USENIX Association

Proceedings of the
6" USENIX Conference on Object-Oriented
Technologies and Systems
(COOTS'01)

San Antonio, Texas, USA
January 29 - February 2, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Content-Based Publish/Subscribe with Structural Reflection®

Patrick Th. Eugster

Rachid Guerraoui

Communication Systems Department
Swiss Federal Institute of Technology, Lausanne
{Patrick.Eugster, Rachid.Guerraoui}@epfl.ch, http://www.d-a-c-e.com

Abstract

This paper presents a pragmatic way of implement-
ing content-based publish/subscribe in a strongly
typed object-oriented language. In short, we
use structural reflection to implement filter ob-
jects through which applications express their sub-
scription patterns. Our approach is pragmatic in
the sense that it alleviates the need for any spe-
cific subscription language. It preserves encapsu-
lation of message objects and helps avoiding er-
rors. We illustrate our approach in the context of
Distributed Asynchronous Collections (DACs), pro-
gramming abstractions for message-oriented inter-
action. DACs are implemented in Java, whose in-
herent reflective capabilities fully satisfy the require-
ments of our content-based subscription scheme.
Our approach is however not limited to the context
of DACs, but could be put to work easily in other
existing event-based systems.

1 Introduction

Publish/subscribe in perspective. The im-
portance of flexible, well-structured, but especially
scalable communication mechanisms has been dras-
tically increasing in the last decade. Applications
tend to become very dynamic, i.e., components are
not always up and are not locality-bound. These
constraints visualize the demand for more flexible
communication models, reflecting the nature of to-
morrows applications. The publish/subscribe inter-
action style has proven its ability to fill this gap.
Based on the concept of information bus [OPSS93],
publish /subscribe promotes the decoupling of par-

*This work is partially supported by Agilent Laboratories
and Lombard Odier & Co.

ties in time as well as space:! consumers subscribe

to the information bus by specifiying the nature of
the information they are interested in, and produc-
ers publish information on that bus.

The classical topic-based or subject-based pub-
lish/subscribe style involves a classification of
the information by introducing group-like notions
[Pow96], and is incorporated by most industrial
strength solutions, e.g., [Cor99, TIB99, Ske98,
AEM99]. Topics are however static and allow only
a limited ezpressiveness [Car98]. More recently, re-
search efforts have been targeted towards content-
based (property-based [RW9T7]) publish/subscribe
schemes [Car98, SA97, BCM199]. This more flexi-
ble variant removes entirely the “arbitrary” division
of the information space, and lets consumers delin-
eate their individual interests by expressing proper-
ties of messages they wish to receive.

Current practice. Common event-based sys-
tems relying on the content-based publish /subscribe
paradigm equate properties of messages to attributes
of those messages. In most cases, a subscription lan-
guage is used to express ranges of values for those at-
tributes, which violates object encapsulation: a sub-
scription pattern 2 expressed with such a subscrip-
tion scheme exposes the message’s state, and the
resulting filter queries messages by accessing their
attributes. Furthermore, subscription languages can
not, be extended or customized by the application
developer, they are orthogonal and redundant with
the programming language,® and they are very er-

1Time decoupling: the interacting parties do not need to
be up at the same time. Space decoupling: the interacting
parties do not need to know each other.

2In [Car98], the notion of pattern is used in a different
sense, namely to express event-correlation: a notification is
triggered upon arising of a combination of several elementary
events.

3A similar mismatch has been largely discussed in the do-
main of object-oriented databases, where two separate lan-
guages coexist; one for the definition of data and another one
for the gquerying of data [BZ87].

ror prone: syntax errors violating the subscription
grammar are only seized at runtime when a pattern
is parsed, just like syntaxically correct constraints
based on badly written attributes.

Filter library. Owur approach which has been
realized in the context of DISTRIBUTED ASYN-
CHRONOUS COLLECTIONS (DACs) [EGS00a] sim-
ple JAVA programming abstractions which encom-
pass different message-oriented interaction styles
avoids any subscription language, and respects en-
capsulation. It promotes the expression of sub-
scription patterns by combining general-purpose fil-
ter objects. These filter objects preserve encapsu-
lation by querying message objects through meth-
ods which are dynamically defined by the applica-
tion, along with the semantics of the evaluation of
the invocation results. The subscription grammar
is inherently expressed through the resulting API,
which strongly reduces the number of runtime er-
rors. Filters are thus pictured as first class citizens,
and their implementation relies on structural reflec-
tion [Coi87] of the message objects.

Structural reflection. As pointed out in
[Fer89], there are mainly two kinds of reflection.
The computational (behavioral) reflection is con-
cerned with the reification of computations and
their behaviour. In contrast, structural reflection
reifies the structural aspects of a program, such as
data types.

As we will show in this paper, structural reflection
can be used to express subscription patterns in
content-based publish/subscribe the same way
it has already been used in object-oriented data
management systems to express object queries
(e.g., [SO95]). In our particular context, structural
reflection can be reduced to a single aspect: the
capability of representing structures of objects.
This is sufficient to dynamically define the methods
that our filters must use to query message objects.
The introspection capabilities of JAvA [Sun99a]
offer sufficient support for this, and the possibility
of modifying data structures is not required.

Contributions. This paper presents how we have
realized content-based publish/subscribe in our
DAC framework for distributed computing, which
is implemented in JAvA on UNix. We illustrate how
our approach (1) circumvents the need for any sub-
scription language, (2) preserves object encapsula-

tion, and (3) helps avoiding type errors. We discuss
the flexibility /performance trade-off introduced by
our use of reflection by outlining the optimizations
we have applied, such as runtime generation of static
code from dynamically defined filters.

Roadmap. This paper is structured as follows:
Section 2 overviews the limitations of existing ap-
proaches to expressing content-based subscription
patterns. Section 3 presents our approach to
content-based publish/subscribe based on structural
reflection. In Section 4 we illustrate the use of our
subscription scheme through a small example. Sec-
tion 5 discusses performance issues. Section 6 high-
lights alternative approaches. Section 7 concludes
with final remarks.

2 Approaches to Content-Based
Publish/Subscribe: Background

Content-based publish/subscribe removes limita-
tions of the static topic-based flavor, but suffers
from the dynamism it introduces. Besides making
the reuse of existing multicast primitives problem-
atic [OAAT00], content-based publish/subscribe is
hard to express in an object-oriented setting. In
this section, we illustrate the latter difficulty by
outlining the limitations of existing content-based
schemes.

