Understanding and Dealing with Operator Mistakes in Internet Services *

Kiran Nagaraja, Fdbio Oliveira, Ricardo Bianchini, Richard P. Martin, Thu D. Nguyen
Department of Computer Science
Rutgers University, Piscataway, NJ 08854

{knagaraj, fabiool, ricardob, rmartin, tdnguyen } @cs.rutgers.edu

Abstract

Operator mistakes are a significant source of unavailabil-
ity in modern Internet services. In this paper, we first
characterize these mistakes by performing an extensive
set of experiments using human operators and a realis-
tic three-tier auction service. The mistakes we observed
range from software misconfiguration, to fault misdiag-
nosis, to incorrect software restarts. We next propose
to validate operator actions before they are made visi-
ble to the rest of the system. We demonstrate how to
accomplish this task via the creation of a validation envi-
ronment that is an extension of the online system, where
components can be validated using real workloads before
they are migrated into the running service. We show that
our prototype validation system can detect 66% of the
operator mistakes that we have observed.

1 Introduction

Online services, such as search engines, e-mail, work-
group calendars, and music juke-boxes are rapidly be-
coming the supporting infrastructure for numerous users’
work and leisure. Increasingly, these services are com-
prised of complex conglomerates of distributed hardware
and software components, including front-end devices,
numerous kinds of application packages, authenticators,
loggers, databases, and storage servers.

Ensuring high availability for these services is a chal-
lenging task. First, frequent hardware and software up-
grades keep these systems constantly evolving. Second,
this evolution and the complexity of the services imply
a large number of unforeseen interactions. Third, com-
ponent failure is a common occurrence, since these ser-
vices are typically based on commodity components for
fast deployment and low cost. Given these factors, it
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is not surprising that service failures occur frequently
[12, 19, 20].

In this paper, we characterize and alleviate one sig-
nificant source of service failures, namely operator mis-
takes, in the context of cluster-based Internet services.
Several studies have shown that the percentage of ser-
vice failures attributable to operator mistakes has been
increasing over the last decade [12, 17, 20]. A recent
study of three commercial services showed that opera-
tor mistakes were responsible for 19-36% of the failures,
and, for two of the services, were the dominant source of
failures and the largest contributor to time to repair [19].
An older study of Tandem systems also found that oper-
ator mistakes were a dominant reason for outages [11].

Our work begins with a set of live operator experi-
ments that explore the nature of operator mistakes and
their impact on the availability of a three-tier auction ser-
vice [21]. In each experiment, an operator must either
perform a scheduled maintenance task or a diagnose-
and-repair task. The first category encompasses tasks
such as upgrading software, upgrading hardware, and
adding or removing system components. The second cat-
egory encompasses experiments during which we inject
a fault into the service and ask the operator to discover
and fix the problem.

The operator experiments do not seek to cover all pos-
sible operator tasks or to achieve a complete statistical
characterization of operator behavior. Rather, our goal is
to characterize some of the mistakes that can occur dur-
ing common operator tasks, and to gather detailed traces
of operator actions that can be used to evaluate the ef-
fectiveness of techniques designed to either prevent or to
mitigate the impact of operator mistakes. We are contin-
uing our experiments to cover a wider range of operator
tasks and to collect a larger sampling of behaviors.

So far, we have performed 43 experiments with 21
volunteer operators with a wide variety of skill levels.
Our results show a total of 42 mistakes, ranging from
software configuration, to fault misdiagnosis, to soft-
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ware restart mistakes. Configuration mistakes of differ-
ent types were the most common with 24 occurrences,
but incorrect software restarts were also common with
14 occurrences. A large number of mistakes (19) led to
a degradation in service throughput.

Given the large number of mistakes the operators
made, we next propose that services should validate op-
erator actions before exposing their effects to clients.
The key idea is to check the correctness of operator ac-
tions in a validation environment that is an extension of
the online system. In particular, the components under
validation, called masked components, should be sub-
jected to realistic (or even live) workloads. Critically,
their configurations should not have to be modified when
transitioning from validation to live operation.

To demonstrate our approach and evaluate its efficacy,
we have implemented a prototype validation framework
and modified two applications, a cooperative Web server
and our three-tier auction service, to work within the
framework. Our prototype currently includes two vali-
dation techniques, trace-based and replica-based valida-
tion. Trace-based validation involves periodically col-
lecting traces of live requests and replaying the trace for
validation. Replica-based validation involves designat-
ing each masked component as a “mirror” of a live com-
ponent. All requests sent to the live components are then
duplicated and also sent to the mirrored, masked compo-
nent. Results from the masked components are compared
against those produced by the live component.

We evaluate the effectiveness of our validation ap-
proach by running a wide range of experiments with our
prototype: (1) microbenchmarks that isolate its perfor-
mance overhead; (2) experiments with human operators;
(3) experiments with mistake traces; and (4) mistake-
injection experiments. From the microbenchmarks, we
find that the overhead of validation is acceptable in most
cases. From the other experiments, we find that our pro-
totype is easy to use in practice, and that the combination
of trace and replica-based validation is effective in catch-
ing a majority of the mistakes we have seen. In particu-
lar, using detailed traces of operator mistakes, we show
that our prototype would have detected 28 out of the 42
mistakes observed in our operator experiments.

In summary, we make two main contributions:

e We present detailed data on operator behavior dur-
ing a large set of live experiments with a realistic
service. Traces of all our experiments are avail-
able from http://vivo.cs.rutgers.edu/.
This contribution is especially important given that
actual data on operator mistakes in Internet services
is not publicly available, due to commercial and pri-
vacy considerations. We also analyze and catego-
rize the reasons behind the mistakes in detail.

e We design and implement a prototype validation
framework that includes a realistic validation en-
vironment for dealing with operator mistakes. We
demonstrate the benefits of the prototype through an
extensive set of experiments, including experiments
with actual operators.

We conclude that operators make mistakes even in
fairly simple tasks (and with plenty of detailed informa-
tion about the service and the task itself). We conjecture
that these mistakes are mostly a result of the complex
nature of modern Internet services. In fact, a large frac-
tion of the mistakes cause problems in the interaction be-
tween the service components in the actual processing of
client requests, suggesting that the realism derived from
hosting the validation environment in the online system
itself is critical. Given our experience with the prototype,
we also conclude that validation should be useful for real
commercial services, as it is indeed capable of detecting
several types of operator mistakes.

The remainder of the paper is organized as follows.
The next section describes the related work. Section
3 describes our operator experiments and their results.
Section 4 describes the details of our validation approach
and prototype implementation, and compares our ap-
proach with offline testing and undo in the context of the
mistakes we observed. Section 5 presents the results of
our validation experiments. Finally, Section 6 concludes
the paper.

2 Related Work

Only a few papers have addressed operator mistakes in
Internet services. The work of Oppenheimer et al. [19]
considered the universe of failures observed by three
commercial services. With respect to operators, they
broadly categorized their mistakes, described a few ex-
ample mistakes, and suggested some avenues for dealing
with them. Here, we extend their work by describing all
of the mistakes we observed in detail and by designing
and implementing a prototype infrastructure that can de-
tect a majority of the mistakes.

Brown and Patterson [6] have proposed “undo” as a
way to rollback state changes when recovering from op-
erator mistakes. Brown [5] has also performed experi-
ments in which he exposed human operators to an imple-
mentation of undo for an email service hosted by a single
node. We extend his results by considering a more com-
plex service hosted by a cluster. Furthermore, our vali-
dation approach is orthogonal to undo in that we hide op-
erator actions from the live service until they have been
validated in a realistic validation environment. We dis-
cuss undo further in Section 4.6.
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A more closely related technique is “offline testing”
[3]. Our validation approach takes offline testing a step
further by operating on components in a validation en-
vironment that is an extension of the live service. This
allows us to catch a larger number of mistakes, as we
discuss in Section 4.6.

