
The following paper was originally presented at the
Ninth System Administration Conference (LISA ’95)

Monterey, California, September 18-22, 1995

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

filetsf: A File Transfer System Based on lpr/lpd

John Sellens
University of Waterloo



filetsf: A File Transfer
System Based on lpr/lpd

John Sellens – University of Waterloo

ABSTRACT

In a distributed computing environment, it is often necessary to transfer files between
machines for administrative or record keeping purposes. Most methods of file transfer either
require full-scale trust by the recipient (e.g., rdist, rcp), the use of a ‘‘secret’’ password
(e.g., FTP), or some level of pre-arrangement (e.g., rdist, track). This paper describes
filetsf, a generic file transfer system built on top of the standard lpr/lpd system.
Filetsf’s advantages include minimal configuration, the need for minimal trust between
sender and recipient, ordering and spooling of file transfer requests, and the elimination of
the need for shared passwords.

Introduction

The University of Waterloo is in the process of
converting its administrative systems from legacy
implementations on IBM’s VS/1 operating system
under VM/CMS and the PICK database system on
UNIX, to implementations based on the Oracle
RDBMS on UNIX database and application servers.
As part of the ongoing conversion, we have a need
for regular (and irregular) file transfers between
machines, primarily from the VS/1 and PICK sys-
tems to the Oracle systems, but also between UNIX
systems.

To date, we have used a number of approaches,
each of which seems to have had drawbacks, pri-
marily security and reliability related. We needed a
system to allow file transfers between our systems
that allowed us to limit each programmer’s sphere of
control, i.e., we wanted to avoid giving fullscale
access to all systems and servers, just to enable file
transfers. We also needed a file transfer system that
was reasonably portable, and worked on UNIX and
non-UNIX operating systems.

The end result was the filetsf family of
programs, that provides the ability to send and
receive files between cooperating machines, is
implemented on top of the Berkeley lpr/lpd[3]
system, and which provides a suitable level of flexi-
bility while retaining access controls and an accept-
able level of security.

Previous Approaches

In the past, we have primarily used FTP[11]
for file transfer – this meant that most programmers
and operators knew the passwords to any accounts
that needed to receive files. This was not a good
thing, since shared passwords are no longer secret,
and because it allowed general use access to
accounts that shouldn’t have been used for anything
except file transfer. And, in the absence of digital
signatures, FTP does not allow the recipient to

identify the sender once a file has been delivered,
making it potentially easy for legitimate data to get
replaced, intentionally or not.

We implemented a simple FTP-based system
using a single recipient userid (named ‘unifer’, for
UNIX transfer), where all files sent to a machine
would end up in a single directory, in a particular
group, with group write permission on everything.
This meant, of course, that any file transferred to a
machine was fair game for anyone else to access.
Most file transfers were reasonably well-controlled,
but left-over, unclaimed, files tended to accumulate,
and it’s hard to make a claim that this system pro-
vided a reasonable level of security and auditability.

We also used rdist (1)1 in a few instances,
which either required setup and monitoring by the
(limited number of) super-users, or which required
‘.rhosts’ file access to the receiving account, with
many of the same problems as with FTP. rdist
also isn’t available on our VM/CMS system, which
meant that it could not be used for the bulk of our
file transfers. rcp suffers from many of the same
problems as rdist, while providing a less-reliable
copy to the recipient machine (rdist uses tem-
porary files to ensure that the destination file is
always complete, rcp just clobbers any existing file,
and can leave files incomplete if interrupted or the
destination disk fills up).

We haven’t investigated track[9], because we
have no experience with it on campus, and because,
like rdist, it requires a level of pre-arrangement
that we wanted to avoid.2 track, like rdist, is
also geared towards the replication of a set of files
on multiple machines – for file transfer, we need to
be able to send a file and then remove the original.

1An enhanced version of rdist is described in [5].
2We may be investigating track for use in software

package distribution, under our xhier[12] software
maintenance system.