2.1 Subscription Languages

In content-based publish/subscribe, subscription
languages are the most commonly used means of
describing subscription patterns. Such languages
can be based directly on the attributes of the de-
scribed objects or on additional properties attached
to those objects. By viewing asynchronous invoca-
tions as events, the arguments of such invocations
can be used as matching criteria.

Attributes. In systems like SIENA [Car98],
ELvIN [SA97] or GrypHON [BCM'99, SBS98]*
event notifications are viewed as flat structures,

4In GRyYPHON, reflection is also used ([SBS98]), but not
for the expression of subscription patterns: the GRYPHON
system uses the same information dissemination mechanisms

i.e., records with several fields. A subscription lan-
guage is used to impose ranges of values for those
fields. Figure 1 outlines this concept schematically.
Relying on attribute-value pairs enables very effi-
cient realizations, since computational overhead is
reduced by directly accessing attributes. This ap-
proach however bears several dangers:

Violation of object encapsulation: In the example
outlined in Figure 1, the from attribute is used
as subscription criterion, and is consequently di-
rectly accessed when the object is queried.

Errors: Syntax errors violating the subscription
grammar are only seized once a pattern is parsed,
i.e., at runtime. Another more malign type of
errors result from badly typed attribute names.
Subscription patterns containing such errors do
not violate the syntax grammar, and might re-
main undetected without type checks.

Learning phase: Subscription syntaxes are often
very complex and used with a single pub-
lish /subscribe middleware. This reduces porta-
bility of applications.

To increase portability of applications some en-
gines implement standardized APT’s like the OMG’s
CORBA NOTIFICATION SERVICE [OMGO0], which
repairs certain lacks [SV97] of the CORBA EVENT
SERVICE [OMG98]. Among the new features in
[OMGO0] are a content-based subscription scheme
based on a simplified kind of typed events, replac-
ing the typed events of the ancestor. These struc-
tured events are roughly composed of two types of
fields, namely (1) fixed fields and (2) variable fields
consisting of nmame-value pairs, to which applica-
tions map their specific needs. The fields of mes-
sages are seen as their attributes and are directly
accessed through filter objects for content-based fil-
tering — violating encapsulation. Patterns are ex-
pressed by strings following the DEFAULT FILTER
CONSTRAINT LANGUAGE, a complex subscription
language which extends the TRADER CONSTRAINT
LANGUAGE.

Properties. The SUN counterpart to the
CORBA NOTIFICATION SERVICE is the JAVA
MESSAGE SERVICE (JMS) API [HBS98]. The
JMS covers topic-based publish/subscribe

it offers to applications (which is its primary concern) for
internal protocol communication.

Message m public class ChatMsg {

public String from;

}
Criteria “message sent by Tom”
Argument String criteria = "from is Tom";
Evaluation m.from.equals("Tom")

Figure 1: Subscription Language

(all-of-n) as well as message queuing (one-of-
n) [BHL95, DEC94, Sys00, Mic97]. Content-based
filters can be applied with both interaction schemes.
The filtering is based on attributes of the message
headers, and on properties (name-value pairs),
which are explicitly attached to message objects.
Subscription patterns are expressed as JAVA strings.
The specification includes a subscription grammar
that these strings must respect.

Properties explicitly attached to message objects
are artificial and in practice strongly redundant
with the information carried by those objects. In
many cases, the properties are faithful duplicates of
the attributes of the message objects, which leads
to violating encapsulation.

Arguments. MICROSOFT’s COM+ [Obe00] pro-
motes a model similar to the abandoned typed
model of the CORBA EVENT SERVICE. Asyn-
chronous invocations are viewed as events, but lat-
ter ones are not reified. The primary filtering is
thus made on the types of the subscribers, as illus-
trated by Figure 2. By viewing an invocation as an
event, the invocation arguments can be viewed as
the attributes of the resulting notification. Filters
in COM+ are expressed on invocation arguments
through a limited subscription grammar. Encapsu-
lation seems to be preserved by avoiding the reifica-
tion of events.

Subscriber s | public class Chatter {

public void in(String from, ...);
Criteria “message sent by Tom”
Argument String criteria = "from is Tom";
Evaluation from.equals("Tom")

Figure 2: Events vs. Invocations

2.2 Template Objects

The JAVASPACE specification [Sun99b] (inspired by
LinDA’s TUPLE SPACE [Gel85]) adopts an approach
based on template objects.

When subscribing to a JAVASPACE, a subscriber
provides a template object t. A message object m
is only delivered to that subscriber if m conforms to
the type of t, and if every attribute of t which is not
null references an object equal to the corresponding
attribute of m (cf. Figure 3). Equality is tested by
comparing byte-wise the two objects in marshalled
form. As shown by [FHA99], this approach repre-
sents a very convenient subscription scheme which
can be put to work easily. However, encapsulation
is violated, and there are certain limitations in ex-
pressiveness:

Limited comparisons: Attributes are compared for
strict equality, and it is not straightforward to
express a range (discrete or not) of possible values
for an attribute.

Limited granularity: In JAVA, an attribute can ref-
erence an object, which itself has attributes, etc.
Attributes of JAVASPACE entries are however
matched as a whole. This limitation is also found
with most of the previous approaches based on
subscription languages.

Limited combinations: By providing a template ob-
ject t, a subscriber will receive every object m
whose attributes all match the attributes of t.
It is thus difficult to express alternatives (or) on
different attributes.

Limited values: Since null is chosen to play the role
of wildcard, attributes can not be of native types,
and null can not be easily used as a concrete
value for an attribute. For each such attribute
[Sun99c] proposes to add an additional boolean
attribute to indicate a null value.

3 Reflection-Based
Publish/Subscribe

In this section we present our approach to specifying
content-based subscription patterns. It is based on
structural reflection of message objects and avoids
limitations stated in the previous section.

Message m public class ChatMsg {

public String from;

}

Criteria “message sent by Tom”

Argument ChatMsg mt = new ChatMsg();
t.from = "Tom";

Evaluation m.from.equals(t.from)

Figure 3: Template Object

3.1 Overview

Roughly spoken, the application programmer de-
fines conditions on message objects, by specify-
ing methods through which these objects should be
queried, along with expected wvalues that are com-
pared to the values returned by invoking these meth-
ods.