The Microvisor work by Lowell et al. [16] isolates on-
line and maintenance parts of a single node, while keep-
ing the two environments identical. However, their work
cannot be used to validate the interaction among compo-
nents hosted on multiple nodes.

Our trace-based validation is similar in flavor to vari-
ous fault diagnosis approaches [2, 10] that maintain sta-
tistical models of “normal” component behavior and dy-
namically inspect the service execution for deviations
from this behavior. These approaches typically focus on
the data flow behavior across the systems components,
whereas our trace-based validation inspects the actual re-
sponses coming from components and can do so at var-
ious semantic levels. We also use replica-based valida-
tion, which compares the responses directly to those of
“correct” live components.

Replication-based validation has been used before to
tolerate Byzantine failures and malicious attacks, e.g.
[8, 9, 13]. In this context, replicas are a permanent part
of the distributed system and validation is constantly per-
formed through voting. In contrast, our approach focuses
solely on dealing with operator mistakes, does not re-
quire replicas and validation during normal service exe-
cution, and thus can be simpler and less intrusive.

Other orthogonal approaches to dealing with opera-
tor mistakes or reducing operator intervention have been
studied [1, 4, 14]. For example, Ajmani et al. [1] elimi-
nate operator intervention in software upgrades, whereas
Kiciman et al. [14] automate the construction of correct-
ness constraints for checking software configurations.

3 Operator Actions and Mistakes

In this section, we analyze the maintenance and
diagnose-and-repair experiments that we performed with
human operators and our three-tier auction service. We
start by describing the experimental setup, the actual ex-
periments, and the operators who volunteered to partici-
pate in our study. After that, we detail each experiment,
highlighting the mistakes made by the operators.

3.1 Experimental setup

Our experimental testbed consists of an online auction
service modeled after EBay. The service is organized
into three tiers of servers: Web, application, and database
tiers. We use two machines in the first tier running the

Apache Web server (version 1.3.27), five machines run-
ning the Tomcat servlet server (version 4.1.18) in the
second tier and, in the third tier, one machine running
the MySQL relational database (version 4.12). The Web
server and application server machines are equipped with
a 1.2 GHz Intel Celeron processor and 512 MB of RAM,
whereas the database machine relies on a 1.9 GHz Pen-
tium IV with 1 GB of RAM. All machines run Linux
with kernel 2.4.18-14.

The service requests are received by the Web servers
and may flow towards the second and third tiers. The
replies flow through the same path in the reverse direc-
tion. Each Web server keeps track of the requests it sends
to the application servers. Each application server main-
tains the soft state associated with the client sessions that
it is currently serving. This state consists of the auctions
of interest to the clients. All dynamic requests belong-
ing to a session need to be processed by the same ap-
plication server, thereby restricting load balancing. A
heartbeat-based membership protocol is used to recon-
figure the service when nodes become unavailable or are
added to the cluster.

A client emulator is used to exercise the service. The
workload consists of a number of concurrent clients that
repeatedly open sessions with the service. Each client is-
sues a request, receives and parses the reply, “thinks” for
a while, and follows a link contained in the reply. A user-
defined Markov model determines which link to follow.
During our experiments, the overall load imposed on the
system is 200 requests/second, which is approximately
35% of the service’s maximum achievable throughput.
The code for the service and client emulator is publicly
available from the DynaServer project [21] at Rice Uni-
versity.

Another important component of our experimental
setup is a monitoring infrastructure that includes a shell
that records and timestamps every single command (and
the corresponding result) executed by the operator. The
infrastructure also measures the system throughput on-
the-fly, presenting it to the operator so that he/she can
visually assess the impact of his/her actions on the sys-
tem performance.

3.2 Experiments with operators

Our experiments can be categorized as either scheduled
maintenance tasks or diagnose-and-repair tasks. Table 1
summarizes the classes of experiments.

Before having the operator interact with the system,
we provide him/her with conceptual information on the
system architecture, design, and interface. We convey
this information verbally and through a graphical repre-
sentation of the system which can be consulted at any
time during an experiment. We also give the operator two

USENIX Association OSDI *04: 6th Symposium on Operating Systems Design and Implementation

63



Task Category
Scheduled maintenance

Subcategory

Node addition

Data migration

Software upgrade
Software misconfiguration
Application crash/hang
Hardware fault

Diagnose-and-repair

Table 1: Categories of experiments.

sets of written instructions: general directions concern-
ing the system interface and specific instructions about
the task the operator will be doing. The operator is al-
lowed to refer to both sets during the experiment.

A total of 21 people with varying skill levels volun-
teered to act as operators in our experiments: 14 graduate
students, 2 operations staff members, and 5 professional
programmers. The students and staff are from our own
department; one of the staff members is the system ad-
ministrator for one of our large clusters, and the other is
the database administrator of our department. Two of the
programmers used to work as system administrators, and
four of them currently work for the Ask Jeeves commer-
cial search engine.

To investigate the distribution of operator mistakes
across different skill levels, we divide our operators into
three categories: novice, intermediate, and expert. We
deem the staff members and three of the professional
programmers to be experts based on their experience in
system administration. The remaining two programmers
were classified as intermediate. Finally, we asked the
graduate students to complete a questionnaire designed
to assess their operation experience. Based on their re-
sponses, we ended up with five experts, five intermedi-
ates, and eleven novices. In Section 3.9, we discuss the
breakdown of mistakes across these operator categories.

We gave the novice operators a “warm up” task involv-
ing the addition of a new Web server to the system to give
them the opportunity to understand the system configu-
ration and tier-to-tier communication issues, as well as
crystallize the information we had conveyed orally. For
this task, we provided very detailed instructions. (In our
study, we do not take the mistakes made in this warm up
task into consideration.)

All sets of instructions, the questionnaire, and the
operator behavior data we collected are available at
http://vivo.cs.rutgers.edu/.

3.3 Maintenance task 1:
add an application server

In this experiment we ask the operator to add a Tom-
cat server to the second tier. In a nutshell, the operator
is supposed to copy the Tomcat binary distribution from

any machine in the second tier to the specified new ma-
chine and configure it properly, so that it can exchange
information with the database in the third tier. In ad-
dition, it is necessary to correctly reconfigure and restart
the Web servers for the newly added Tomcat server to ac-
tually receive and process requests. The experiment is set
up in such a way that the system has enough resources to
handle the load imposed by the client emulator; hence,
the new Tomcat server does not imply any increase in
throughput.

This experiment has been conducted with eight novice
operators, four intermediates, and two experts, with an
average time per run of one hour. Two of the operators
were completely successful in that they did not make
any configuration mistakes or affect the system’s abil-
ity to service client requests more than what was strictly
necessary. On the other hand, the other operators made
mistakes with varying degrees of severity. The next few
paragraphs discuss these mistakes.

Apache misconfigured. This was the most common
mistake. We recognized four different flavors of it, all of
them affecting the system differently. In the least severe
misconfiguration, three novice operators did not make
all the needed modifications to the Apache configuration
file. In particular, they added information about the new
machine to the file, but forgot to add the machine’s name
to the very last line of file, which specifies the Tomcat
server names. As a result, even though Tomcat was cor-
rectly started on the new machine, client requests were
never forwarded to it. The operators who made this mis-
take either did not spend any time looking at the Apache
log files to make sure that the new Tomcat server was
processing requests or they analyzed the wrong log files.
Although this misconfiguration did not affect the system
performance immediately, it introduced a latent error.

