
USENIX Association

Proceedings of the
BSDCon 2002

Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Sushi − an extensible human interface for NetBSD

by

Tim Rightnour
The NetBSD Project
garbled@netbsd.org

Abstract
This document describes Sushi, a menuing system designed for the administration and configuration of the

NetBSD operating system. Included are detailed explanations of the reasons behind the creation and design of
Sushi. In addition, this document includes descriptions of the file formats and examples of the menus provided by
Sushi.

1. An introduction to Sushi

Sushi stands for Simple to Use System-
Human Interface. Sushi was designed to provide an
easy to use environment, allowing a new adminis-
trator to set up or maintain a NetBSD system.
Sushi can be used for a variety of tasks, such as the
initial configuration of a system or to facilitate
maintenance. Custom menus can be created and
installed at any time, allowing administrators to
create their own menus to perform frequently used
tasks.

Sushi is a text-based user interface to the sys-
tem. It has been written in C and carries a BSD
license. Tasks that have already been written for
Sushi include configuring network interfaces, con-
figuring startup (rc) scripts, user management, and
installation of third party packages using the
NetBSD package system.

Currently, Sushi is only available in the
development branch of NetBSD and has not yet
been made part of an official release. Administra-
tors wishing to try out Sushi can do so by installing
one of the NetBSD-current snapshots or by compil-
ing it from source. Installation on an older system
is unlikely to work, as the provided menus are
tuned for the development branch and Sushi itself
requires many curses features and related libraries
not available in the 1.5 release of NetBSD, such as
libform and CDK.

When starting Sushi the administrator is pre-
sented with a menu of task categories. The admin-
istrator can select one of these categories and will
then be provided with additional options, either
more categories or actual tasks will be presented.
Once a task has been selected the administrator will
then be presented with a form.

A form usually comprises a series of ques-
tions, with blanks next to each one for providing
answers. A typical form might have configuration
details, such as the IPv4 address of a network inter-
face to be setup or possibly a series of yes/no ques-
tions to provide options. Once the administrator
has edited this form it can then be submitted to be
processed by Sushi.

Processing the form generally consists of
interpreting the various options and fields the
administrator has filled out and executing the
proper actions. For example, had the administrator
configured a network interface, Sushi would apply
those changes to the interface. As the form is pro-
cessed, a window with the output of the commands
Sushi is executing will be displayed. If the com-
mands fail, the administrator is informed and can
then edit the form again. Sushi makes no attempt
to interpret the output of the command that has
been executed, the analyzation of the failure is left
to the administrator. Once the task has been com-
pleted, the administrator can go on to other menus
and perform additional tasks or exit Sushi.

2. Design Goals

Sushi was designed with a number of specific
goals in mind. First, it needed to provide an intu-
itive interface to the system. Second, it needed to
be easily extensible so virtually any task could be
programmed into Sushi, without recompiling or
having to learn another programming language.
Third, it needed to provide support for a variety of
native languages. Finally, it needed to provide for
compatibility with manual changes made to the sys-
tem.

2.1. Simple to Use

In order to be useful to most new admin-
istrators of the NetBSD operating system, Sushi
needed to have a very instinctive interface. If
the tool is just as or more complex than the
actual system is to use, then there is no point in
using it. The instinctive interface was accom-
plished by setting up a simple hierarchical
menu structure. This allows tasks to be easily
categorized by their general function or area of
influence. For example, under a menu called
‘‘User and Group Management’’, one might
place functions such as creating and deleting
users, assigning users to groups, and modifying
users or groups.

The interface also allows a number of
input field types that define the types of data the
administrator can enter. One such field is the
basic text entry, where freeform text can be
entered. Information such as host names or
data files names can be entered by the adminis-
trator here. Other field types include multiple
choice selection fields, where the administrator
can pick from a predetermined set of choices or
restricted fields, where the administrator can
only enter things such as numbers or IPv4
addresses.

Sushi also attempts to provide help for all
menus or tasks. A simple status bar at the bot-
tom of the screen shows some of the basic navi-
gation commands available to the administrator.
In most menus or tasks, the help key (F1) will
bring up a section of help text written specifi-
cally for the current menu or task. This help
text is designed to explain to the administrator
what some of the various questions or options
mean and assist in choosing the appropriate
selection. It often points to manual pages,
which can assist the administrator further in
determining how to proceed.