Subscription patterns are expressed through an
API, which inherently expresses a subscription
grammar: by instantiating and combining filter ob-
jects, syntax errors violating the grammar are de-
tected by the JAVA compiler. Thanks to the struc-
tural reflection of message objects, type errors are
avoided by verifying the methods specified by the
application.

In the following, we present our customizable fil-
ter objects, called conditions. These enable the dy-
namic definition of conditions on message objects,
and are realized in a general manner through acces-
sors, which we introduce first.

3.2 Accessors

Accessors are specific objects used to access partial
information on the runtime message objects.

Querying objects. Informally, an accessor A
is characterized by a set of tupless A =
((My, Py),...,(My, P)), where every M; is a method
and P, = (P;1,..., P, ;) its corresponding argument
list. Whenever a method M; is applied to an object,
this subsumes that it is invoked with its arguments
P;.

An accessor can be seen as a function, which ap-
plied to a message object returns another object:
Ao : 0bj) — obj. When such an accessor A is eval-
uated for a message object m, M is invoked on m

and every method M;;1 (0 < i < k) is recursively
invoked on the result of M;. Finally, the result of
M;, is returned.®

In JAVA, an accessor object implements the interface
Accessor given in Figure 4, and is evaluated by call-
ing the get () method with the message object as
argument. This method can throw exceptions raised
when evaluating the method chain, which enables
the reaction to exceptions. Returning null in case
of exceptions would contradict the use of null as
matching criterion.

public interface Accessor {

public Object get(Object m) throws Exception;
}

Figure 4: Accessor Interface

Using Java reflection. To implement our acces-
sors, we rely on structural reflection. The inherent
Java language reflection capabilities [Sun99a] con-
sist in a type-safe API that supports introspection
about classes and objects in the current JAvA VM
at runtime. We view introspection as one aspect
of structural reflection, limited to the reification (in
the sense of representation) of structures of types
and classes at runtime. A second aspect, the mod-
ification of those structures is, like computational
reflection, not addressed by the JAVA core reflection
APLS

In short, JAVA provides meta-objects which reify
classes, methods, fields, constructors, etc. ~We
make extensive use of meta-objects for methods
(java.lang.reflect.Method) to reify the M;’s
of accessors. This defers to runtime the choice
of which method is to be invoked, and enables
also to effectively perform such a dynamic invoca-
tion.” We avoid using objects reifying attributes
(java.lang.reflect.Field), since dealing with
them means abandoning encapsulation.

5With k = 0, the object m itself is accessed as a whole.
i; = 0 means that M; is an argument-less method. We do
not consider side-effects of the access methods M.

6JAVA 1.3 integrates a limited mechanism for computa-
tional reflection with the java.lang.reflect.Proxy class.

"Note that with JAVA method objects, a native value is
wrapped by an instance of its corresponding object type,
which makes the nesting of invocations even simpler.

public final class Invoke
implements Accessor, java.io.Serializable
{
/* only one method, can be null */
public Invoke(Method M, Object[] args) {...}
/* with nested accessor */
public Invoke(Accessor nested, Method M,
Object[] args) {...}
/* structurally conformant objects, nesting */
public Invoke(String methodNames,
Object[1[] args) {...}

public Object get(Object m)
throws Exception {...}

Figure 5: Invoke Class (Excerpt)

Specifying methods. We have used JAVA reflec-
tion for the implementation of the Invoke class
shown in Figure 5, a general-purpose accessor. The
first constructor enables the expression of a single
method invocation. The other constructors shown
in the figure enable the creation of an accessor re-
flecting nested method calls; by specifying an ex-
plicitly created nested accessor, or by specifying
the names of the methods to be invoked. This ad-
duces the two ways for an application to specify a
method:

By method object: The application explicitly deals
with reflection, and provides a Method object. As
explained in [BW9S8], JAVA enforces name equiva-
lence of types, and a method object M is therefore
bound to a single type T: if a method M for type T
is applied to an object m which does not conform
to T, null is returned — even if m implements a
method of the same name and signature than M.
By specifying methods as objects, the application
implicitly defines the type of message objects it is
interested in.

By method name (and signature): Specifying the
name of a method and its arguments (and implic-
itly the method’s signature) can be interesting
to enforce structure equivalence of types, i.e.,
subscribing to all objects which implement a
given method, independently of their type. This
implies, for each evaluated message object, a dy-
namic lookup of the corresponding method object
(through java.lang.Class) by the accessor.

In Section 5 we evaluate the two possibilities in
terms of efficiency, and show that the knowledge
of the type of message objects is important for per-
formance optimizations.

Avoiding type errors. Knowing the type of the
fitting message objects is also useful for type check-
ing. If all methods of an accessor are reified, the
return type of each such M; can be checked for
its conformance to the type bound to M; ;. Simi-
larly, the type of each provided argument P; ; can
be checked for its conformance to the type of the
j-th formal argument of M;. By enforcing these
checks, the Invoke class rules out type errors.® To
enforce such checks without explicit use of reflec-
tion, message object types can also be specified by
their name. This is illustrated in Section 4 through
a small programming example.

3.3 Conditions

While a message object is queried through an acces-
sor, a condition object evaluates the obtained infor-
mation, i.e., decides whether it represents a desir-
able value.

Model. A condition C = (A, R, B) represents a
single condition that a message object m must ful-
fill in order to be delivered. B is a comparison
function which can be viewed as a binary predicate:
B(oy : 0bj, 09 : 0bj) — bool. The two arguments are
(1) a predefined result R and (2) the result of the
invocation chain represented by the accessor A. A
condition is thus evaluated against a message object
m, and evaluates positively iff m satisfies that con-
dition: C(o : obj) — bool, and C'(m) = B(R, A(m)).
Figure 6 outlines the different evaluation stages of
a condition. A similar scheme can be found for
object queries in object-oriented data management
systems, e.g., TIGUKAT [SO95].°

8To verify whether a given reified type conforms to
another one, we mainly rely on the isAssignableFrom()
method in class java.lang.Class.

9The major difference between queries in an object
database and the filtering of messages by a middleware is
the duration of a query. With a middleware system based on
content-based publish/subscribe, the query is expressed for
future objects. In object databases, queries are performed on
a snapshot of the system, but the expression of the query can
be made similarly. [PO93] also describes the use of reflection
for a closer integration of the language with TIGUKAT.

P1 Py R

for oy (2

Invocationy Invocationp Comparison

TRUE/FALSE

Delivery?