Another flavor of Apache misconfiguration was more
subtle and severe in terms of performance impact. One
novice operator introduced a syntax error when editing
the Apache configuration file that caused the module
responsible for forwarding requests to the second tier
(mod_jk) to crash. The outcome was the system’s in-
ability to forward requests to the second tier. The opera-
tor noticed the problem by looking desperately at our per-
formance monitoring tool, but could not find the cause
after 10 minutes trying to do so. At that point, he gave
up and we told him what the problem was.

One more mistake occurred when one expert and one
novice modified the configuration file but left two iden-
tical application server names. This also made mod_jk
crash and led to a severe throughput drop: a decrease of
about 50% when the mistake affected one of the Web
servers, and about 90% when both Web servers were
compromised. The operators who made this mistake
were not able to correct the problem for 20 minutes on
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average. After this period, they decided not to continue
and we showed them their mistakes.

Finally, one intermediate operator forgot to modify the
Apache configuration file altogether to reflect the addi-
tion of the new application server. This mistake resulted
in the inability of Apache to forward requests to the new
application server. The operator was able to detect his
mistake and fix the problem in 24 minutes.

Apache incorrectly restarted. In this case, one interme-
diate operator reconfigured one Apache distribution and
launched the executable file from another (there were two
Apache distributions installed on the first-tier machines).
This mistake made the affected Web server become un-
able to process any client requests.

Bringing down both Web servers. In a few experi-
ments, while reconfiguring Apache to take into account
the new application server, two novice and three interme-
diate operators unnecessarily shutdown both Web servers
at the same time and, as a consequence, made the whole
service unavailable.

Tomcat incorrectly started. One novice and one ex-
pert were unable to start Tomcat correctly. In particular,
they forgot to obtain root privileges before starting Tom-
cat. The expert operator started Tomcat multiple times
without killing processes remaining from the previous
launches. This scenario led to Tomcat silently dying.
To make matters worse, since the heartbeat service —
which is a separate process — was still running, the Web
servers continued forwarding requests to a machine un-
able to process them. The result was substantially de-
graded throughput. The operators corrected this mistake
in 22 minutes on average.

3.4 Maintenance task 2:
upgrade the database machine

The purpose of this experiment is to migrate the MySQL
database from a slow machine to a powerful one, which
is equipped with more memory, a faster disk, and a faster
CPU. (Note that we use the fast machine in all other ex-
periments.) Because the database machine is the bottle-
neck of our testbed and the system is saturated when the
slow machine is used, the expected outcome of this ex-
periment is higher service throughput.

This experiment involves several steps: (1) compile
and install MySQL on the new machine; (2) bring the
whole service down; (3) dump the database tables from
the old MySQL installation and copy them to the new
machine; (4) configure MySQL properly by modifying
the my.cnf file; (5) initialize MySQL and create an
empty database; (6) import the dumped files into the
empty database; (7) modify the relevant configuration
files in all application servers so that Tomcat can forward

requests to the new database machine; and (8) start up
MySQL, all application servers, and Web servers.

Four novices, two intermediates, and two experts per-
formed this task; the average time per run was 2 hours
and 20 minutes. We next detail the mistakes observed.

No password set up for MySQL root user. One novice
operator failed to assign a password to the MySQL root
user, during MySQL configuration. This mistake led to
a severe security vulnerability, allowing virtually anyone
to execute any operation on the database.

MySQL user not given necessary privileges. As part
of the database migration, the operators need to ensure
that the application servers are able to connect to the
database and issue the appropriate requests. This in-
volves reconfiguring Tomcat to forward requests to the
new database machine and granting the proper privileges
to the MySQL user that Tomcat uses to connect to the
database. One novice and one expert did not grant the
necessary privileges, preventing all application servers
from establishing connections to the database. As a re-
sult, all Tomcat threads eventually got blocked and the
whole system became unavailable. The expert managed
to detect and correct the problem in 45 minutes. The
novice did not even try to identify the problem.

Apache incorrectly restarted. One intermediate opera-
tor launched Apache from the wrong distribution, while
restarting the service. Again, this mistake caused the ser-
vice to become completely unavailable. It took the oper-
ator 10 minutes to detect and fix the mistake.

Database installed on the wrong disk. The power-
ful machine had two disks: a 15K RPM SCSI disk and
a 7200 RPM IDE disk. Given that the database ma-
chine was known to be the bottleneck of our system and
database migration was needed so that the service could
keep up with the load imposed by the emulated clients,
the operators should not have hesitated to install MySQL
on the faster SCSI disk. One novice operator installed
the database on the slow disk, limiting the throughput
that can be achieved by the service. The operator never
realized his mistake.

3.5 Maintenance task 3:
upgrade one Web server

In this experiment, the operators are required to upgrade
Apache from version 1.3.27 to version 2.0.49 on one
machine. In a nutshell, this involves downloading the
Apache source code from the Web, compiling it, config-
uring it properly, and integrating it into the service.

Two intermediate and three expert operators partici-
pated in this maintenance experiment. The average time
per run was about 2 hours. We describe the observed
mistakes next.
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Apache misconfigured. Before spawning the Web
server processes, Apache version 2.0.49 automatically
invokes a syntax checker that analyzes the main configu-
ration file to make sure that the server will not be started
in the event of configuration syntax errors. This feature is
extremely useful to avoid exposing operator mistakes to
the live system. In our experiments, the syntax checker
actually caught three configuration mistakes involving
the use of directives no longer valid in the newer Apache
version. However, as the checker is solely concerned
with syntax, it did not catch some other configuration
mistakes. One expert launched Apache without speci-
fying in the main configuration file how Apache should
map a given URL to a request for a Tomcat servlet.
This misconfiguration led to the inability of the upgraded
Apache to forward requests to the second tier, causing
degraded throughput. The operator fixed this problem
after 10 minutes of investigation.

In addition, a latent error resulted from two other mis-
configurations. Two experts and one intermediate config-
ured the new Apache server to get the HTML files from
the old Apache’s directory tree. A similar mistake was
made with respect to the location of the heartbeat service
program. The latent error would be activated if someone
removed the files belonging to the old distribution.

Yet another mistake occurred when one expert cor-
rectly realized that the heartbeat program should be ex-
ecuted from the new Apache’s directory tree, but incor-
rectly specified the path for the program. In our setup, the
heartbeat program is launched by Apache. Because of
the wrong path, mod_jk crashed when the new Apache
was started. This made the new server unable to pro-
cess requests for dynamic content, resulting in through-
put degradation. The operator was able to fix this prob-
lem in 13 minutes.

3.6 Diagnose-and-repair task 1:
Web server misconfiguration and crash

To observe the operator behavior resulting from latent
errors that become activated, we performed experiments
in which an Apache server misconfiguration and later
crash are injected into the system. This sequence of
events mimics an accidental misconfiguration or corrup-
tion of the configuration file that is followed by the need
to restart the server.

In more detail, the system starts operating normally.
At some point after the experiment has begun, we modify
the configuration file pertaining to mod_jk in one of the
Apache servers, so that a restart of the server will cause
a segmentation fault. Later, we crash the same server to
force the operator to restart it. As soon as the server is ab-
normally terminated, the throughput decreases to half of
its prior value. The operators’ task is to diagnose and fix

the problem, so that normal throughput can be regained.

This experiment was presented to three novices, three
intermediates, and two experts, and the average time per
run was 1 hour and 20 minutes. Two operators were able
to both understand the system’s malfunctioning and fix it
in about 1 hour and 15 minutes. All operators — even the
successful ones — made some mistakes, most of which
aggravated the problem. All of the mistakes were caused
by misdiagnosing the source of the service malfunction.

