper we discussed the interoperability of the BIS-Grid
Workflow Engine with the Grid middleware Globus Toolkit 4 (GT4)
which results in a discussion about how to enable UNICORE 6 to
support the Grid Security Infrastructure (GSI) used in GT4. For
this reason we examined the use of GT4 clients and the invocation
of GT4 services. Due to its major significance and less effort in
realization we implemented a solution for the BIS-Grid Workflow
Engine that allows the invocation GSI-secured GT4 services within
WS-BPEL as well as the delegation of proxy certificates via the GT4
delegation service.

Currently, we use the recommended lifetime (about 11 days)
when a new proxy certificate is generated for credential delegation.
We intend to allow an arbitrary proxy certificate lifetime based on
additional information added to the SOAP message beside the host
certificate when the GT4 delegation service is invoked.

REFERENCES

[1]Asif Akram, David Meredith, and Rob Allan. Evaluation of BPEL to Scientific
Workflows. In CCGRID ’06: Proceedings of the Sixth IEEE International
Symposium on Cluster Computing and the Grid, pages 269-274, Washington,
DC, USA, 2006. IEEE Computer Society.

[2]Tim Dornemann, Thomas Friese, Sergej Herdt, Ernst Juhnke, and Bernd
Freisleben. Grid Workflow Modelling Using Grid-Specific BPEL Extensions.
2007.

[3]Tim Dornemann, Matthew Smith, and Bernd Freisleben. Composition and
execution of secure workflows in wsrf-grids. Cluster Computing and the Grid,
IEEE International Symposium on, 0:122-129, 2008.

[4]Wolfgang Emmerich, Ben Butchart, Liang Chen, Bruno Wassermann, and Sarah
Price. Grid Service Orchestration Using the Business Process Execution Language
(BPEL). Journal of Grid Computing, 3(3-4):283-304, September 2005.

[5]Onyeka Ezenwoye, S. Masoud Sadjadi, Ariel Cary, and Michael Robinson.
Orchestrating WSRF-based Grid Services. Technical report, School of Computing
and Information Sciences, Florida International University, April 2007.

[6]Katharina Gorlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and
Michael Reiter. Conventional Workflow Technology for Scientific Simulation,
pages 1-31. Guide to e-Science. Springer-Verlag, Mirz 2011.

[7]1Stefan Gudenkauf, Felix Heine, Andre Hoing, Jens Lischka, Holger Nitsche, and
Guido Scherp. BIS-Grid Deliverable 3.1: Specification. Technical report, BIS-
Grid, December 2007.

[8]Stefan Gudenkauf, Andre Hoing, Dirk Meister, Holger Nitsche, and Guido
Scherp. BIS-Grid Deliverable 3.4: Final Version of the WS-BPEL Engine.
Technical report, BIS-Grid, May 2009.

[9]Stefan Gudenkauf, Andre Hoing, and Guido Scherp. BIS-Grid Deliverable 3.5:
GT#4 interoperability. Technical report, BIS-Grid, April 2010.

[10]Frank Leymann. Choreography for the Grid: towards fitting BPEL to the resource
framework: Research Articles. Concurr. Comput. : Pract. Exper., 18(10):1201-
1217, 2006.

[11]OASIS. Web services resource framework (wsrf). http://www.oasis-
open.org/committees/wsrf/.

[12]OASIS. Web Services Business Process Execution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html, 04 2007.

[13]Wei Tan, Liana Fong, and Norman Bobroff. BPEL4Job: A Fault-Handling Design
for Job Flow Management. In ICSOC '07: Proceedings of the 5th international
conference on Service-Oriented Computing, pages 27-42, Berlin, Heidelberg,
2007. Springer-Verlag.

[14]The Globus Security Team. Globus toolkit version 4 grid security infrastructure:
A standards perspective. Technical report, 2005.

[15]Yong Wang, Chunming Hu, and Jinpeng Huai. A New Grid Workflow Description
Language. In SCC '05: Proceedings of the 2005 IEEE International Conference
on Services Computing, pages 257-260, Washington, DC, USA, 2005. IEEE
Computer Society.

[16]Bruno Wassermann, Wolfgang Emmerich, Ben Butchart, Nick Cameron, Liang
chen, and Jignesh Patel. Sedna: A BPEL-Based Environment for Visual Scientific
Workflow Modeling, chapter 0, pages 427-448. Springer, 2006.