Sushi attempts to provide this easy to use
interface without becoming overly cumber-
some. The features which Sushi can provide
are useful to administrators of all skill levels,
not because the tasks can’t be accomplished by
hand, but because the menu interface is easier
than editing the files by hand. Sushi attempts to
provide the menu and form to the administrator,
without forcing them to answer too many ques-
tions or fill in unnecessary fields.

2.2. Easily Extensible

While a menuing system written entirely
in a compiled language might provide an easy
to use interface for the administrator, it does so
at the price of maintenance headaches. Sushi
needed to be easily modifiable and provide a
way for administrators to quickly add menus of
their own to the system.

One of the reasons Sushi is able to pro-
vide an easily extensible menu interface is
because it is an interpreter, rather than a pre-
compiled set of menus. All of the menus and
tasks that are provided by Sushi are actually
taken from a set of command files and directo-
ries living on the machine.

At start up, Sushi looks in a number of
base directories for its index files. An index file
contains a description of a sub-menu or task and
the name of a subdirectory where that sub-menu
or task lives. It also contains a ‘‘quicklink’’
keyword which can provide a fast method to
jump to the menu from the command line. Sub-
directories can contain more index files or they
can terminate, in what is called an ‘‘endpoint’’.

An endpoint is a task that is to be com-
pleted. It can be anything from a command that
is executed when the administrator selects the
menu item, to a complex set of forms that need
to be filled out by the administrator. They can
ev en point to functions internal to Sushi, allow-
ing very complex tasks to be performed or the
modification of internal Sushi variables, such as
turning on logging.

Forms are specified by a form file. This
file describes the form to Sushi, indicating field
types, field descriptions, and data specific to the
field, such as predetermined choices for a multi-
ple choice field.

Besides administrator input, fields can
also gather data from multiple sources. For
example, if we were writing a form to modify
the machine’s network interface, we would
want to provide the administrator with the cur-
rent settings for that interface when the form is
displayed. This can be accomplished by using
scripts. Scripts are basically any executable
program that outputs the desired information.
Arguments can be passed to these scripts,
allowing the menu to tell the script which net-
work interface is being configured. By passing
these arguments, Sushi can call the script that

can look up the IPv4 address of the interface
and read the data back to fill in the field. When
the form is displayed to the administrator the
current IPv4 address will be present in the field,
either to edit or leave as is.

In the case of a form, a script which is
executed upon completion of the form also
exists. The script can be any type of executable
program, giving freedom to the designer to use
the language most suitable for the task. This
script is executed and given the contents of each
field, in order, as its arguments. The script is
expected to verify the choices made by the
administrator and execute the appropriate task.
For example, with the form that configures a
network interface, the script would analyze the
arguments given from the form and construct an
ifconfig command and execute it. The exit code
of the script determines the success or failure of
the action to be displayed to the administrator
watching the output screen.

The base directories that Sushi searches
for index files can also be modified through a
configuration file by simply adding more direc-
tories to the list. In addition, one of the directo-
ries searched by Sushi is the administrator’s
home directory. This allows administrators to
create menus that are only available to the cre-
ator and store them locally. For example, an
administrator might wish to create a menu to
automate a personal task, such as customization
of a personal rc file. Using this mechanism,
third party packages can be extended to install
Sushi menus for their own configuration. When
Sushi scans for its index files, it creates a single
hierarchical tree out of all the menus it finds.

2.3. Internationalization Support

Sushi also provides support for multiple
written languages. All of the text displayed by
the Sushi engine itself was written using the
catgets(3) interface and is therefore capable of
supporting a limited set of native languages.

In addition, most of the data files used by
Sushi (such as the help text, forms, and index
files) can all be written in an alternate language
and stored using different file suffixes. When
Sushi is started in an environment where the
preferred user interface language variables have
been set, it will load the proper files whenever
they are available and failing that display the
English defaults.

2.4. Compatibility with manual changes

When making changes to system configu-
ration files, it is important to do so in a way that
is compatible with manual changes. Many
automated configuration systems control their
files by placing special markers in the file, caus-
ing an administrator to have to work around
these markers. Other programs might require
that the files only be modified by the configura-
tion program and never edited by hand. This is
unacceptable for a configuration tool like Sushi
for a number of reasons.