Misdiagnosis. Due to misdiagnosis, operators of all
categories unnecessarily modified configuration files all
over the system, which, in one case, caused the through-
put to drop to zero. The apparent reason for such be-
havior was the fact that some operators were tempted
to literally interpret the error messages appearing in the
log files, instead of reasoning about what the real prob-
lem was. In other words, when reading something like
“Apache seems to be busy; you should increase the Max-
Clients parameter...” in a log file, some operators per-
formed the suggested action without further reasoning.

We also noticed the mistake of starting the wrong
Apache distribution (as previously discussed) made by
one novice and one intermediate, severely degrading the
throughput or making it drop to zero. A couple of opera-
tors even suggested the replacement of hardware compo-
nents, as a result of incorrectly diagnosing the problem
as a disk or a memory fault.

3.7 Diagnose-and-repair task 2:
application server hang

In this experiment, we inject another kind of fault: we
force Tomcat to hang on three second-tier machines. The
system is working perfectly until we perturb it.

We conducted this experiment with two novices, one
intermediate, and one expert operator. All operators were
able to detect the fault and fix the problem after 1 hour
and 30 minutes on average. However, we noticed some
mistakes as discussed next.

Tomcat incorrectly restarted. One novice operator
restarted one of the two working servlet servers without
root privileges, causing it to crash. This caused the ser-
vice to lose yet another servlet server and the remaining
one became overloaded. The operator was only able to
detect the crashed Tomcat server 20 minutes later.

Database unnecessarily restarted. While trying to di-
agnose the problem, one novice operator unnecessarily
restarted the database server. As the database machine
is not replicated, bringing it down results in the system’s
inability to process most requests.

MySQL denied write privileges. One intermediate op-
erator, while trying to diagnose the problem, decided to
thoroughly verify the MySQL files. The operator in-

66

OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USENIX Association



Operator Mistakes Summary
— C ies of Mistakes

EWrong choice of HW component (1)
Unnecessary HW replacement (3) M
Unnecessary restart of SW component (3) H
[ Start of wrong SW version (8) H
M Incorrect restart (3) H
O Global misconfiguration (16) n

|

3

®

M Local misconfiguration (8) H

mlees B

Increased  Incomplete Security ~ Web server  Reduced Potential
MTTR p ially system database
integration inaccessible  capacity crash
Impact of Operator Mistake

>

Number of Occurrences

IS

g

Degraded Service

Breakdown of Mistakes per Operator Category

Categories of Operators

W Expert
08 OlIntermediate [
L @ Novice —

| —
e HE NN -

Local Global Incorrect Start of wrong  Unnecessary Unnecessary Wrong choice
misconfig misconfig restart SW version  restart of SW HW of HW
component  replacement  component

S

Normalized Number of Mistakes

Mistake

Figure 1: Operator mistakes and their impact.

advertently write-protected the whole MySQL directory
tree, leading to MySQL’s inability to write to the tables.
This mistake did not cause any immediate effect because
the files containing the tables had already been opened by
the database server. However, this mistake led to a latent
error that would arise if, for some reason, the database
had to be restarted.

3.8 Diagnose-and-repair task 3:
disk fault in the database machine

In this experiment, we use the Mendosus fault-injection
and network-emulation tool [15] to force a disk timeout
to occur periodically in the database machine. The time-
outs are injected according to an exponential inter-arrival
distribution with an average rate of 0.03 occurrences per
second. Since the database is the bottleneck, the disk
timeouts substantially decrease the service throughput.

Four experts participated in this experiment. Of these
four operators, three were unable to discover the problem
after interacting with the system for 2 hours on average,
and the other one correctly diagnosed the fault in 34 min-
utes. Throughout their interaction with the service, the
unsuccessful operators made mistakes caused by misdi-
agnosing the real root of the problem.

Misdiagnosis. Two operators ended up diagnosing the
fault as an “intermittent network problem” between the
second and third tiers. Before the operators reached that
conclusion, we had observed other incorrect diagnoses
on their part such as DoS attack, Tomcat misconfigura-
tion, and lack of communication between the first and
second tiers. The other operator was suspicious of a
MySQL misconfiguration and tried to adjust some pa-
rameters of the database and subsequently restarted it.
Under the influence of error messages reported in the
log files, one operator changed, in two application server
machines, the port which Tomcat was using to receive re-
quests from Apache; as a result, the affected application
servers became unreachable. The other two operators

Figure 2: Operator mistakes per operator category.

looked at the main kernel log on the database machine
and saw several messages logged by the SCSI driver re-
porting the disk malfunction. Unfortunately, they ig-
nored such messages and did not even suspect that the
disk was misbehaving.

3.9 Summary

Figures 1 and 2 summarize our findings. The X-axis in
Figure 1 indicates the effects of the different operator
mistakes, whereas the stacked bars show the number of
occurrences of the mistake categories listed in the legend.
The legend also shows the number of mistakes in each
mistake category. In the figure, “incomplete component
integration” refers to scenarios in which an added com-
ponent is not seen by other components, “wrong choice
of HW component” refers to installing the database on
a slow disk, “unnecessary HW replacements” refers to
misdiagnosing service malfunction as a hardware prob-
lem, and “unnecessary restart of SW component” refers
to restarts of the database server. Overall, we observed
42 mistakes. In some cases, a single operator made more
than one mistake during a particular experiment.

As we indicated before, misconfiguration was the most
frequent mistake in our experiments. In Figure 1, we
distinguish between local and global misconfiguration
mistakes. Global misconfiguration refers to inconsisten-
cies in one or more configuration files compromising the
communication between system components, whereas
local misconfiguration refers to misconfigurations that
affect only one component of the system.

A local misconfiguration is a configuration mistake
that caused Tomcat to crash, led to a security vulnera-
bility, or could potentially prevent Apache from servic-
ing requests. Global misconfigurations involve mistakes
that: (1) prevented one or both Web servers from either
forwarding requests to any application server machine,
or sending requests to a newly added application server;
(2) prevented the application servers from establishing
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connections with the database server; (3) prevented one
or both Web servers from processing requests; and (4)
led one or both Web servers to forward requests to a non-
existing application server.

In Figure 2, we show the distribution of mistakes
across our three operator categories. Given that no op-
erator took part in all types of experiments, we normal-
ized the number of mistakes by dividing it by the to-
tal number of experiments in which the corresponding
operator category participated. As the figure illustrates,
experts made mistakes (especially misconfigurations) in
a significant fraction of their experiments. The reason
for this counter-intuitive result is that the hardest exper-
iments were performed mostly by the experts, and those
experiments were susceptible to local and global miscon-
figuration.

As we discuss in detail later, our validation approach
would have been able to catch the majority (66% or
28 mistakes) of the 42 mistakes we observed. The re-
maining 14 mistakes, including unnecessary software
restarts and unnecessary hardware replacements, were
made by expert (6 mistakes), intermediate (4 mistakes),
and novice (4 mistakes) operators.

4 Validation

Given that even expert operators make many mistakes,
we propose that operator actions should be validated be-
fore their effects are exposed to end users. Specifically,
we build a validation infrastructure that allows compo-
nents to be validated in a slice of the online system itself,
rather than being tested in a separate offline environment.
We start this section with an overview of our pro-
posed validation approach. Then, we describe a proto-
type implementation and our experience in modifying
the three-tier auction service to include validation. We
have also implemented a validation framework for the
PRESS clustered Web server [7]. PRESS is an interest-
ing counter-point to our multithreaded auction service as
it is a single-tier, event-based server. Our earlier tech-
nical report [18] discusses this implementation. Finally,
we close the section with a discussion of how operators
can still make mistakes even with validation and with a
comparison of validation with offline testing and undo.