1995 LISA IX – September 17-22, 1995 – Monterey, CA 195



filetsf: A File Transfer System Based on lpr/lpd Sellens

None of these approaches allows for the queue-
ing of file transfer requests if the recipient or net-
work is down, although it is possible to periodically
repeat the rdist or track commands. And they
don’t provide for an ordering of the files transferred,
unless you name the files with indicative names, or
use file modification times as an indicator. In our
previous systems, if a series of files needed to be
processed (e.g., batches of transactions), the files
were typically sent one at a time, processed on the
recipient machine, and an acknowledgement was
returned to the sender (usually via a flag file) to indi-
cate that it was safe to send the next file.

Desired Features

We identified the following features as desir-
able in a file transfer system. Many of these are
convenience features, intended to help enable a more
automated environment, with less manual interven-
tion (e.g., through avoiding entering passwords, or
having to manually re-initiate transfers in case of
failure).
� Available on all or most of our systems.
� Requires minimal configuration – we wanted

and needed to be able to do ad-hoc file
transfer.

� Allows file transfers between random pairs of
users – root-to-root file transfers would not be
enough, since we need to allow our program-
mers to use the file transfer system, none of
whom are super-users.

� Allows the recipient to identify the sender and
name of the file – a recipient could be receiv-
ing multiple copies of identically named files
from more than one sender. For example,
similar systems on different machines might
generate transaction files to feed to a central
server.

� Allows an ordering of files – e.g., files of
transactions should be receivable in the order
in which they were sent.

� Provides for queueing of file transfer requests,
in case of machine or network unavailability.
We didn’t want to have to keep retrying file
transfers manually if the destination machine
was down or unavailable.

� Provides for a non-clashing name space – we
wanted to be able to send multiple files with
the same name, distinguished by sender, reci-
pient, and/or time.

� Does not allow any additional access to the
sending or receiving machine. We can’t
allow users, applications, operators or pro-
grammers to have access to anything more
than they need to have access to.

� Provides a reasonable level of security in our
environment. For most of our transfers, ela-
borate security is not required; we have a
reasonable level of confidence in the security

of our systems and networks. Encryption and
digital signatures were not required in the
basic file transfer system.

� Is based on file transfer, not file replication.
We need to be able to generate a file, send it,
and then destroy the original.

� Can operate unattended. Too many of our
current systems require manual intervention
from an operator, and there is increasing pres-
sure (fiscal and otherwise) to avoid the need
for manual processes in our systems.

VM/CMS has the sendfile command, which
allows file transfer between users on VM/CMS sys-
tems – the file shows up in the recipient’s ‘‘reader’’,
tagged with the sender, filename, and file attributes.
It meets many of our requirements, but we could not
use it – we had no way to send the files to our
UNIX machines from our VM/CMS machine, and
we didn’t have a VM/CMS compatible sendfile
command (or equivalent) on our UNIX machines.

Approaches Considered

We were not aware of any publically available
file transfer systems, and were trying to avoid invest-
ing in (and investigating) commercial solutions that
might exist. We felt that our best approach would
be to implement our own file transfer system.

Past LISA proceedings have contained quite a
few papers on software distribution (xhier[12],
depot[7], lude[6], lfu[1], CMU depot[4, 13], etc.),
typically based on the idea of software ‘‘packages’’
that are replicated from master machines to slave
machines, typically using rdist, NFS mounts, or
FTP. These systems don’t meet our needs, since
they are based on the idea of replication of pre-
defined sets, not the transfer of individual files. The
tools used to transfer files (rdist and FTP) are not
suited for our needs (as described above), and we
were unwilling to investigate the use of NFS
mounts, since that opens up a whole different can of
worms, and since NFS is not available on our
VM/CMS system.

Early in 1993, we started planning the construc-
tion of a complete file transfer system, with authenti-
cation, queueing, and so on, but we didn’t make
much headway, for a variety of reasons. That pro-
ject never received much attention, and was eventu-
ally abandoned, and was set aside until a better
opportunity presented itself.

It often seems to be the case that a problem left
to its own devices eventually presents its own solu-
tion, and we finally realized, after much time had
passed, that it would be relatively simple to imple-
ment a file transfer system on top of lpr/lpd.
The lpr/lpd system has much of what we
required, and it turned out to be relatively easy to
layer the additional functions on top of lpr/lpd to
obtain a file transfer system that met our needs.