Figure 6: Applying a Condition to a Message Object

Basic conditions. In JAvA, a condition object
implements the Condition interface given in Fig-
ure 7. It is evaluated for a given message object m by
invoking conforms () with m as argument. The con-
dition classes we propose are conceptually similar to
the predicates found in JGL [Obj99] that are used in
conjunction with centralized collections. The main
difference is that our condition objects are specific
to publish/subscribe, by representing queries on fu-
ture objects.

What differentiates our condition classes are the
comparison functions they encapsulate. The other
attributes, namely accessor and result, are initial-
ization arguments and can thus be factored out.

public interface Condition {

public boolean conforms(Object m);

}

Figure 7: Condition Interface

Comparisons. JAVA inherently defines three ba-
sic comparison mechanisms, which can be consid-
ered as candidates for B:

I. Is object o1 identical to object 027

The comparison of two objects with the == op-
erator yields true iff the two arguments are ref-
erences to the same object. This comparison is
less useful in our context, since two compared
objects usually originate from different VMs.
By default two such objects are never identi-
cal.

II. Is object o1 equal to object 027
Every object can also be compared to any
other object by means of the equals () method,
which is inherent to all JAVA objects and can
be overwritten by application-defined classes.

III. How does object ol compare to object

027

This is for objects implementing the
java.lang.Comparable interface,'® pro-
viding a method compareTo(). The return

value is an integer, indicating the order of
the object o1 with respect to 02. Such ob-
jects manifest a natural ordering, e.g., class
java.lang.Integer, and can thus be matched
against a range of values. Comparisons can be
moved out of the compared objects by using
java.util.Comparator objects, which are
binary predicates.

In general, B is represented in JAVA by a method,
and can also be viewed as My ;. Inversely, meth-
ods Mj..My (j > 1) can be seen as part of the
comparison. In that sense, we provide several short-
cuts for common methods, e.g., to compare the type
of an object to a predefined one. This reflects the
method isInstance() (the dynamic counterpart to
the instanceof operator) in java.lang.Class.

In our condition classes, like the Equals class given
in Figure 8 (representing an equality test in the
sense of IT), we have added constructors which alle-
viate their use. The third constructor in the figure
for instance enables the expression of nested method
calls by providing a URL-like string denoting the
names of the methods. The accessor is in that case
created implicitly. Figure 9 shows the links between
our JAVA implementation of accessors and condi-
tions, illustrated through the Equals and Invoke
classes.

public final class Equals
implements Condition, java.io.Serializable

{
/* compare the message object as a whole */
public Equals(Object to) {...}
/* compare return value of accessor */
public Equals(Accessor acc, Object to) {...}
/* implicit accessor creation */
public Equals(String names, Object[][] args,

Object to) {...}

public boolean conforms(Object m) {...}

Figure 8: Equals Class (Excerpt)

10The counterpart to the well-known Magnitude type in
SMALLTALK [GR83].

Condition —— Accessor f—
conforms() get()
qufls Invlf(e
to:Object arg:Object[]
0.* L | 0.* 0.* I—
accessor nested
method

#l implements

Figure 9: Class Diagram

- reification

3.4 Subscription Patterns

A subscription pattern S represents a combination
of basic conditions.

Patterns and conditions. A subscription pat-
tern S = ((C1,...,Cp), F) is characterized by a
set of m basic conditions, which are all evalu-
ated for a given message m, and a m-ary function
F(by : bool,...,by, : bool) — bool, which is evalu-
ated for the results of these conditions: S(m) =
F(Ci(m),...,Cyr(m)). A pattern is thus evaluated
like a condition: S(o : 0bj) — bool, and is repre-
sented in JAVA by an object of type Condition. The
model diverges here from the concrete realization, in
that the function F' does not appear as such.

Expressing patterns. F is namely explicitly
constructed by combining conditions. These com-
binations are expressed through specific conditions,
reflecting binary predicates, like And (Figure 10),
Or, etc. Furthermore, we propose a condition Not
for negation. To ease the expression of combina-
tions, we introduce the SimpleCondition interface
(Figure 11), an extension of Condition, which our
basic conditions in fact implement.!!

This subscription scheme based on conditions inher-
ently expresses the subscription grammar. Syntax

1 This counteracts JAVA’s lack for operator overloading (as
provided for instance by C++ [Str97]).

errors known from subscription languages, where
they are only recognized at execution of the parser,
are here detected by the JAVA compiler.

public final class And

implements Condition, java.io.Serializable
{

/* the two arguments */

private Condition first;

private Condition second;

public And(Condition first,
Condition second)
{ this.first = first; this.second = second; }

public boolean conforms(Object m)
{ return first.conforms(m) &&
second.conforms(m); }

Figure 10: And Class (Excerpt)

public interface SimpleCondition
extends Condition

public SimpleCondition and(Condition with);
public SimpleCondition or(Condition with);
public SimpleCondition nand(Condition with) ;
public SimpleCondition nor(Condition with);
public SimpleCondition xor(Condition with);
public SimpleCondition not();

Figure 11: SimpleCondition Interface

4 Programming Example

This section illustrates the use of content-based fil-
ters through chat sessions based on simple DACs.
We first recall our notion of DISTRIBUTED ASYN-
CHRONOUS COLLECTION (DAC) and then build on
the example initially introduced in [EGS00a].

4.1 Background: Distributed Asyn-
chronous Collections

Just like a conventional collection, a DAC repre-
sents a group of related objects. A DAC is however

distributed and can be accessed from various nodes
of a network. In a way similar to a JAVASPACE, a
DAC enables distributed participants to share infor-
mation by pulling information from the space, but
also by registering a callback object to be notified of
future elements. DACs furthermore express through
their type the qualities of service (QoS) they sup-
port. In other terms, we offer a framework of DAC
subtypes representing different semantics and QoS.
In this example, we will use a DAC representing
a topic, to which application components subscribe
with an optional content-based filter.

4.2 A Chat Scenario

We concentrate on two chat addicts, Alice and Bob,
who love to chat deep into the night. Therefore
they subscribe to the topic /Chat/Insomnia to re-
ceive all messages from like-minded chatters. Fig-
ure 12 shows class ChatMsg, which represents a pos-
sible message class for this application.

public class ChatMsg
implements java.io.Serializable

{
private String sender;
private String text;
public String getSender() { return sender; }
public String getText() { return text; }
public ChatMsg(String sender, String text) {

this.sender = sender; this.text = text; }

Figure 12: Event Class for Chat Example

4.3 Publishing

A DAC represents a topic, and in order to access
such a DAC from a process, a proxy must be created.
This requires an argument denoting the name of the
topic represented by the DAC. Except for that topic
name, the action of creating a DAC proxy is identi-
cal to creating a local collection. The DAStrongSet
collection class instantiated in Figure 13 offers re-
liable delivery of notifications to subscribers. The
instance called myChat henceforth provides access
to the topic /Chat/Insomnia. Now it is possible to
directly publish and receive messages for the topic
associated to that DAC.