First and foremost, Sushi is designed to
assist a new NetBSD administrator in getting
his or her system up and running quickly. Once
the new administrator has overcome the learn-
ing curve of using NetBSD and is competent in
it, they should not be penalized for having used
Sushi or be forced to continue to use it.

Secondly, a machine might be adminis-
tered by multiple people or change hands.
Sushi should not leave the system in an unmain-
tainable state, nor should it be unable to cope
with changes made manually, if the new admin-
istrator wishes to use Sushi to edit previously
handmade configuration files.

Sushi retains compatibility with manual
changes by having a basic understanding of the
various configuration file formats. Some file
formats are more complex than others and in
some cases certain options that are available are
impossible to implement in a script. However,
Sushi makes all possible efforts to interpret files
properly and write them back in a readable for-
mat. Sushi also does not use any special mark-
ers or create uneditable entries in the files. This
is not a feature of the engine, but rather a fea-
ture of the menus that ship with Sushi as part of
NetBSD. It is also considered a golden rule
when creating new menus for Sushi.

3. Designing menus for Sushi

The programming interface for Sushi has
been designed to be very simple to pick up and
begin writing menus with. Generally speaking, if
an administrator can write a script to accomplish a
specific task, they can turn that work into a Sushi
menu with a minimal amount of work.

3.1. Search order

Upon entering a directory, Sushi looks for
a number of different files specifying the action
it should take. Sushi looks for these files in a
specific order and will begin processing the first
file that it recognizes, ignoring the rest of the
files in that directory. It causes an error when
an endpoint has no files in it and Sushi will exit
if it encounters one. The search order of these
files is as follows:

• The index file ‘‘index’’.
• The preform file ‘‘preform’’.
• The form file ‘‘form’’.
• The script file ‘‘script’’.
• The execute file ‘‘exec’’.
• The function file ‘‘func’’.
• The help file ‘‘help’’.

For each file, Sushi will first attempt to
load a file ending in a locale suffix, such as
‘‘.de’’ for German. Should it fail to find the
appropriate translated item, it will then search
for the file without a suffix.

3.2. The index file

The index file comprises multiple lines
containing three whitespace separated columns
where each line of this file represents a single
menu item. These are the name of the subdirec-
tory containing the menu item, a quicklink, and
finally a description of the menu item.

The subdirectory argument is used to
specify which subdirectory contains the next
sub-menu or endpoint. Any subdirectories
specified in the index file must exist for Sushi to
process the tree properly. The subdirectory can
be replaced with the keyword ‘‘BLANK’’ to
place a blank line on the menu. This can be
used to group certain types of actions together
in the menu.

The second argument to a line in the
index file is the quicklink. This is a single word
that can be used to jump to this menu or task
from the command line. It should be something
that is easy to remember and obvious to the
administrator, such as ‘‘users’’ to point to the
‘‘User and Group Management’’ sub-menu.
The administrator can then jump directly into
this menu by starting Sushi with ‘‘users’’ as the
only argument. Again, the ‘‘BLANK’’ keyword
can be used to specify a blank line in the menu.

The description of the menu item is
meant to give a brief title to the sub-menu or
task located in the subdirectory below. It
should consist of a brief title, such as ‘‘User and
Group Management’’. Should the entry point to
a sub-menu, the description text will be used as
the main heading for that sub-menu. This title
is limited to approximately 70 characters to
allow it to fit on a standard 80 column wide
screen. Again, the description can be replaced
with the ‘‘BLANK’’ keyword to create a blank
line.

It is important to note that when creating
blank lines in the menu that all three arguments
must contain the ‘‘BLANK’’ keyword. Sushi
also ignores any lines beginning with a com-
ment symbol (#). For an example of an index
file see figure 1.

3.3. The form file

A form file is a whitespace delimited list
of fields consisting of a field type and followed
by a description. Fields may be of many differ-
ent types and each one has a set of different
arguments it expects. Arguments are separated
from the field type keyword with a ‘‘:’’ and sep-
arated by commas.

There is also a ‘‘preform’’ file, which can
be used to provide a series of forms to the user.
The preform allows the programmer to gather
data from the user, which can later be used in
the form to populate certain fields. An example
of where this might be useful would be setting
up a network interface. The preform would ask
the administrator which interface they wanted
to setup and pass that information to the form
so it could query the proper interface for its cur-
rent settings. Any data entered into a preform is
made available to the form via the special argu-
ment key ‘‘@@@1@@@’’, which specifies the
data from the first field of the preform. When
Sushi interprets the form file, the special argu-
ment key will be replaced with the data the
administrator entered whenever it is found in
the form file. Sushi is limited to a single pre-
form and associated form pair. Multiple pre-
forms are not possible.