196 1995 LISA IX – September 17-22, 1995 – Monterey, CA



Sellens filetsf: A File Transfer System Based on lpr/lpd

Why not implement a file transfer system on
top of SMTP[10] mail and MIME[2] file encapsu-
lation? Mail doesn’t meet some of our needs: it’s
too easy to forge, and it doesn’t provide a reliable
ordering of the messages. Digital signatures (such
as those provided by PGP[14]) could be used, but
they add another level of complexity, and may be
harder to port to our non-UNIX systems. In addi-
tion, the path a mail message takes can’t always be
controlled (in the presence of MX records in the
domain name server), and some mailers implement
limits on the size of a message.

Why Use lpr/lpd?

It turned out that lpr/lpd and the LPD proto-
col[8] were a pretty good basis for a file transfer
system. The protocol is well-defined, and widely
implemented, and lpr/lpd already has queuing,
file ordering, sender identification, machine-based
access control, and so on built-in. The destination
machine can be indicated by the ‘‘printer’’ name
used, an lpr/lpd ‘‘output filter’’ can be used to
process the files at the destination machine, and the
job and class options to lpr can be used to identify
the name of the file, and the intended recipient.

Using lpr/lpd was appealing because it
seemed that it would save us a lot of effort – most
of the hard stuff was already done – and because we
could claim that we were behaving in a manner that
was consistent with the ‘‘UNIX philosophy’’: small,
simple, reusable tools put together to do more
interesting things.

It was fairly easy to implement filetsf on
top of lpr/lpd. The sendfile command is just
a cover for lpr, tsfif is an lpr/lpd output
filter that deposits the files into the filetsf spool
directory, and we just have to set up a ‘‘sending’’
print queue for each machine we want to send to,
and a a single ‘‘receiving’’ queue on each ‘‘destina-
tion’’ machine. In our case, the number of machines
that we want to be able to send files to is manage-
ably small, and our ‘printcap’ file maintenance tools
help a lot. An lpr client program3 could be used to
reduce the number of ‘‘sending’’ queues required, but
this would mean that there would be no sender-side
queueing, which is one of the features that we were
interested in. One non-trivial program is required –
acceptfile is a setgid program used to query and
retrieve files from the filetsf spool directory.

One final indication that lpr/lpd and the
LPD protocol were a good choice was the relative
ease with which we could implement filetsf on
our AIX systems (on top of IBM’s queueing system,
which is willing to use the LPD protocol to talk to

3One lpr client program is available from Keith Moore
of the University of Tennessee as ftp://cs.utk.edu/pub
/moore/port-lpr.tar .

other machines) and implement the sending side on
our VM/CMS machine with a REXX script on top of
the netprint command. We haven’t investigated
implementing the recipient side on VM/CMS yet,
but we’re optimistic that it shouldn’t be too difficult,
perhaps requiring just another REXX script running
in a virtual machine that invokes the VM/CMS
sendfile command.

Implementation Details

Filetsf works by accepting files to send to a
recipient, submitting them to lpr/lpd, delivering
them into a spool directory, and waiting for the
intended recipient to come and pick them up. A
separate filetsf spool directory is used for easier
access and control, and to provide a level of abstrac-
tion above that of particular lpr/lpd implementa-
tions. It also makes permissions easier to control,
and keeps our monitoring software from complaining
that the print queues are stalled.

Files are stored in the filetsf spool direc-
tory in a hierarchy intended to make it easier to list
and identify the files waiting to be retrieved. The
structure is three levels deep below the spool direc-
tory, encoding the recipient, intended filename, and
sender (user@host) in the directory names. The
individual copies of files are named for the value of
time() (the number of seconds since January 1,
1970) when the file was delivered to the spool direc-
tory by tsfif, with an optional prefix. This means
that the pathnames under the spool directory are of
the form ‘recipient/name/sender/[prefix]time’. This
structure allows multiple copies of the same file to
be spooled from one or more senders for one or
more recipients, providing a different pathname for
each spooled file. Files are named for the time at
which they were delivered using the integer returned
by time() to allow for easy manipulation and sort-
ing. Any name clashes discovered by tsfif can be
resolved by waiting one second and re-generating the
pathname.