4.1 Overview

A validation environment should be closely tied to the
online system for three reasons: (1) to avoid latent er-
rors that escape detection during validation but become
activated in the online system, because of differences be-
tween the validation and online environments; (2) to load
components under validation with as realistic a work-
load as possible; and (3) to enable operators to bring

validated components online without having to change
any of the components’ configurations, thereby minimiz-
ing the chance of new operator mistakes. On the other
hand, the components under validation, which we shall
call masked components for simplicity, must be isolated
from the live service so that incorrect behaviors cannot
cause service failures.

To meet the above goals, we divide the cluster host-
ing a service into two logical slices: an online slice that
hosts the live service and a validation slice where com-
ponents can be validated before being integrated into the
live service. Figure 3 shows this validation architecture
in the context of the three-tier auction service. To protect
the integrity of the live service without completely sepa-
rating the two slices (which would reduce the validation
slice to an offline testing system), we erect an isolation
barrier between the slices but introduce a set of connect-
ing shunts. The shunts are one-way portals that dupli-
cate requests and replies (i.e., inputs and outputs) pass-
ing through the interfaces of the components in the live
service. Shunts either log these requests and replies or
forward them to the validation slice. Shunts can be eas-
ily implemented for either open or proprietary software,
as long as the components’ interfaces are well-defined.

We then build a validation harness consisting of proxy
components that can be used to form a virtual service
around the masked components as shown by the dashed
box in Figure 3. Together, the virtual service and the
duplication of requests and replies via the shunts allow
operators to validate masked components under realistic
workloads. In particular, the virtual service either replays
previously recorded logs or accepts forwarded duplicates
of live requests and responses from the shunts, feeds ap-
propriate requests to the masked components, and ver-
ifies that the outputs of the masked components meet
certain validation criteria. Proxies can be implemented
by modifying open source components or wrapping code
around proprietary software with well-defined interfaces.

Finally, the validation harness uses a set of compara-
tor functions to test the correctness of the masked com-
ponents. These functions compute whether some set of
observations of the validation service match a set of cri-
teria. For example, in Figure 3, a comparator function
might determine if the streams of requests and replies
going across the pair of connections labeled A and those
labeled B are similar enough (A to A and B to B) to de-
clare the masked Web server as working correctly. If any
comparison fails, an error is signaled and the validation
fails. If after a threshold period of time all comparisons
match, the component is considered validated.

Given the above infrastructure, our approach is con-
ceptually simple. First, the operator places the compo-
nents to be worked on in the validation environment, ef-
fectively masking them from the live service. The oper-
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Figure 3: The three-tier auction service with validation. In this particular case, a single component, a Web server; is
being validated inside the validation slice. The validation harness uses one or more client proxies to load the Web
server and one or more application server proxies to field requests for dynamic content from the Web server.

ator then acts on the masked components just as he/she
would in the live service. Next, the operator instructs the
validation harness to surround the masked components
with a virtual service, load the components, and check
their correctness. If the masked components pass this
validation, the operator calls a migration function that
fully integrates the components into the live service.

4.2 Slice isolation

A critical challenge in building a validation infrastruc-
ture is how to isolate the slices from each other yet allow
validated components to be migrated to the live service
without requiring any changes to their internal state and
configuration parameters. Our current implementation
achieves this isolation and transparent migration at the
granularity of an entire node by running nodes over a
virtual network created using Mendosus [15].

Given the virtual network, it is fairly easy to impose
the needed isolation: Mendosus was designed to inject
network faults that would partition a network. Thus, we
simply instruct Mendosus to partition our system into
two parts to isolate the two slices from each other. Men-
dosus runs on each node, and, when enforcing a network
partition, drops all packets, including multicast packets,
that would normally flow between nodes separated by the
partition. This enforced partition means that nodes in the
validation slice can see each other but not the ones in the
online slice and vice-versa. (To tunnel through this bar-
rier, the shunts forward information to special nodes that
have the privilege to bypass the network partition.)

Our virtual network then allows a node to be migrated
between the slices without requiring any changes to the
node’s network configurations, as long as the software

components comprising the service can dynamically dis-
cover each other and automatically adjust the service
configuration to include all components running in a
slice, which is a characteristic of all production-level ser-
vices. This transparent network-level migration is partic-
ularly critical for detecting the global misconfiguration
mistakes described in Section 3.9. Migrating live com-
ponents without modifying their internal state is more
difficult. We detail how we accomplish this migration
below.

4.3 Validation strategies

An inherently difficult problem for validation is how to
drive masked components with realistic workloads and
validate their correctness. Consider the validation of a
single component. One possible approach is to create a
demanding workload to stress-test the component. Such
an approach lends itself to trace-based techniques, where
the requests and replies passing through the shunts of an
equivalent live component are logged and later replayed.
During the replay, the logged replies can be compared to
the replies produced by the masked component. A sec-
ond approach, replica-based, is to use the current offered
load on the live service, where requests passing through
the shunts of an equivalent live component are duplicated
and forwarded in real-time to the validation harness to
drive the masked component. The shunts also capture
the replies generated by the live component and forward
them to the harness, which compares them against the
replies coming from the masked component.

The core differences between the two approaches are
the assumptions about the request stream and the con-
nections between components. For example, logged (or
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even synthetic) request streams that exercise known dif-
ficult cases may be preferable to a light live load. On
the other hand, replica-based validation may be neces-
sary if the service or data sets have changed sufficiently
that previously collected traces are no longer applicable.

In reality, these two strategies are not mutually exclu-
sive; a particular validation might apply one or both ap-
proaches before concluding that a masked component is
working properly. Further, we can use the same support-
ing infrastructure to implement both approaches: data
collected by the shunts can either be saved to disk or
forwarded directly to the validation slice. Thus, build-
ing both of these approaches in the same system is quite
desirable, as long as there is sufficient storage bandwidth
(trace collection) and network bandwidth (live forward-
ing). We explore the resource requirements of these ap-
proaches further in Section 5.1.

State management. An important issue related to the
validation strategy is component state management. In
our work, component state is any application-defined,
externalizable data (either hard or soft), accrued during
service execution that can affect subsequent responses.
Specifically, our validation system faces two state man-
agement issues: (1) how to initialize a masked compo-
nent with the appropriate internal state so that it can han-
dle the validation workload correctly, and (2) how to mi-
grate a validated component to the online slice without
migrating state that may have accumulated during vali-
dation but is not valid for the live service.

The way we initialize the masked component depends
on the validation strategy. In trace-based validation, a
masked component is initialized with state recorded in
the trace. We record this state before trace capture, but
after we halt the component to be traced by temporarily
buffering all incoming requests in the shunts and allow-
ing all current requests to complete. In replica-based val-
idation, the masked component is initialized with a copy
of the state of the associated live component. We make
the copy exactly as in trace-based validation, except that
the state is forwarded to the masked component instead
of being saved to disk.

In general, this strategy should be applicable to any
component that supports the checkpointing of its state,
including proprietary systems. However, care must be
taken to avoid capturing state under overload conditions,
when sufficient buffering may not exist to enable the mo-
mentary halting of the component. Further, it may be im-
possible to capture a large amount of state, such as that
of a database, online. In this case, the component may
need to be removed from active service before its state
can be captured.

After validation, the operator can move a component
holding only soft state to the online slice by restarting
it and instructing Mendosus to migrate it to the online

slice, where it will join the service as a fresh instance of
that component type. For components with hard state,
migration to the online slice may take two forms: (1) if
the application itself knows how to integrate a new com-
ponent of that type into the service (which may involve
data redistribution), the component can be migrated with
no state similar to components with only soft state; (2)
otherwise, the operator must restart the component with
the appropriate state before migrating it.