The first type of field is the basic free-
form entry field, which is denoted by the
keyword ‘‘entry’’. The only argument for this
keyword is the length of the maximum entry in
characters. When the entry field is specified, a

$NetBSD: index,v 1.5 2001/04/26 02:26:16 garbled Exp $
install install Software Installation and Maintenance
system system System Maintenance
users users Security and Users
procs procs Processes and Daemons
network network Network related configuration
BLANK BLANK BLANK
info info Using sushi (information only)
util util Sushi utilities (logging/scripting)

Figure 1. Example of an index file

blank underlined input field will be placed on
the display into which any type of data may be
entered. You may also prefix the entry keyword
with ‘‘req−’’ to specify that the field must be
filled in by the administrator before form pro-
cessing can take place. Required fields are pre-
fixed with an asterisk on the display.

An ‘‘escript’’ field type is an entry field
whose initial value is filled in by running an
associated script. The arguments to an escript
field type are the maximum field length, the
name of the script to be executed, and any
optional arguments you wish to pass to the
script. The script that is executed can be of any
executable format and is expected to return a
single line of text. It is important that the script
always return something to the Sushi engine to
avoid possible errors at run time. The escript
keyword can be prefixed with ‘‘req−’’ to make
it a required field or be specified as ‘‘nescript’’
to create an uneditable field. Uneditable fields
may be used to display data to the administrator
without allowing them to modify it. Data in
these fields will still be passed to the task script
upon completion of the form.

A list field type is specified by the
keyword ‘‘list’’. This field type will present the
administrator with a multiple choice field. An
administrator can only select one of the prede-
termined choices from the list and may not
modify any of them. The administrator can tog-
gle the values of the list by using the TAB key
or bring up a selection list box containing all of

them with the F4 key. The arguments consist of
a comma separated list of possible choices.
This is especially useful for generating yes or
no questions for the administrator. The list
keyword can be prefixed with ‘‘req−’’ to make
it a required field.

A multilist, specified by the ‘‘multilist’’
keyword, is a list where the administrator can
select more than one of the possible choices
from the list. This is accessed by the adminis-
trator via the F4 key and selections are toggled
with the space bar. The format for the multilist
is the same as a list.

The ‘‘blank’’ keyword can be used to cre-
ate an item with no corresponding entry field.
This can be used to provide additional lines of
description for the previous field. No data is
passed to the task script when a blank field is
specified and a blank field does not count as an
argument to a task script.

The ‘‘noedit’’ keyword can be used to
create an uneditable field that will still be
passed to the task script. This is similar in
operation to the ‘‘nescript’’ field type and is
used primarily in displaying data to the admin-
istrator, or passing special arguments to the task
script. The only argument is the string to be dis-
played in the field.

The ‘‘invis’’ field type allows the pro-
grammer to create fields which will not show up
on the form. The description for the field will
still be visible however. The contents of the
field will be passed to the task script upon

completion of the form. The only argument is
the string to be placed in the invisible field.

A function field, specified by the ‘‘func’’
keyword, allows the programmer to create spe-
cial list field types whose values are populated
by calling a function internal to the Sushi
engine. In order to utilize the function field
type, the appropriate function must first be pro-
grammed into the Sushi engine and the engine
must be recompiled. The function field has two
arguments, the name of the function to be called
and a single text argument to be passed to the
function. Functions are expected to return a list
of values and have the following prototype:

(char **)function(char *argument);

Functions must be added to the ‘‘functions.c’’
source file and added to the ‘‘func_map’’ array
at the top of that file, as well as to the ‘‘func-
tions.h’’ header file. The function keyword may
be prefixed with ‘‘req−’’ to make it a required
field. Multilist functions are possible by speci-
fying the keyword ‘‘multifunc’’ and are pro-
grammed identically to function fields. It is
strongly encouraged that functions be avoided
whenever possible in Sushi. Functions require
recompiling of the engine in order to be made
available and are therefore more difficult to
maintain. Whenever possible other field types
should be used.