Most special characters are prohibited in file,
sender and recipient names, to avoid potential prob-
lems manipulating the files. We had considered
making the spool hierarchy only one level deep, but
we felt that that would have forced even more res-
trictions on the component names – we would have
had to use some character or sequence of characters
as a separator in the directory names.

A small number (currently three) of filename
prefixes are used by filetsf to indicate the status
of a particular version of a file. Temporary files,
indicated by the ‘#’ prefix, are used when writing a
file into the spool directory, and are renamed to
remove the prefix when they have been written
correctly. A prefix of ‘-’ is used to indicate a file
that has been retrieved or deleted, but not yet purged
from the system. And a prefix of ‘+’ is used is to
indicate that the newest version of the file should

1995 LISA IX – September 17-22, 1995 – Monterey, CA 197



filetsf: A File Transfer System Based on lpr/lpd Sellens

replace any older versions of the file still waiting to
be retrieved. This is determined by the options used
by the sender when initially sending the file, and can
be useful for data such as a ‘hosts’ file, or a tele-
phone list, where only the most recent copy of the
file is useful.

Files are transferred using lpr/lpd one file at
a time, to keep things simple. The name (or
desired name) of the file is sent as the LPD job
name, and the LPD class is used to pass filetsf
options and the name of the recipient. The options
are encoded as an integer, and are separated from
the recipient name by a colon.4 The LPD protocol
defines limits on the length of the control values that
can be passed to the destination machine, but they
haven’t turned out to be unduly restrictive in prac-
tice.

Filetsf currently supports three options that
are passed to the destination machine: notify the
sender by email on delivery to the spool directory,
notify the recipient on delivery, and mark the file as
replacing any older versions of the file.

Command Descriptions

The core of filetsf consists of only three
commands, sendfile, to send a file, tsfif,
which is used as the lpr/lpd print filter and which
puts files into the filetsf spool area, and
acceptfile, to list or retrieve files from the spool
area. In addition to the core commands, there are
two utility programs, and a tsfif cover for use on
AIX. The commands are written in C and the
Bourne shell, and are about 2,000 lines of code in
total.

The following is a short description of each
filetsf command.
sendfile Queues files for sending to a user on a

remote machine. It provides options to provide
a different name for the delivered file, to cause
mail to be sent to the sender or the recipient
when the file arrives, or to flag the file as
replacing any previous copy of the file still in
the spool directory. One the command line and
files have been checked, sendfile invokes
lpr on each file in turn to send the files to the
destination machine.

acceptfile Retrieves or lists files from the spool
directory. It provides options to select spooled
files by various attributes (sender, filename,
newest, oldest, etc.), to rename a file on
retrieval, and to delete files from the spool
directory. acceptfile is setgid to the
‘filetsf’ group, which allows it to manipulate the

4We had hoped to use the title option to lpr for the
recipient, and use class just for filetsf options, but we
found that the title wasn’t included in the control file
passed to the remote machine, so that idea fell through.

files in the spool directory, and is the only
privileged program in filetsf.

tsfif Print filter that writes transferred files into the
spool directory. tsfif is invoked by the print
system once for each file, and creates the
appropriate directory structure and writes the file
into the spool directory, taking care that the per-
missions and group of the files and directories
are set as correctly as possible. Temporary files
are used to insure that only complete and correct
files are left in the spool directory for retrieval.

tsfif usually ends up being run by ‘daemon’
(‘lpd’ on AIX), and the spool directory is owned
by ‘daemon’ (or ‘lpd’) and is in group ‘filetsf’.
If BSD-style group inheritance is in not in use,
‘daemon’ (or ‘lpd’) must be added to the ‘filetsf’
group. If the group of the files and directories is
or can be set to ‘filetsf’, then tsfif sets them
group readable and writable; otherwise it leaves
the permissions conservatively set, on the expec-
tation that ftcheck will complain to a human
about the configuration.