Creating an event notification for a topic consists in

inserting a message object into the DAC by issuing
a call to the add () method, from where it becomes
accessible for any party.

/* connect */
DASet myChat = new DAStrongSet("/Chat/Insomnia");

/* create new message and publish it */
ChatMsg m = new ChatMsg("Alice", "Hi everyone");
myChat .add (m) ;

Figure 13: Publishing a Message

4.4 Subscribing

In order to subscribe to a DAC, a callback object im-
plementing the Notifiable interface must be pro-
vided. Figure 14 shows how to implement a simple
callback object for chat sessions.

public interface Notifiable {

public void notify(Object m);
}

public class ChatNotifiable
implements Notifiable
{
public void notify(Object m) {
/* elements are of type ChatMsg */
ChatMsg cm = (ChatMsg)m;
System.out.println("Message from " +
cm.getSender()) ;
System.out.println(cm.getText());

Figure 14: Callback Object

Episode I. Figure 15 shows a first example of
content-based publish/subscribe. We suppose here
that Bob is only interested in what a particular par-
ticipant, Alice, publishes on topic /Chat/Insomnia.
Bob defines a corresponding condition. The null
argument in the condition initialization denotes a
set of empty argument lists. A subscription is
viewed as an interest in future elements, and is ex-
pressed by a call to the contains () method.

/* connect */
DASet myChat = new DAStrongSet("/Chat/Insomnia");

/* create condition */
Condition onlyAlice =
new Equals("/getSender", null, "Alice");

/* create callback object and subscribe */
Notifiable n = new ChatNotifiable();
myChat .contains(n, onlyAlice);

Figure 15: Content-Based Subscribing (I)

Episode II. Suppose now that Bob is only more
interested in what Alice says about him. For this
second condition, the text carried by each chat mes-
sage must be checked for the occurrence of Bob’s
name. Remember that in JAVA a string s1 can be
checked for the occurrence of a substring s2 by ask-
ing s1 through a call to index0f () for the index of
its first occurrence of s2. If s2 is not contained in
s1, the call returns -1. The resulting second con-
dition in the figure represents all messages which
do not contain Bob’s name, and must therefore be
negated.

This example shown in Figure 16 illustrates
how to easily combine basic conditions with the
SimpleCondition interface, and how the applica-
tion can specify the type of the message objects with
implicit accessor creation, as required for the perfor-
mance optimizations we propose in the next section.

5 Performance

Reflective systems and meta-level architectures offer
increased modularity and flexibility. The benefit of
such dynamism is often, but not necessarily, dimin-
ished by performance degradation. In this section
we first give a rough idea of the cost of dynamic
code introduced by JAVA reflection. Motivated by
these results we then propose two optimizations to
our system, and we discuss their performances.

5.1 Preliminary: Cost of Reflection

According to the way we have described our imple-
mentation, methods are invoked dynamically, i.e.,

/* connect */
DASet myChat = new DAStrongSet("/Chat/Insomnia");

/* create first condition, with type specification */
SimpleCondition omnlyAlice =
new Equals("ChatMsg:/getSender", null, "Alice");

/* create args list and corresp. second condition */
Object[1[] args = {{null}, {"Bob"}};
SimpleCondition notAboutMe =
new Equals("ChatMsg:/getText/index0f", args,
new Integer(-1));

/* combine conditions */
SimpleCondition pattern =
onlyAlice.and(notAboutMe.not ());

/* create callback object and subscribe */
Notifiable n = new ChatNotifiable();
myChat .contains(n, pattern);

Figure 16: Content-Based Subscribing (II)

through reified methods. Such dynamic invocations
are much more expensive than static ones. More-
over, when subscribing to structurally conformant
objects (cf. Section 3), method objects are obtained
at runtime for each message object. Such lookups
are very costly, and are summed with the overhead
of the dynamic invocations.

Figure 17 shows the cost of dynamic calls by com-
paring the overhead of local method invocations
with a varying number of arguments (between 0
and 10 objects). These are performed using (1) dy-
namic invocations, each combined with a method
lookup, (2) dynamic invocations without lookups,
and (3) static invocations. These tests were made
on a SUN ULTRA 60 (SOLARIs 2.6, 256 Mb RAM, 9
Gb harddisk) with Java 1.2 (native threads). The
test setting did not involve any JusT IN TIME (JIT)
compiler. The speedup factor observed for static in-
vocations when using a JIT compiler was over three.
The speedup in the case of dynamic evaluation is,
as expected, insignificant.

5.2 Optimizations

The amount of expensive dynamic code can be re-
duced if the type of the message objects is known.
The type information can be given to the system
either (1) by using reflection explicitly, or (2) by
specifying the type of the message objects by name.

0.14 T T

Latency [ms/Invocation]

0.04 -

0.02 |

ﬁynamic w. Loékup E—

Arguments (Object)

Figure 17: Latency with Different Invocation Styles

The type information enables the application of op-
timizations.'?

Avoiding redundant invocations. Message ob-
jects are usually matched against patterns of several
subscribers at a time, and these patterns are likely
to present redundancies. We discuss here an opti-
mization based on that observation, which is simi-
lar, but not identical to the tree matching algorithm
used in GRYPHON [ASST98]. The tree matching
algorithm factors out redundant subpatterns with
simplified assumptions: only ands of basic condi-
tions are considered, and latter ones are primitive
comparisons of attribute values with predefined val-
ues.

In contrast, our filter library offers more expres-
siveness, e.g., nested method invocations, different
comparators and combinations (and, or, ...). Such
combinations are performed statically, and dynamic
queries on message objects represent the critical fac-
tor in our system. As a consequence, we focus on
detecting common denominators of accessors, in or-
der to avoid the evaluation of redundant dynamic
method invocation chains. Figure 18 shows a sim-
ple example of redundant accessors where each sub-
scriber specifies a pattern consisting of a single basic
condition. An invocation tree, like the one shown in
Figure 19, is constructed from all accessors and is
evaluated for every filtered message object.

