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Abstract

In this paper, we describe bundling, a technique for the
transfer of files over a network. The goal of bundling is
to group together files that tend to be needed in the same
program execution and that are loaded close together. We
describe an algorithm for dividing a collection of files
into bundles based on profiles of file-loading behavior.

Our motivation for bundling is to improve the perfor-
mance of network class loading in Java. We examine
other network class loading mechanisms and discuss their
performance tradeoffs. Bundling is able to combine the
strengths of both on-demand strategies and archive-based
strategies. We present experimental results that show
how bundling can perform well in a variety of network
conditions.

I ntroduction

Through classloaders, the Java' virtual machine (JVM)
supports a flexible model for loading executable code and
resources at runtime [8]. Network classloadingis an im-
portant form of class loading, in which class files and re-
sources are transferred to the client JVM over a network
from a server.

Because networks are generally slower in bandwidth
and latency than local disks, users can experience poor
startup times and significant delays when running an ap-
plication loaded from a network. It is therefore desir-
able to optimize the transfer of classes and resources over
the network to minimize these delays. Specifically, we
would like to find an approach that has the following
properties:

¢ Only files needed by the client are sent over the net-
work.

e Files arrive when needed, in the order they are
needed.

o As few bytes as possible are transferred.

e The number of requests made to the server should be
minimized, in order to reduce the delay due to net-
work latency.

In addition, we would like to make the approach practical
for ‘real-world’ deployment:

o The server implementation should scale to a large
number of clients.

e The client code should be small and efficient, and
should use only standard parts of the Java runtime
(i.e., no native code).

o The client code should have minimal overhead.

This paper describes a technique called bundlingthat can
approximate all of these properties under realistic net-
work conditions.

The document is structured as follows. Section 1 re-
views existing network class loading mechanisms. Sec-
tion 2 describes bundling. Section 3 presents some exper-
imental results comparing the effectiveness of bundling
to existing network class loading mechanisms. Section 4
describes related work. Finally, section 5 summarizes the
contributions of this paper and suggests possibilities for
future work.

1 Overview of mechanismsfor net-
work classloading

This section discusses issues encountered in network
class loading, and how these issues are handled by exist-
ing technologies for network class loading in Java.

1.1 Issuesin network classloading

We identified several design issues that must be ad-
dressed in any network class loading technique. This sec-
tion discusses these design issues and some of the trade-
offs they imply.



One network connection vs. multiple. When the client
requests class files and resources from the server, it
could use a separate network connection for each
file, it could use a single persistent network connec-
tion for all files, or it could use a fixed number of per-
sistent connections. Using a single persistent con-
nection is generally the best approach. Using sepa-
rate connections for each file is generally not a good
idea since setting up a network connection is expen-
sive. It is not clear that there would be any advan-
tage to using multiple persistent connections, since
in class loading there is no obvious advantage to
downloading files in parallel.

Transfer granularity: individual filesvs. many. The
ability to send individual files is desirable because
it allows the files sent by the server to exactly match
those needed by the client. As the granularity of
the transfer units increases, the probability that
unneeded files might be sent increases, as does
the probability that files will be sent in an order
different from the request order. However, small
transfer granularity increases the likelihood of of
delays due to network latency, because the client
must send requests to the server more frequently.

Using compression vs. not. Compressing class files
and resources is desirable when network bandwidth
is limited, since it results in transferring fewer
bytes over the network. However, the benefit of
transferring fewer bytes must be weighed against
the runtime cost of performing the compression and
decompression.

Compressing individual filesvs. multiple. Applying
compression to multiple files is desirable since it
offers more opportunities for sharing redundant
information between files, thus increasing the
compression ratio.

Performing compression on-linevs. off-line.
Performing compression off-line is desirable
because it reduces the amount of computation
required on the server.

Pre-sending/prefetching vs. not. When classes and re-
sources are transferred on-demand, the client must
send requests for the files it needs to the server. If
files are requested only at the precise point they are
needed, then client must pay the cost of network
latency for each request. This latency cost can be
reduced or eliminated if files are either pre-sent or
prefetched prior to the point when they are needed
by the client. However, care must be taken that files
are not pre-sent or prefetched unnecessarily.

1.2 Existing mechanismsfor network class
loading

This section describes existing mechanisms for network
class loading, and how they address the issues described
in section 1.1.

1.2.1 Downloadingindividual files

One of the standard network class loading mechanisms in
Java is for the client to request files individually relative
to a directory URL, typically using the HTTP protocol.