aixbe Print system backend program for use on
AIX. The AIX printing system is IBM specific,
and uses backend programs instead of print
filters. aixbe does the appropriate things for
AIX, and then calls tsfif to do the actual pro-
cessing of a received file.

ftcleanup Cleans up the spool directory. Removes
old temporary and deleted (but not purged) files,
empty directories, and looks for old files that
haven’t been retrieved by the recipient yet and
complains about them. Run daily by cron (8).

ftcheck Does a sanity check on the filetsf sys-
tem. Checks for the ‘filetsf’ group, checks the
membership of the group, and makes sure that
the spool directory and the files in it have the
correct group.5 It should really check the modes
of the spool files and directories, but it doesn’t
(yet). Run daily by cron (8).

The VM/CMS client implementation was fairly
simple; it’s a REXX script called filetsf (since
there’s already a sendfile command on
VM/CMS) that invokes the netprint command to
send the file to the destination machine. Our
VM/CMS system also has a command called lpr,
but netprint serves the same function and is
easier to use. Both lpr and netprint seem to be
client-only implementations – they don’t provide any
spooling if the remote machine is down, which
means that we have to manually retry file transfers
from VM/CMS if the network or the destination sys-
tem is down. We have not yet determined the best
solution to this problem.

5ftcheck is interesting because it contains a one line
awk program that happens to trigger a bug in awk on our
copy of DEC OSF/1 V3.2A that causes ftcheck to
complain incorrectly.

198 1995 LISA IX – September 17-22, 1995 – Monterey, CA



Sellens filetsf: A File Transfer System Based on lpr/lpd

We hope that it will be possible to implement a
filetsf server on VM/CMS, but have not yet
investigated what it would entail. We’re hoping that
it will turn out to be a another simple REXX script
and a little bit of configuration.

% acceptfile -l
jms

hosts
jms@mach1.uwaterloo.ca

805922115 Sun Jul 16 15:15:15 1995
805926809 Sun Jul 16 16:33:29 1995

jms@mach2.uwaterloo.ca
r805922175 Sun Jul 16 15:16:15 1995

networks
jms@mach2.uwaterloo.ca

r805922175 Sun Jul 16 15:16:15 1995
r805923542 Sun Jul 16 15:39:02 1995

% acceptfile -l -c
jms hosts jms@mach1.uwaterloo.ca 805922115 Sun Jul 16 15:15:15 1995
jms hosts jms@mach1.uwaterloo.ca 805926809 Sun Jul 16 16:33:29 1995
jms hosts jms@mach2.uwaterloo.ca r805922175 Sun Jul 16 15:16:15 1995
jms networks jms@mach2.uwaterloo.ca r805922175 Sun Jul 16 15:16:15 1995
jms networks jms@mach2.uwaterloo.ca r805923542 Sun Jul 16 15:39:02 1995

Figure 2: Sample acceptfile output

Installation and Configuration

Installation and configuration of filetsf is
fairly straightforward. The programs require very
little configuration to compile, and contain almost no
machine-specific code, or non-standard library rou-
tines. The primary exception to this is, of course,
aixbe. The programs can be installed just about
anywhere in the filesystem.

There should be a sending queue named ‘tsf-
machine’ for each host ‘machine’ to which files will
be sent. Each destination machine needs a queue
called ‘filetsf’ with print filter tsfif. Figure 1
shows sample entries. The filetsf-config (7)
man page gives details on userids, groups, ‘printcap’
file entries, and queue configuration for both
lpr/lpd based systems and AIX.

Examples of Use

Filetsf is intended to be easy to use. This
is an very important feature for us, since we wish to
convince the application programmers in our depart-
ment to use this new file transfer system, rather than
old familiar FTP. It’s hard to convince anyone to
use something that’s more complicated than what
they’re already used to.