12T a companion paper [EGS00b] we introduce type-based
publish/subscribe: a static classification scheme based on the
types of message objects. The type-based publish/subscribe
scheme ensures type safety, and thus enforces optimizations
through the inherent knowledge of types and makes type

Subscriber S1: A1, = ((My, Pr))

Subscriber SQZ AQl ((MQ7 2), (M37 Pg))
Subscriber 53: 1431 ((MQ, 2) (]\/[3, P3), (]\/[4, P4))
Subscriber Sy: A4, = (M2, P), (M3, Ps))

Figure 18: Redundancy between Accessors

Figure 19: Invocation Tree

Enforcing static filters. Based on the observa-
tion that dynamic invocations are far more costly
than static ones, we have implemented an alter-
native optimization. Any dynamic invocations are
avoided by generating static source code from acces-
sors after performing type checks. The source code
is then directly compiled by calling the SUN JAvA
compiler (sun.tools.javac), in a way similar than
this is done in [KMS98] or [TCKI00].'3

5.3 Evaluation

We evaluate here the benefits of the two above
optimizations by comparing the resulting perfor-
mances with two non-optimized scenarios. These
are namely (1) the filtering of structurally confor-
mant messages, and (2) the filtering of type confor-
mant messages.

Testbed. Our measurements were made with the
JAVA VM 1.2, enabled JIT and native threads on
SUN SOLARIS 2.6. A single producer was publish-
ing message objects encapsulating a single string
from one network (SUN ULTRA 60, 256 Mb RAM,

checks and casts inside the application code superfluous.
13[KMS98] terms this technique (runtime) linguistic reflec-
tion, which is seen as a synonym of structural reflection.

9 Gb harddisk), to subscribers equally distributed
over two further networks; one composed of all to-
gether 60 SUN SUPERSPARC 20 stations (model 502:
2 CPU, 64 Mb RAM, 1Gb harddisk), and the sec-
ond one composed of 60 SUN ULTRA 10 (256 Mb
RAM, 9 Gb harddisk) stations. The individual sta-
tions and the different networks where communicat-
ing via FAST ETHERNET.

Parameters. We have made a set of extensive
tests, in which we have always varied one of four
parameters for the subscriptions. These are namely,
(1) the fraction of positive matches for a subscriber
1/c, (2) the total number of subscribers s, (3) the
maximum nesting level of invocations for queries a,
and (4) the number of different query methods d at
each nesting level.

Varying 1/c¢: From n produced messages, an aver-
age of n/c messages matched a given subscribers
pattern. Figure 20(a) shows the effect of varying
c. It confirms the intuition that the cost of send-
ing messages with UDP does not depend on the
matching scheme, and can be seen as fixed. With
¢ > 100 in this scenario, the pure cost of match-
ing is measured. In order to accentuate the dif-
ferences between the matching schemes without
contradicting our concrete applications, we have
chosen ¢ = 10 for the next figures.

Varying s: Similarly to the scenario in Figure 18, we
have chosen one basic condition per subscriber.
Figure 20(b) reports the effect of scaling up s,
conveying that the two optimizations are almost
equivalent with a large s.'* As shown in the pre-
vious figure, UDP is a limiting factor with an in-
creasing number of sends (here due to a large s).
Performance drops faster with static filters, since
every additional subscriber involves a full pattern
evaluation. In contrast, the optimized dynamic
scheme is less sensitive since redundant queries
are avoided.

Varying a: The probability of having i [0, d]
nested invocations was chosen as p, = 1/(a + 1).
Increasing a reduces throughput with static invo-
cations (Figure 21(a)), since static accessors com-
prise more invocations. Similarly, the optimized

MOur system relies on a hierarchical topology of message
brokers, among which membership information is split up. A
single process rarely has knowledge of more than 100 partic-
ipants.

20

T T
Static
pt-—Dynamie
Dynamic -~
Dynamic w. Lookup

O

Throughput [msg/ms]

i i i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000
Divider for Matching Rate

Figure 20: Matching Rate

dynamic scheme is less efficient with an increasing
a, since the total number of performed methods
increases with the depth of the tree.

Varying d: One of d methods was chosen at each
nesting level with a probability of p; = 1/d. Vary-
ing d obviously does not influence static filter eval-
uation. On the other hand, increasing d might
lead to increasing the potential number of edges
leaving from any node in the invocation tree. The
resulting performance loss is directly visible in
Figure 21(b). The optimized dynamic scheme is
however more penalized by increasing a, as shown
in the previous figure. This is due to the fact that
increasing a by 1 might result in up to d new edges
in every former leaf of the invocation tree.

Interestingly the optimized dynamic matching
scheme never overperforms the static scheme, even
if the speedups become close with a large number of
message sends. One could believe that with a strong
redundancy between patterns and a large number of
subscribers the dynamic scheme would become more
efficient. Even with extreme parameter values, we
have however never encountered such a scenario.

6 Discussion

In this section we debate alternative models and re-
alizations we have considered as potential solutions
for an adequate content-based subscription scheme

étatic

45 Opt. Dynamic -
- Dynamic -~
Dynamic w. Lookup

Throughput [msg/ms]

20 40 60 80 100 120
Subscribers

and Number of Subscriptions

in the context of DISTRIBUTED ASYNCHRONOUS
COLLECTIONS.

Application-defined filters. We promote the
expression of subscription patterns as a combina-
tion of instances of our predefined condition classes.
An alternative to this consists in allowing the appli-
cation to provide directly its own static filter objects
(byte code). Patterns expressed this way are how-
ever opaque and not necessarily correct nor safe, and
make optimizations difficult.

Nevertheless, we have opted for an open de-
sign, i.e., separation of interfaces and classes (e.g.,
Accessor/Invoke) vs conditions and accessors as
final classes. This enables the extension of our
subscription API with application-defined accessors
and conditions. Our proposed optimizations can
still be enforced by following certain design guide-
lines.

Towards a unified language. An alternative to
our subscription APT consists in using the JAvA lan-
guage itself as the subscription language. That is,
providing code in a stringified form (source code),
that can be parsed and compiled at runtime. A
pseudo-variable m would represent the runtime mes-
sage object, and method invocations could be di-
rectly expressed, e.g.:

"m.getSender() .equals("Alice") && ...;"

The evaluation of the code given here as a string
is deferred. This comes to introducing two levels
of programming, in a way similar to [NN88]. The
generalization of that approach leads to multi-stage

Static
Opt. Dynamic -
Dynamic -~

09 £

0.8 - ; |

0.7 |]
0.6 []
0.5 []

04t e 1

Throughput [msg/ms]

03 - . 7
0‘2 7 T T PR ,7

0.1 - 4

0 I I I I
0 2 4 6 8 10

Nesting Level (max.)