Multi-component validation. While the above discus-
sion assumes the validation of a single component for
simplicity, in general we need to validate the interac-
tion between multiple components to address many of
the global configuration mistakes described in Section 3.
For example, when adding a new application server to
the auction service, the Web servers’ list of application
servers must expand to include the new server. If this list
is not updated properly, requests will not be forwarded
to the new server after a migration, introducing a latent
error. To ensure that this connection has been configured
correctly, we must validate the existing Web servers and
the new application server concurrently.

We call the above multi-component validation and cur-
rently handle it as follows. Suppose the operator needs
to introduce a new component that requires changes to
the configurations of existing live components, such as
the adding of an application server. The operator would
first introduce the new component to the validation slice
and validate its correctness as discussed above. Next,
each component from the live service whose configura-
tion must be modified (so that it can interact properly
with this new component) is brought into the validation
slice one-by-one and the component pair is validated to-
gether to ensure their correct interoperability. After this
validation, the existing component is migrated back into
the online slice; the new component is only migrated
to the online slice after checking its interactions with
each existing component whose configurations had to be
changed.

Note that there are thus at most two components un-
der validation at any point in time in the above multi-
component validation approach. In general, multi-
component validation could be extended to include up
to k additional components, but so far we have not found
it necessary to have k& > 1.

4.4 Implementing validation

Setting up the validation infrastructure involves modi-
fying the online slice to be able to shunt requests and
responses, setting up the harness composed of proxies
within the validation slice, defining appropriate com-
parators for checking correctness, and implementing
mechanisms for correct migration of components across
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the two slices. In this section, we first discuss these is-
sues and then comment on their implementation effort
with respect to the auction service.

Shunts. We have implemented shunts for each of the
three component types in the three-tier auction service.
This implementation was straightforward because all
inter-component interactions were performed using well-
defined middleware libraries. Figure 3 shows that client
requests and the corresponding responses are intercepted
within the JK module on the Apache side. The cur-
rent implementation does not intercept requests to static
content, which represent a small percentage of all re-
quests. The requests and responses to and from the
database, via the Open DataBase Connectivity (ODBC)
protocol, are intercepted in Tomcat’s MySQL driver as
SQL queries and their corresponding responses. In addi-
tion to duplicating requests and replies, we also tag each
request/reply pair with a unique identifier. This ID is
used by the validation harness to identify matching re-
quests and responses generated by a masked component
with the appropriate logged or forwarded requests and
responses from the live system to which the comparator
functions can be applied.

Validation harness. The validation harness needs to im-
plement a service around the masked components in or-
der to exercise them and check their functionalities. For
example, to validate an application server in the auction
service, the validation harness would need to provide at
least one Web server and one database server to which
the masked application server can connect.

One approach to building a service surrounding a
masked component is to use a complete set of real (as
opposed to proxy) components. This is reminiscent of
offline testing, where a complete model of the live sys-
tem is built. Although this approach is straightforward,
it has several disadvantages. First, we would need to de-
vote sufficient resources to host the entire service in the
validation slice. Second, we would need a checkpoint of
all service state, such as the content of the database and
session state, at the beginning of the validation process.
Finally, we would still need to fit the appropriate com-
parators into the real components.

To address the above limitations, we built lighter
weight component proxies that interact with the masked
component without requiring the full service. The prox-
ies send requests to the masked component and check
the replies coming from it. For services in which com-
municating components are connected using a common
connection mechanism, such as event queues [7, 22], it
is straightforward to realize the entire virtual service as
collection of such queues in a single proxy. For heteroge-
neous systems like the auction service however, the tiers
connect to each other using a variety of communication

mechanisms. Thus, we have built different proxies rep-
resenting the appropriate connection protocols around a
common core.

The auction service required four different prox-
ies, namely client, Web server, application server, and
database proxies. Each proxy typically implements three
modules: a membership protocol, a service interface, and
amessaging core. The membership protocol is necessary
to guarantee dynamic discovery of nodes in the valida-
tion slice. The service interface is necessary for correct
communication with interacting components. The com-
mon messaging core takes shunted or logged requests to
load the masked components and responds to requests
made by the masked components.

Regarding state management, we currently focus
solely on the soft state stored (in main memory) by ap-
plication servers, namely the auctions of interest to users.
To handle this state, we extend the application servers to
implement an explicit state checkpointing and initializa-
tion APIL. This API is invoked by the proxies to initialize
the state of the masked application server with that of an
equivalent live component.

Our experience indicates that the effort involved in im-
plementing proxies is small and the core components are
easily adaptable across services. Except for the messag-
ing core, which is common across all proxies, the proxies
for the auction service were derived by adding/modifying
232, 307, and 274 non-comment source lines (NCSL) to
the Rice client emulator [21], the Apache Web server,
and the Tomcat application server, respectively. The
NCSL of the application server also includes the code
to implement the state management API. The MySQL
database proxy was written from scratch and required
only 384 NCSL.

Comparator functions. Our current set of compara-
tor functions includes a throughput-based function, a
flow-based function, and a set of component-level data
matching functions. The throughput-based function val-
idates that the average throughput of the masked compo-
nent is within the threshold of an expected value. The
flow-based function ensures that requests and replies in-
deed flow across inter-component connections that are
expected to be active. Finally, the data matching func-
tions match the actual contents of requests and replies.
Due to space limitations, we only consider this last type
of comparator function in this paper. We describe below
how we handle the cases where exact matches are not
possible because of non-determinism.

Non-determinism. Non-determinism can take several
forms: in the timing of responses, in the routing of re-
quests, and in the actual content of responses. We found
that timing and content non-determinism were not sig-
nificant problems in the applications we studied. On
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the other hand, because data and components are repli-
cated, we found significant non-determinism in the rout-
ing of requests. For example, in the auction service, a
Web server can forward the first request of a session to
any of the application servers. In PRESS, routing non-
determinism can lead to a local memory access, sending
the request to a remote node, or to the local disk. The
proxies need to detect that these behaviors are equiva-
lent and possibly generate the appropriate replies. Fortu-
nately, implementing this detection and generation was
quite simple for both our services.

4.5 Example validation scenario

To see how the above pieces fit together, consider the
example of an operator who needs to upgrade the oper-
ating system of a Web server node in the auction service
(Figure 3). The operator would first instruct Mendosus
to remove the node from the online slice, effectively tak-
ing it offline for the upgrade. Once the upgrade is done
and the node has been tested offline, e.g. it boots and
starts the Web server correctly, the operator would in-
struct Mendosus to migrate the node to the validation
slice. Next, the validation harness would automatically
start an application server proxy to which the Web server
can connect. Once both components have been started,
they will discover each other through a multicast-based
discovery protocol and interconnect to form a virtual ser-
vice. The harness would also start a client proxy to load
the virtual service. Under trace-based validation, the har-
ness would then replay the trace, with the client proxy
generating the logged requests and accepting the corre-
sponding replies (shown as A in Figure 3), and the appli-
cation server proxy accepting requests for dynamic con-
tent from the Web server and generating the appropri-
ate replies from logged data (shown as B). The harness
would also compare all messages from the Web server
to the application server and client proxies against the
logged data. Once the trace completes without encoun-
tering a comparison mismatch, the harness would de-
clare the Web server node validated. Finally, the operator
would place the node back into the live service by restart-
ing it and instructing Mendosus to migrate it to the online
slice without further changing any of its configurations.

4.6 Discussion

Having described validation in detail, we now discuss the
generality and limitations of our prototype, and some re-
maining open issues. We also compare our approach to
offline testing and undo.