The simplest example of sending a file is

% sendfile -h otherhost file

which sends ‘file’ to the same user on host ‘oth-
erhost’.

tsf-machine:\
:mx#0:\
:rp=filetsf:\
:rm=machine:\
:fx=f:\
:lf=/var/lpr/tsf-machine/log:\
:sd=/var/lpr/tsf-machine:

filetsf:\
:lp=/dev/null:\
:af=/dev/null:\
:sd=/var/lpr/filetsf:\
:lf=/var/lpr/filetsf/log:\
:if=/local/filetsf/etc/tsfif:\
:fx=f:

Figure 1: Sample ‘printcap’ file entries

To distribute a file like ‘/etc/hosts’ to a dif-
ferent machine, the command would be

% sendfile -h otherhost -r \
-u root /etc/hosts

The ‘-r’ option indicates that this copy should
replace any copy still in the filetsf spool direc-
tory on ‘otherhost’, and the ‘-u’ option indicates that
the file should be sent to ‘root’, regardless of who is
sending the file (presumably ‘root’ is the only user
with permission to update the ‘/etc/hosts’ file). The
sendfile command only allows one ‘-h’ option
and one ‘-u’ option, so multiple invocations of
sendfile are required to send a file to more than
one recipient. Multiple files can be sent by one
sendfile command, so, for example, the
‘/etc/networks’ file could be sent at the same time as
the ‘/etc/hosts’ file.

1995 LISA IX – September 17-22, 1995 – Monterey, CA 199



filetsf: A File Transfer System Based on lpr/lpd Sellens

The acceptfile command is a little more
complicated to use, since it may be necessary to
select a particular version of a file. The ‘-l’ option
to acceptfile generates a list of the queued files,
such as that shown in Figure 2. The output is the
recipient userid, file name, sender and the instance
of the file, with any repeated information suppressed.
The ‘r’ preceding three of the file instances in the
example indicates that those files were sent with the
‘-r’ option to sendfile. The ‘-c’ option to
acceptfile can be used with ‘-l’ to list the files
in columns, for easier parsing by other programs.

To retrieve a file, acceptfile must be
invoked with options that result in the selection of
exactly one file. The selection options can also be
used with ‘-l’ in order to test the selection options.
For example,

% acceptfile -n hosts

would retrieve the newest version of the file ‘hosts’
into the current directory. The ‘-o’ option can be
used to select the oldest version of a file, so that
files can be processed in the order they were sent.
A file labeled with a particular time can be selected
with the ‘-t’ option, as in

% acceptfile -t 805922175 hosts

Files can be selected by sender with the ‘-s’ option,
as in

% acceptfile -s \
jms@mach2.uwaterloo.ca hosts

The retrieved file can be renamed or placed in a dif-
ferent directory with the ‘-r’ option. Files can be
deleted from the spool directory without being
retrieved by using the ‘-d’ option to acceptfile.
When a file is retrieved or deleted, acceptfile
renames the spooled copy of the file for later remo-
val by ftcleanup. The ‘-p’ (purge) option can be
used to cause the files to be removed from the spool
directory immediately.

Security and Reliability

As with any other business system, a file
transfer system needs to be reviewed to ensure that
it provides an appropriate level of security and relia-
bility for the applications in which it will be used.
We will discuss the security and reliability aspects
of filetsf in a step by step review of the file
transfer process.

In our environment, there are no new security
implications in the act of sending a file. sendfile
is not privileged, so the sender of a file must be able
to read the file already. Since email and FTP are
available on our systems, sendfile does not pro-
vide any confidentiality exposures that don’t already
exist. In the interest of reliability, sendfile does
not send any files until it has tested all the files for

existence and readability, so that the sending of a set
of files is less likely to fail part way through.