The ‘‘script’’ field type, allows the pro-
grammer to create a list-type field, whose con-
tents are created by running an executable pro-
gram. The arguments to the script field type are
the name of the script to be executed and any
number of arguments the programmer wishes to
pass to that script. The script is expected to
produce a list of values, one per line, on stan-
dard output. These values are then read and
used to create the list field type. The script
keyword may be prefixed with ‘‘req−’’ to make
it a required field. Multilist scripts can be made
by specifying the keyword ‘‘multiscript’’. The
named script is expected to be located in the
same directory that the form file exists in.

To restrict field input to an integer type
the ‘‘integer’’ keyword can be used. This field
type has three required arguments and an
optional fourth argument. The first three argu-
ments are, in order, the maximum length of the
field in characters, the minimum integer value
allowed for this field, and the maximum integer

value allowed for this field. The fourth optional
argument is an integer default value for this
field. Administrator entries in fields of these
types will be checked by the Sushi engine to
make sure they are between the minimum and
maximum values for the field type. The integer
keyword may be prefixed with ‘‘req−’’ to make
it a required field.

Integer fields may be prefilled with data
by using the ‘‘iscript’’ field type. This field
type is similar to the escript field type, in that it
executes a script which provides a value back to
Sushi to fill in the field. The arguments for the
iscript field type are the maximum length of the
field in characters, the minimum integer value
allowed for this field, the maximum integer
value allowed for this field and the name of the
script to execute, as well as any number of addi-
tional arguments the programmer wishes to pass
to the script. The iscript field type can be made
into a required field by prefixing it with ‘‘req−’’.

Fields may also be restricted to IPv4 and
IPv6 addresses through the field types ‘‘ipv4’’
and ‘‘ipv6’’. Each of these may be prefixed
with ‘‘req−’’ to make it a required field. The
IPv4 field type allows addresses to be entered in
dotted quad format or in hex. Both of these
field types have one argument, which is the
optional prefilled value for the field.

In addition, there are script forms of the
IPv4 and IPv6 field types, called ‘‘ipv4script’’
and ‘‘ipv6script.’’ Both of these may be made
into required fields by prefixing them with
‘‘req−’’. The arguments to these fields are the
name of the script which is to be executed and
any optional arguments the programmer wishes
to pass that script. These fields both behave
similarly to the escript field type.

When programming a field that has
optional arguments, such as the ipv4 field type,
it is important to still use the ‘‘:’’ symbol to sep-
arate the field keyword from the arguments. In
order to produce an ipv4 field which has no data
prefilled into the field the programmer would
create a line such as:

ipv4: IPV4 address

By using combinations of the above field
types, it is possible to create nearly any type of
form that the programmer may wish to build.
Going back to the previous example of creating
a Sushi menu to configure network interfaces,

figures 2 and 3 are the preform and form files to
accomplish this, respectively.

In the preform file (figure 2), a script is
being run which collects the names of different
interfaces on the machine. This script could be
something like:

ifconfig -l | xargs -n 1 echo

Once the administrator has selected an interface
from the list, that interface name will then be
passed to the form.

In the form file (figure 3) each instance of
‘‘@@@1@@@’’ will be replaced with the net-
work interface the administrator had selected
from the preform, say for example ‘‘fxp0’’. The

$NetBSD: preform,v 1.1 2001/04/25 03:43:33 garbled Exp $
script:script1 Select an interface to operate on:

Figure 2. Example of a preform file

$NetBSD: form,v 1.1 2001/04/25 03:43:33 garbled Exp $
noedit:@@@1@@@ Changing interface:
list:both,now,boot Modify interface at boot-time, now, or both?
req-ipv4script:script2,4,@@@1@@@ Interface IPV4 Address
ipv4script:script2,n,@@@1@@@ Interface IPV4 Netmask
ipv4script:script2,b,@@@1@@@ Interface IPV4 Broadcast Address
script:script2,m,@@@1@@@ Media Type
script:script2,o,@@@1@@@ Media Options
ipv6script:script2,6,@@@1@@@ Interface IPV6 Address
iscript:3,0,128,script2,pre,@@@1@@@ Interface IPV6 Prefix Length(netmask)
escript:32,script2,i,@@@1@@@ Interface Network-ID
multilist:link0,link1,link2 Interface link options
iscript:5,1,99999,script2,mtu,@@@1@@@ Interface MTU
iscript:2,0,99,script2,met,@@@1@@@ Interface Metric

Figure 3. Example of a form file

fourth line of the form asks the administrator
for the IPv4 address of the interface. The
ipv4script field type will run the script
‘‘script2’’ giving it the arguments ‘‘4’’ and
‘‘fxp0’’. In this case, the script2 script, runs
‘‘ifconfig fxp0’’ and pulls the address out of
that, prefilling the field for the administrator
with the IPv4 address of the fxp0 interface.