Generality. While our implementations have been done
only in the context of two systems, the auction service

and the PRESS server, we believe that much of our in-
frastructure is quite general and reusable. First, the auc-
tion service is implemented by three widely used servers:
Apache, Tomcat, and MySQL. Thus, the proxies and
shunts that we have implemented for the auction service
should be directly reusable in any service built around
these servers. Even for services built around differ-
ent components, our shunts should be reusable as they
were implemented based on standard communication li-
braries. Further, as already mentioned, implementing
the proxies requires relatively little effort given a core
logging/forwarding and replay infrastructure. Finally,
our experience with PRESS suggests that event-based
servers are quite amenable to our validation approach,
as all interactions between components pass through a
common queuing framework.

Perhaps the most application-specific parts of our val-
idation approach are the comparator functions and the
state management API. Generic comparator functions
that check characteristics such as throughput should be
reusable. However, comparator functions that depend
on the semantics of the applications are unavoidably
application-specific and so will likely have to be tailored
to each specific application. The state management API
is often provided by off-the-shelf stateful servers; when
those servers do not provide the API, it has to be imple-
mented from scratch as we did for Tomcat.

Limitations. The behavior of a component cannot be
validated against a known correct instance or trace when
the operator actions properly change the component’s be-
havior. For example, changes to the content being served
by a Web server correctly leads to changes in its re-
sponses to client requests. However, validation is still
applicable, as the validation harness can check for prob-
lems such as missing content, unexpected structure, etc.
In addition, once an instance has been validated in this
manner, it can be used as a reference point for validating
additional instances of the same component type. Al-
though this approach introduces scope for mistakes, we
view this as an unavoidable bootstrapping issue.

Another action that can lead to mistakes is the restart
of components in the live service after validation, a step
that is typically necessary to ensure that the validated
components will join the live service with the proper
state. However, the potential for mistakes can be min-
imized by scripting the restart.

Open issues. We leave the questions of what exactly
should be validated, the degree of validation, and for how
long as open issues. In terms of trace-based validation,
there are also the issues of when traces should be gath-
ered, how often they should be gathered, and how long
they should be. All of these issues boil down to policy
decisions that involve trade-offs between the probabil-
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ity of catching mistakes vs. the cost of having resources
under validation rather than online. In our live operator
experiments with validation, we leave these decisions to
the discretion of the operator. In the future, we plan to
address these issues in more detail.

One interesting direction is to study strategies for dy-
namically determining how long validation should take
based on the intensity of the offered load. During peri-
ods of heavy load, validation may retain resources that
could be used more productively by the live service.

We also plan to explore a richer space of comparator
functions. For example, weaker forms of comparison,
such as using statistical sampling, may greatly improve
performance while retaining the benefit of validation.

Comparison against offline testing. Sites have been us-
ing offline testing for many years [3]. The offline testing
environment typically resembles the live service closely,
allowing operators to act on components without expos-
ing any mistakes or intermediate states to users. Once
the components appear to be working correctly, they can
be moved into the live service.

The critical difference between our validation ap-
proach and offline testing is the fact that our validation
environment is an extension, rather than a replica, of the
live service. Thus, misconfiguration mistakes can occur
in offline testing when the software or hardware config-
urations have to be changed during the moving of the
components to the live service. For example, adding an
application server requires modifying the configuration
file of all the Web servers. Although a misconfigured
Web server in the offline environment can be detected
using offline testing, failing to correctly modify the live
configuration file would result in an error. Furthermore,
other mistakes could be made during these actions and
consequently be exposed to the end users.

In order to gauge the ability of offline testing to catch
the mistakes that we have observed (Section 3), we
assume that trivial mistakes that do not involve inter-
component configuration are unlikely to be repeated in
the live system. Under this assumption, offline testing
would have allowed the operator to catch (1) all instances
of the “start of wrong software version” category, (2)
the instance of local misconfiguration that caused the
database security vulnerability (assuming that the oper-
ators would explicitly test that case), and (3) some in-
stances of global misconfiguration, such as the one in
which the incorrect port was specified in the Tomcat con-
figuration file. Overall, we find that offline testing would
only have been able to deal with 17 out of the 42 mis-
takes that we observed, i.e. 40% of the mistakes, while
our validation approach would have caught 66%.

Comparison against undo. Undo [6] is essentially or-
thogonal to our validation approach. Undo focuses on

enabling operators to fix their mistakes by bringing the
service back to a correct state. The focus of validation is
to hide operator actions from the live service until they
have been validated in the validation environment. As
such, one technique can benefit from the other. Undo
can benefit from validation to avoid exposing operator
mistakes to the live service, and thus the clients, whereas
validation can benefit from undo to help correct operator
mistakes in the validation environment.

Assuming that undo would be used alone, all mistakes
we observed would have been immediately exposed to
clients (either as an explicit error reply or as degraded
server performance), except for the ones that caused la-
tent errors and vulnerabilities. Nevertheless, undo would
be useful in restoring the system to a consistent state af-
ter a malicious attack resulting from the database security
vulnerability problem. If combined with offline testing,
undo would have helped fix the mistakes detected offline.

S Experimental Validation Results

In this section we first describe the performance impact
of our validation infrastructure on the live service using
micro-benchmarks. We then concretely evaluate our val-
idation approach using several methods.

5.1 Shunting overheads

We measured the shunting overhead in terms of CPU us-
age, disk, and network bandwidth for interception, log-
ging, and forwarding of inter-component interactions in
the auction service. Note that while the comparator func-
tions do not run on the online slice, the amount of infor-
mation that we have to log or forward depends on the
nature of the comparator functions we wish to use for
validation. Thus, we investigate the performance impact
of several levels of data collection, including collect-
ing complete requests and replies, collecting only sum-
maries, and sampling.

Figure 4 shows percentage CPU utilization for a live
Web server in the auction service, as a function of the
offered load. The utilization vs. load curve for the un-
modified server is labeled base. The curves for complete
logging (used for trace-based validation) and forwarding
(used for replica-based validation) are labeled trace-val
and replica-val, respectively. These curves show the per-
formance of shunting all requests and replies from both
the Web and application servers. We can observe that
complete logging causes an additional 24-32% CPU uti-
lization for the throughput range we consider, whereas
forwarding adds 29-39%.

A straightforward approach to reducing these over-
heads is to use only a summary of the responses. The
trace-summary-val and replica-summary-val curves give
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Figure 4: Processor overhead incurred in performing
various validation operations on Web server.

the utilization for logging and forwarding, respectively,
when we use the first 64 bytes of the HTTP responses.
The additional CPU utilizations in this case for logging
and forwarding are 18-25% and 20-27%, respectively.

A second approach to reducing the overheads is to
sample, instead of collecting all requests and responses.
To measure the impact of this approach, we programmed
the shunts to log or forward only 50% of the client
sessions, leading to the trace-sample-val and replica-
sample-val curves. (This optimization was carefully im-
plemented to avoid skewing the states of the compared
components in replica-based validation.) The optimiza-
tion reduces the overheads of logging and forwarding to
15-21% and 18-25%, respectively. Another sampling
approach is to only shunt and compare the final input
and outputs, ignoring internal messages. The trace-data-
Sflow-val and replica-data-flow-val versions only sample
HTTP requests and responses and ignore the JK mes-
sages. This approach leads to a CPU overhead of 13-19%
and 16-22% for logging and forwarding, respectively.