The lpr/lpd system is reasonably secure and
reasonably reliable – we have a reasonable expecta-
tion that we can control which machines have access
to our print queues and the data flowing through
them. Our administrative systems are on subnets
separate from the rest of the campus, our routers can
block LPD protocol traffic (if necessary), and we use
a locally modified lpr/lpd (a precursor to PLP6)
that allows us to implement per-queue access con-
trols, so that we can limit the machines that we are
willing to trust to exchange files with. This allows
us to trust the information in an LPD control file
once it reaches the destination machine, so that we
can label a file as being sent by a particular sender
with a reasonable level of confidence. And
lpr/lpd tries to deal correctly with full print spool
directories and network interruptions, which allows
us to believe that a file that has been passed to
lpr/lpd will eventually show up in the right
place, without being corrupted along the way.

tsfif is run on the destination machine by
lpd, usually as the ‘daemon’ user, and creates sub-
directories in the spool directory and writes the
transferred files into the appropriate directory. The
primary concern with tsfif is that it needs to be
careful that it does not deposit a file in the spool
directory over an existing file or symbolic link. This
risk is minimal, since the holding directory has no
general permissions on it, making it unlikely that
someone could create a dangling symbolic link in
the spool directory. If tsfif runs into any prob-
lems, such as permission or ownership errors, or a
full spool directory, it either writes the file with res-
trictive permissions, or fails with an exit code that
causes lpd to keep trying to deliver the file. This
means that, for some kinds of errors, the ‘filetsf’
print queue will stop delivering files. We chose to
keep retrying because the only alternative was to
give up on a file, and have that particular transfer
get lost, and we felt it was very important to protect
the files being transferred.

acceptfile is a privileged program; it is
setgid to the ‘filetsf’ group. It is very careful about
what it does since it has privileges that an ordinary
user does not have, and it allows a user to make use
of those privileges. acceptfile is very careful
about identifying its invoker, and it renounces its
privileges before writing a file to its final destina-
tion, so that a user should not be able to change a
file with acceptfile that can’t already be
changed by the user. For reliability, acceptfile
renames files in the spool directory, rather than

6The most recent version of PLP is available from
ftp.iona.ie in the ‘pub/plp’ directory. See also ‘‘LPRng –
An Enhanced Printer Spooler System’’ by Patrick Powell,
elsewhere in these proceedings.

200 1995 LISA IX – September 17-22, 1995 – Monterey, CA



Sellens filetsf: A File Transfer System Based on lpr/lpd

deleting them after delivery. If something goes
wrong in later processing, and the delivered file is
lost or destroyed, there may be a copy that could be
recovered from the filetsf system (by a super-
user).

The filetsf system, through the use of the
‘filetsf’ group, tries to limit its potential exposures.
If the ‘filetsf’ group is somehow compromised, there
should be limited exposure to the rest of the
machine, since nothing else should be using the
‘filetsf’ group.

Filetsf isn’t 100% secure or 100% reliable;
as in any system, the risks have to be weighed
against the potential consequences and the costs to
eliminate the risks. The filetsf system provides,
for us, an acceptable level of security and reliability.

Potential Extensions

Filetsf was planned to be a simple file
transfer system, providing the necessary, basic func-
tions, and providing appropriate building blocks on
which to implement more enhanced functionality
(we’ll claim that this is the ‘‘UNIX philosophy’’
again). While filetsf seems to work just as it is,
there are a number of potential extensions to
filetsf that may be worth investigating.

Some file transfers will likely require greater
security than that provided by filetsf, due to
greater potential exposures. Since filetsf is just
sending files, file encryption, acknowledgement of
receipt, checksums, etc., could be built on top of
filetsf.

We sometimes have the need to send sets of
files, for processing as a unit. The simple approach
to handling sets of files is to combine the separate
files into a single file, using tar (1), or some other
file archiving program. An alternative that might be
useful would be to create a getset command, that
would check to make sure that the complete set of
files are available, retrieve them all, and run a com-
mand to process the files. This is something that is
simple enough to do, and it may be a common
enough operation to justify creating a command to
do it.

There may be situations in which the
lpr/lpd system or the LPD protocol is either not
appropriate or not available. For example, there
might be a need to transfer files over larger, public
networks in a secure fashion, or through networks
that do not allow LPD protocol traffic. It should be
fairly easy to implement filetsf on top of a dif-
ferent method of transport, or to use multiple tran-
sports depending on the sender and recipient.

Conclusions

Filetsf seems to meet our needs for a basic
file transfer system, and is an improvement over our
past approaches to file transfer. While not providing

extreme levels of security, it is a useful tool on our
systems, and we expect to make fairly extensive use
of it in the future. It was relatively easy to imple-
ment, and, if our needs change in the future, it
should be a fairly straightforward task to replace
lpr/lpd with some other transport mechanism pro-
viding greater reliability or security, while leaving
the user interface unchanged.