T
Static
Opt. Dynamic ---—————
0.9 F Dynamic
""""""""""" N Dynamic w. Lookup

“or T 7

0.7 [b

0.6 q

05 [b

04 f T B

Throughput [msg/ms]

03 [b

02 - 4

01 I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Different Query Methods

Figure 21: Expressiveness and Redundancy of Subscriptions

programming, e.g., METAML [TS97]. METAML is
a meta-programming language that was designed
as a homogenous runtime code generator toolkit.
In METAML, the evaluation of expressions in <>
(called brackets) is deferred to the next stage, in a
sense similar to our stringified code delimited by ""
above. Expressions evaluated at a later stage can re-
fer to constructs at a previous stage. When stringi-
fying meta-code in JAVA as above, this is not possi-
ble, since JAVA reflection does not allow to dynam-
ically obtain a reference to a variable by its name.
This limitation can be circumvented as long as in-
vocation arguments can be constructed inside the
pattern string (e.g., "Alice"), but poses problems
for complex matches. Extending the JAVA language
in the sense of METAML would have contradicted
our resolution of using merely standard language
constructs.

Java reflection. JavassisT [Chi00] and OPEN-
JAvA [TCKIO0] are two approaches to extending
JAVA with load-time structural reflection, i.e., the
ability of modifying classes at runtime prior to in-
stantiation. OPENJAVA promotes a compile-time
meta-object protocol [Chi95] based on an exten-
sion of java.lang.Class, and makes use of the
SUN JAVA compiler, while JAVASSIST provides an
extended Classloader supporting the creation of
new methods as copies of existing ones.

We have however refrained from using JAVASSIST or
OPENJAVA, because our static filters represent very
specific classes which can be generated without any
language extension.

7 Concluding Remarks

We argue through our work that, unlike what is of-
ten claimed (e.g., [Koe99]), message-oriented mid-
dleware and object-oriented principles are not con-
tradictory. In [EGS00a], we have made a first
step, by introducing a programming abstraction
called DISTRIBUTED ASYNCHRONOUS COLLECTION
(DAC) which is versatile enough to express com-
monalities between the different message-oriented
interactions styles. In that paper we have focused
on topic-based publish/subscribe.

In this paper, we have attacked another bastion,
content-based publish /subscribe, which is presumed
to contradict object-oriented principles by its very
nature. We have illustrated that it is indeed pos-
sible to express content-based subscription patterns
in a way that fully preserves encapsulation. More-
over, we have shown that our approach offers further
practical benefits over contemporary approaches,
like the possibility to prevent syntax errors and type
errors.

In terms of performance, the cost of our solution
is incurred by the latency resulting from the use of
JAVA reflection. In our case, this use is however re-
duced to verifications of subscription patterns aim-
ing at avoiding type errors. After this initializa-
tion phase, dynamic invocations are circumvented
by using static code generated at runtime without
any modification to the JAVA compiler or VM. The
throughput of our system is thus not conditioned by
the use of reflection, as proven by the resulting per-
formances. We are furthermore currently working
on a new optimization scheme combining the ben-
efits of our static and dynamic optimizations. The

idea is to generate static code from dynamic invoca-
tion trees, to further improve performance but also
to reduce the overall compilation effort.

The cost of our solution in terms of feasibility is
limited to the need for structural reflection; yet with
such minimal features that the inherent JAVA reflec-
tion capabilities can satisfy this need.

We do not claim that our content-based subscription
scheme is the ultimate solution to content-based
publish/subscribe, nor that it replaces existing spec-
ifications. It should rather be seen as a pragmatic
attempt to circumventing shortcomings of other ap-
proaches. Our filter library is not limited to the
context of DACs, but could be put to work easily in
other existing event-based systems.

Acknowledgments

We would like to thank both Andrew Black and Joe
Sventek for their valuable comments. Those com-
ments have helped us concretize the ideas presented
in this paper.

References

[AEM99] M. Altherr, M. Erzberger, and S. Maf-
feis. iBus - a software bus middleware for
the Java platform. In International Work-
shop on Reliable Middleware Systems of
the 13th IEEE Symposium On Reliable
Distributed Systems (SRDS’99), pages 43—
53, October 1999.

[ASST98] M.K. Aguilera, R.E. Strom, D.C. Stur-
man, M. Astley, and T.D. Chandra.
Matching events in a content-based sub-
scription system. In Proceedings of
the 18th ACM Symposium on Principles
of Distributed Computing (PODC’99),
November 1998.

[BCM™99] G. Banavar, T. Chandra, B. Muhker-
jes, J. Nagarajarao, R.E. Strom, and D.C.
Sturman. An efficient multicast protocol
for content-based publish-subscribe sys-
tems. In Proceedings of the 19th IEEE
International Conference on Distributed

Computing Systems (ICDCS ’99), 1999.

[BHL95] B. Blakeley, H. Harris, and J.R.T. Lewis.
Messaging and Queuing Using the MQI:
Concepts and Analysis, Design and Devel-
opment. McGraw-Hill, 1995.

[BW98] M. Biichi and W. Weck. Compound types
for Java. In Proceedings of the 13th ACM
Conference on Object-Oriented Program-
ming Systems, Languages and Applica-
tions (OOPSLA’98), pages 362373, Oc-
tober 1998.

[BZ87] T. Bloom and S.B. Zdonik. Issues in the
design of object-oriented database pro-
gramming languages. In Proceedings of the
2nd ACM Conference on Object-Oriented
Programming Systems, Languages and
Applications (OOPSLA’87), pages 441—

451, 1987.

[Car98] A. Carzaniga. Architectures for an Event
Notification Service Scalable to Wide-area
Networks. PhD thesis, Politecnico di Mi-

lano, December 1998.

S. Chiba. A metaobject protocol for
C++. In Proceedings of the 10th ACM
Conference on Object-Oriented Program-
ming Systems, Languages and Applica-
tions (OOPSLA’95), pages 285-299, Oc-
tober 1995.