We also examined the impact of shunting on disk and
network bandwidth. We find that in the worst case, a
bandwidth load of about 4 MB/s was generated. Us-
ing the every-other-session sampling method reduced the
bandwidth load to about 2.5 MB/s, and the final-result-
only sampling method further reduced it to 1.5 MB/s.
These bandwidth results are encouraging, as they show
that validation is unlikely to have an impact on through-
put when using Gigabit networks and storage systems.

Overall, we find the CPU overheads to be significant
for our base prototype, in many cases increasing utiliza-
tion by 24%-39%, while the additional network and disk
traffic was not significant. With different optimizations,
we can reduce the CPU overheads to 13%-22%. These
results are positive, given that our approach loads only
one or at most a few of the live components simultane-
ously, and only during validation. Furthermore, since

many services run at fairly low CPU utilization (e.g.,
50%-60%) to be able to deal with load spikes, this over-
head should not affect throughputs in practice.

5.2 Buffering overheads

State checkpointing and initialization are performed by
the shunts and proxies involved in the validation of a
stateful server. We make these operations atomic by first
draining all requests currently being processed by the
components involved in the validation. After those re-
quests complete, we start the required state operations.
During the draining and the processing of the state op-
erations, we buffer all requests arriving at the affected
components. How long we need to buffer requests deter-
mines the delay imposed on (a fraction of) the requests
and the buffer space overheads.

While the delays and space overheads can vary de-
pending on size of the state and the maximum duration
of an outstanding request, we find them to be quite tol-
erable for the validation of an application server in our
auction service. In particular, we find that replica-based
validation causes the longest buffering duration. How-
ever, even this duration was always shorter than 1 sec-
ond, translating into a required buffer capacity of less
than 150 requests for a heavily loaded replica server.

Since the average state size is small (less than 512
bytes) in the auction service, we synthetically increased
the size of each session object up to 64 KBytes to study
the impact of large states. This resulted in an overall
response time of less than 5 seconds, which though not
insignificant, is still manageable by the validation slice.

5.3 Operator mistake experiments

We used three different experimentation techniques to
test the efficacy of our validation techniques. The ex-
periments span a range of realism and repeatability. Our
live-operator experiments are the most realistic, but are
the least repeatable. For more repeatable experiments,
we used operator emulation and mistake injection. For
all experiments, the set up was identical to that described
in Section 3, but we added two nodes to implement our
validation infrastructure.

Live-operator experiments. For these experiments, the
operator was instructed to perform a task using the fol-
lowing steps. First, the component that must be touched
by the operator is identified and taken offline. Second,
the required actions are performed. Next, the operator
can use the validation slice to validate the component.
The operator is allowed to choose the duration of the val-
idation run. Finally, the operator must migrate the com-
ponent to the online slice. Optionally, the operator can
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place the component online without validation, if he/she
is confident that the component is working correctly.

We ran eight experiments with live operators: three ap-
plication server addition tasks (Section 3.3), three server
upgrade tasks (Section 3.5), and one each of Web server
misconfiguration (Section 3.6) and application server
hang (see Section 3.7). Seven graduate students from our
department acted as operators, none of whom had run the
corresponding experiment without validation before.

We observed a total of nine operator mistakes in five of
the experiments and validation was successful in catch-
ing six of them. Two of the mistakes not caught by
validation were latent errors, whereas the other mistake,
which led to an empty ht docs directory, was not caught
only because our implementation currently does not test
the static files served by the Web servers (as already men-
tioned in Section 4.4). Addressing this latter mistake
merely requires an extension of our prototype to process
requests to static files and their corresponding responses.

Interestingly, during one run of the Web server up-
grade task, the operator started the new Apache without
modifying the main configuration file, instead using the
default one. Validation caught the mistake and prevented
the unconfigured Apache from exposure. However, the
operator tried to configure the upgraded Apache for 35
minutes; after a number of unsuccessful validations, he
gave up. This example shows that another important area
for future research is extending the validation infrastruc-
ture to help the operator more easily find the cause of an
unsuccessful validation.

Operator-emulation experiments. In these experi-
ments, a command trace from a previous run of an op-
erator task is replayed using shell scripts to emulate the
operator’s actions. The motivation for this approach is
that collection and reuse of operator’s actions provides a
repeatable testbed for techniques that deal with operator
mistakes. This approach, however, has the limitation that
once the operator’s mistake is caught, subsequent recov-
ery actions in the scripts are undefined. Nevertheless, we
find the ability to repeat experiments extremely useful.

The traces were derived manually from the logs col-
lected during the operator experiments described in Sec-
tion 3. In the emulation scripts, an emulation step con-
sists of a combination or summary of steps from the ac-
tual run with the goal of preserving the operator actions
that impact the system. For example, if the operator
performed a set of read-only diagnostic steps and sub-
sequently modified a file, then the trace script will only
perform the file modification.

We derived a total of 40 scripts from the 42 operator
mistakes we observed; 2 mistakes were not reproducible
due to infrastructure limitations. Table 2 summarizes our
findings in terms of coverage, i.e., mistakes caught with
respect to all mistakes. Validation was able to catch 26

Coverage Impact
Technique Immediate Latent
(40 total) (29 total) (11 total)
Trace-based 22 0
Replica-based 22 0
Multi-component 22 4

Table 2: Coverage results of the emulation experiments.

of the 40 reproducible mistakes; 22 of these mistakes
had an immediate impact while 4 caused latent errors.
Both trace and replica-based validation caught all 22
mistakes causing an immediate impact. However, single-
component validation failed to catch the latent errors dur-
ing the addition of a new application server. These mis-
takes resulted in the Web servers not being updated cor-
rectly to include the new application server. These mis-
takes were caught using the multi-component validation
approach described in Section 4.3.

Validation would have caught the 2 non-reproducible
mistakes as well. These mistakes had an immediate im-
pact similar to a number of the 22 reproducible mistakes
caught by single-component validation. Assuming that
these 2 mistakes would have been caught, our validation
approach would detect a total of 28 out of the 42 mistakes
(66%) we have observed.

Mistake-injection experiments. We hand-picked some
additional mistakes and injected them to test the effec-
tiveness of our validation system. Our goal is to see if
our validation technique can cover mistakes that were not
observed in the live-operator experiments.

To emulate mistakes in content management, we ex-
tended Mendosus to inject permission errors, missing
files, and file-corruption errors. In PRESS, injection of
permission and missing files errors were readily detected
by our validation infrastructure. However, some file cor-
ruption errors were not caught because of thresholds in
the comparator functions; typically a fraction of the bytes
of a Web page are allowed to be different. While it is
necessary to allow some slack in the comparator to pre-
vent excessive false positives, this case illustrates that the
comparator functions must be carefully designed to bal-
ance the false positive rate with exposing mistakes.

We also used Mendosus to perform manipulations of
configuration parameters that only impacted the perfor-
mance of the component. Specifically, we altered the in-
memory cache size for PRESS and the maximum num-
ber of clients for Apache in the auction service. Both
mistakes resulted in the component’s performance drop-
ping below the threshold of a throughput comparator and
so were caught by validation. Once again, these ex-
periments highlight the importance of designing suitable
comparators and workloads.
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6 Conclusions

In this paper, we collected and analyzed extensive data
about operator actions and mistakes. From a total of 43
experiments with human operators and a three-tier auc-
tion service, we found 42 operator mistakes, the most
common of which were software misconfiguration (24
mistakes) and incorrect software restarts (14 mistakes).
A large number of mistakes (19) immediately degraded
the service throughput.

Based on these results, we proposed that services
should validate operator actions in a virtual environment
before they are made visible to the rest of the system
(and users). We designed and implemented a prototype
of such a validation system. Our evaluation showed that
the prototype imposes an acceptable performance over-
head during validation. The results also showed that our
prototype can detect 66% of the operator mistakes we
observed.
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