Acknowledgements

The VM/CMS client implementation is due to
the efforts and knowledge of Cameron McDonald.

Author Information

John Sellens is a Chartered Accountant and
holds a master’s degree in Computer Science from
the University of Waterloo. He is currently Project
Leader, Technical Services in the Data Processing
department at the University of Waterloo where he
is responsible for system administration and plan-
ning, and tool development for the administrative
computing systems. John likes to provide as long a
list of references as possible in each paper that he
writes, whether or not he has actually read whatever
it is he’s referring to. John can be reached by mail
at Data Processing, University of Waterloo, Water-
loo, ON N2L 3G1, Canada, or electronically as
jmsellens@uwaterloo.ca .

Availability

The current version of filetsf is available
through anonymous FTP to math.uwaterloo.ca as
‘pub/filetsf/filetsf.tar.Z’ or through the author. Ins-
tallation and configuration should be fairly straight-
forward at most sites. Like most freely available
software, no support is available for filetsf, but
bug fixes and suggested enhancements would be
gratefully accepted.

References

[1] Anderson, Paul, ‘‘Managing Program Binaries
In a Heterogeneous UNIX Network’’, LISA V
Proceedings, San Diego, CA, October, 1991,
pp. 1-9.

[2] Borenstein, N., and N. Freed, MIME (Multipur-
pose Internet Mail Extensions): Part One:
Mechanisms for Specifying and Describing the
Format of Internet Message Bodies, RFC 1521,
September, 1993.

[3] Campbell, Ralph, 4.3BSD Line Printer Spooler
Manual, Computer Systems Research Group,
University of California, Berkeley, 1986.

[4] Colyer, Wallace, and Walter Wong, ‘‘Depot: A
Tool for Managing Software Environments’’,
LISA VI Proceedings, Long Beach, CA,
October, 1992, pp. 153-159.

[5] Cooper, Michael, ‘‘Overhauling Rdist for the
’90s’’, LISA VI Proceedings, Long Beach, CA,

1995 LISA IX – September 17-22, 1995 – Monterey, CA 201



filetsf: A File Transfer System Based on lpr/lpd Sellens

October, 1992, pp. 175-188.
[6] Dagenais, Michel, et al, ‘‘LUDE: A Distributed

Software Library’’, LISA VII Proceedings, Mon-
terey, CA, November, 1993, pp. 25-32.

[7] Manheimer, K., B. A. Warsaw, S. N. Clark,
and W. Rowe, ‘‘The Depot: A Framework for
Sharing Software Installation Across Organiza-
tional and UNIX Platform Boundaries’’, LISA
IV Proceedings, Colorado Springs, CO,
October, 1990, pp. 37-46.

[8] McLaughlin III, L., ed., Line Printer Daemon
Protocol, RFC 1179, August, 1990.

[9] Nachbar, Daniel, ‘‘When Network File Systems
Aren’t Enough: Automatic Software Distribu-
tion Revisited.’’, Proceedings of the Summer
USENIX Conference, Atlanta, GA, June, 1986,
pp. 159-171.

[10] Postel, Jonathan B., Simple Mail Transfer Pro-
tocol, RFC 821, August, 1982.

[11] Postel, J., and J. Reynolds, File Transfer Proto-
col, RFC 959, October, 1985.

[12] Sellens, John, ‘‘Software Maintenance in a
Campus Environment: The Xhier Approach’’,
LISA V Proceedings, San Diego, CA, October,
1991, pp. 21-28.

[13] Wong, Walter C., ‘‘Local Disk Depot – Cus-
tomizing the Software Environment’’, LISA VII
Proceedings, Monterey, CA, November, 1993,
pp. 51-55.

[14] Zimmerman, Philip, The Official PGP User’s
Guide, ISBN 0-262-74017-6, MIT Press, 1995.

202 1995 LISA IX – September 17-22, 1995 – Monterey, CA