[Chi95]

[Chi00] S. Chiba. Loadtime structural reflec-
tion in Java. In Proceedings of the 14th
European Conference on Object-Oriented
Programming (ECOOP’2000), pages 313
336, June 2000.

[Coi87] P. Cointe. Metaclasses are first class: The
ObjVlisp model. In Proceedings of the 2nd
ACM Conference on Object-Oriented Pro-
gramming Systems, Languages and Ap-
plications (OOPSLA’87), pages 156-167,
October 1987.

[Cor99] Talarian Corporation. Everything
You mneed to know about Middle-
ware: Mission-Crritical ~— Interpro-
cess Communication (White Paper).

http://www.talarian.com/, 1999.

[DEC94] DEC. DECMessageQ: Introduction to
Message Quewing, April 1994.

[EGS00a] P.T. Eugster, R. Guerraoui, and J. Sven-
tek. Distributed Asynchronous Collec-
tions: Abstractions for publish/subscribe
interaction. In Proceedings of the 14th
European Conference on Object-Oriented
Programming (ECOOP’2000), pages 252—
276, June 2000.

[EGS00b] P.T. Eugster, R. Guerraoui, and J. Sven-
tek. Type-based publish/subscribe.
Technical Report DSC/2000/029, Swiss
Federal Institute of Technology, Lausanne,
http://dscwww.epfl.ch/EN /publications/,
June 2000.

[Fer89] J. Ferber. Computational reflection in
class based object-oriented languages. In
Proceedings of the 4th ACM Conference
on Object-Oriented Programming Sys-
tems, Languages and Applications (OOP-

SLA’89), pages 317-326, October 1989.

[FHA99] E. Freeman, S. Hupfer, and K. Arnold.
JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley, June 1999.

[Gel85] D. Gelernter. Generative communication
in Linda. ACM Transactions on Program-
ming Languages and Systems (TOPLAS),
7(1):80-112, January 1985.

[GR83] A.J. Goldberg and A.D. Robson.

Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[HBS98] M. Happner, R. Burridge, and R. Sharma.
Java Message Service. Technical report,
Sun Microsystems Inc., October 1998.

[KMS98] G. Kirby, R. Morrison, and D. Stem-
ple. Linguistic reflection in java. Software
- Practice and Experience, 28(10):1045—

1077, 1998.

[Koe99] P. Koenig. Messages vs. objects for appli-
cation integration. Distributed Comput-
ing, 2(3):44-45, April 1999.

[Mic97] Microsoft. Microsoft Message Queuing
Services, 1997.

[NN88] F. Nielson and H.R. Nielson. Two-level se-

mantics and code generation. Theoretical
Computer Science, 56(1):59-133, January
1988.

[OAAT00] L. Opyrchal, M. Astley, J. Auerbach,
G. Banavar, R. Strom, and D. Sturman.
Exploiting IP Multicast in content-based
publish-subscribe systems. In Proceed-
ings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms

(Middleware 2000), pages 185—207, April

2000.
[Obe00] R.J. Oberg. Understanding & Program-
ming COM+. Prentice Hall, 2000.
[Obj99] ObjectSpace. JGL -
Generic Collection Library.

http://www.objectspace.com /jgl/, 1999.

[OMG98] OMG. CORBAservices: Common Object
Services Specification, Chapter 4: FEvent
Service. OMG, December 1998.

[OMGO00] OMG. Notification Service Standalone
Document. OMG, June 2000.

[OPSS93] B. Oki, M. Pfluegl, A. Siegel, and
D. Skeen. The information bus - an ar-
chitecture for extensible distributed sys-
tems. In 1/th ACM Symposium on Oper-
ating System Principles, pages 5868, De-
cember 1993.

R.J. Peters and M.T. Ozsu. Reflection
in a uniform behavioral object model. In
Proceedings of the 12th International Con-
ference on Entity-Relationship Approach,
pages 37-49, December 1993.

[PO93]

[Pow96]

[RW97]

[SAO7]

[SBS98]

[Ske98]

[SO95]

[Str97]

[Sun99a]

[Sun99b)

[Sun99c]

[SV97]

D. Powell. Group communications. Com-
munications of the ACM, 39(4):50-97,
April 1996.

D. Rosenblum and A. Wolf. A de-
sign framework for internet-scale event
observation and notification. In 6th
FEuropean Software Engineering Confer-
ence/ACM SIGSOFT 5th Symposium on
the Foundations of Software Engineering,
pages 344-360, September 1997.

B. Segall and D. Arnold. Elvin has
left the building: A publish/subscribe
notification service with quenching. In
Proceedings of the Australian UNIX and
Open Systems User Group Conference
(AUUG’97), http://www.dtsc.edu.au/,
September 1997.

D.C. Sturman, G. Banavar, and R. Strom.
Reflection in the Gryphon message bro-
kering system. In Reflection Workshop of
the 13th ACM Conference on Object Ori-
ented Programming Systems, Languages

and Applications (OOPSLA’98), 1998.

D. Skeen. Vitria’s Publish-Subscribe Ar-
chitecture: Publish-Subscribe Owverview.
http://www.vitria.com, 1998.

D.D. Straube and M.T. Ozsu. Query op-
timization and execution plan generation
in object-oriented data management sys-

tems. IEEE Transactions on Knowledge
and Data Engineering, 7(2), April 1995.

B. Stroustrup. The C++ Program-
ming Language, Third Edition. Addison-
Wesley, 1997.

Sun. Java Core Reflection API and Spec-
ification, 1999.

Sun. JavaSpaces specification. Technical
report, Sun Microsystems Inc., November
1999.

Sun. Jini Entry specification. Technical
report, Sun Microsystems Inc., November
1999.

D. Schmidt and S. Vinoski. Overcom-
ing drawbacks in the OMG Event Service.
SIGS C++ Report magazine, 19(6), June
1997.

[Sys00]

BEA Systems. Reliable Queuing
Using BFEA Tuzedo: White Paper.
http://www.beasys.com/products/, 2000.

[TCKIOO0] M. Tatsubori, S. Chiba, M.-O. Killijian,

[TIBY9]

[TS97]

and K. Itano. A Class-based Macro Sys-
tem for Java, pages 119-135, LNCS 1826.
Springer-Verlag, July 2000.

TIBCO. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/, 1999.

W. Taha and T. Sheard. Multi-stage
programming. In Proceedings of the
ACM SIGPLAN International Conference
on Functional Programming (ICFP’97),
pages 321-321, June 1997.