3.4. The script file

The script file is a script or executable
program of some type, that is executued by
Sushi when encountered. The script can be
encountered in one of two ways.

First, if there are no other files found in
the search order, the script will be run when the

menu item is selected. No arguments will be
passed to the script when run in this manner.
Output of the script will be displayed to the
administrator and success or failure status will
be noted.

The second way a script file can be
executed is in response to completing a form.
When a form has been filled out and accepted
by the administrator, Sushi will execute the
script file giving it the data filled in the form as
arguments. Empty fields will be passed to the
script as empty string arguments, ensuring that
field position will always remain the same when
translated to arguments.

The second form of the script file is gen-
erally where the actual actions take place in
Sushi. In the example of modifying a network
interface, the script would interpret the data
from the form and make the actual changes to
the network device or startup files. The script
should make all attempts to fail cleanly with an
error code of 1. Success should be noted with
an exit code of 0.

3.5. The execute file

The execute file ‘‘exec’’ can be used to
execute a simple program located anywhere on
the system. It is generally used to provide sim-
ple access to programs that provide information
about the system. The program will be
executed as it appears in the execute file, with
no arguments being passed or interpreted.

An example of using the execute file,
would be to program a simple menu which dis-
played a list of packages installed on the admin-
istrator’s system, in which case the execute file
would contain: ‘‘pkg_info’’.

3.6. The function file

The function file ‘‘func’’ can be used to
provide access to some of Sushi’s internal func-
tions that are made available to the menu pro-
grammer. The format of this file is the name of
a function, followed by a comma and an
optional single argument which will be passed
to the function as a string.

This can be used to activate simple fea-
tures in Sushi or program more complex ones.
One example of using this, is to turn on the
internal logging functionality of Sushi, which
writes all actions out to a logfile. This is

accomplished by having a function file contain-
ing: ‘‘log_do,on’’.

3.7. The help file

The help file is a simple text document
that will be displayed to the administrator when
the help key is pressed (usually F1). The help
file can be used to give the administrator more
information about what the various menus
available do or what the individual fields mean
in a form. A help file can be located anywhere
in the Sushi tree.

The help file should give a brief descrip-
tion of the menu items or form it is describing.
It should not be used to completely explain a
subject matter to the administrator, rather it
should point him to documents or manual pages
which provide that information. It is a good
idea to provide help files for every menu in the
tree, to allow administrators to understand what
each item does and warn them of potential pit-
falls that may lie ahead.

4. The future of Sushi

Sushi still has a number of goals left to
accomplish before it can be considered complete.
Additional menus and tasks still need to be written.
Eventually, most administration tasks that need to
be performed on a NetBSD system will be auto-
mated in some way by Sushi. Certain areas of
Sushi still need enhancement, such as displaying
the command that will be executed to the adminis-
trator before executing it (to aid a new administra-
tor in learning NetBSD commands).

In addition, due to the design of Sushi, it
would not be difficult to write other processing
engines with a different interface. For example, a
web-based interface or X11 interface could easily
be written for Sushi, reusing most of the parsing
code.

5. Conclusion

Sushi was written to provide a intuitive and
easy to use interface to the NetBSD operating sys-
tem. It is my hope that as Sushi evolves and
encompasses more tasks that administrators do on a
daily basis or while setting up a machine for the
first time, more users will find the learning curve of
NetBSD less daunting. Sushi will one day allow a
novice administrator to completely administrate a
machine, making NetBSD a more user-friendly

operating system in the process.

6. About the Author

Tim Rightnour has been a user of NetBSD
since 1994 and has been a developer for NetBSD
for approximately 3 years. He has worked on pro-
jects ranging from device drivers to the NetBSD
Package System. He is also the author of ClusterIt,
a collection of programs used to automate and
administer large groups of machines.