Downloading individual files has the advantage that
only those files explicitly requested by the client are
transferred over the network. This ensures that no un-
needed files are transferred, and that the files arrive in
the order in which they are needed. HTTP connections
are usually persistent, meaning that a single connection
is used to transfer many files, and that the connection per-
sists between client requests. In principle, it is also possi-
ble for the HTTP client and server to negotiate the use of
compression; however, such compression is per-file and
does not share redundant information between files. (In
any case, the JDK 1.2.2 implementation of HTTP does
not support such compression.)

Downloading individual files has the disadvantage that
files are not pre-sent or prefetched, meaning that the net-
work latency cost is paid for each file requested by the
client. Given that network latency can be hundreds or
even thousands of milliseconds, this disadvantage can be
considerable.

1.2.2 Downloading Jar archives

Another standard network class loading mechanism in
Java is to download Jar archive files [10]. Jar archives
use the same underlying format as Zip files [5]. Each file
in the archive is usually (though not always) compressed
using the Deflate algorithm [4].

Jar files are convenient for application developers be-
cause they provide a simple mechanism for packaging an
entire application or a component of an application into a
single file. Since Jar files contain multiple files, they can
be considered a form of pre-sending by the server, mean-
ing that the network latency cost of the request is paid
only once, for the entire Jar file, rather than once for each
class or resource file. Jar files also offer random access
to the files contained in the archive, which is useful for
loading classes and resources from a Jar archive on disk.
However, when used to transport classes and resources
over a network they are likely to deliver unneeded files
or to deliver files in the wrong order, because they typ-
ically contain a large number of files. In addition, the
fact that the files are compressed individually results in a



lower compression ratio than would be possible if the en-
tire archive were compressed using cumulative compres-
sion.

JDK version 1.3 introduced Jar indexes. A Jar index is
a mapping from class and resource files to the names of
the Jar files in which they are located. The Jar index for
a set of Jar files is contained in a master Jar file. Once
the master Jar file and the Jar index are received by the
JVM, subsequent Jar files are downloaded only if they
contain a class or resource file needed by the running ap-
plication. This feature is an improvement over the tech-
nique used by earlier JDK versions to find class and re-
source files in a collection of Jar files: each Jar file was
simply downloaded in sequence until the desired file was
located. Through the use of a Jar index, an application
can be splitup into discrete components which are down-
loaded only when needed. This can help reduce the num-
ber of unneeded classes and resources downloaded. (The
functionality of the Jar index is in some ways similar to
our concept of bundling, which will be described in sec-
tion 2.)

1.2.3 On-the-fly compression

On-the-fly compression is a variation on downloading in-
dividual files. Files are requested individually by the
client, and transferred from the server over a compressed
stream. Any suitable compression algorithm could be
used; zlib [1] is an obvious choice since it is a stan-
dard part of the Java API (in the java.util.zip
package)®.

On-the-fly compression has the advantages of down-
loading individual files: only the files requested by the
client are transferred, and the files arrive in the order
needed. The fact that the entire stream of files is com-
pressed cumulatively means that a high degree of sharing
of redundant information between files is possible, result-
ing in compression ratios higher than those achieved by
simply compressing each file individually.

However, on-the-fly compression has the disadvantage
that it can require considerable CPU time on the server to
perform the compression. For example, a 333 MHz Sun
Ultra 5 can compress about 2.5 megabytes per second us-
ing zlib at the lowest compression level, and about 0.5
megabytes per second at the highest compression level.
Considering that server will have more work to do at run-
time in addition to compression, the sustainable through-
put will be somewhat less. This limits the scalability of
on-the-fly compression using zlib.

Another disadvantage of on-the-fly compression is that
it does not use pre-sending or prefetching, meaning that
the network latency cost is paid for each file requested.

124 Pack

Pack is a custom archive format for Java class files, de-
veloped by William Pugh [9]. It exploits regularities in
the Java class file format to achieve a high degree of com-
pression, and is designed as an alternative to Jar files.
Like Jar files, the Pack format has the advantage that a
large number of files can be delivered in response to a sin-
gle client request, meaning that the request latency cost is
paid only once for the entire archive, rather than per-file.
It shares the disadvantage that unneeded files may be sent,
and that the files may not arrive in the correct order.

Pack must be downloaded prior to use. The decom-
pressor requires 36 kilobytes when downloaded as a Jar
file.

Pack’s decompressor is slower than zlib’s. On a 333
MHz Sun Ultra 5 workstation it can decompress about
75-120 kilobytes per second, limiting Pack’s effective-
ness for fast networks.

1.3 Comparison of existing network class
loading mechanisms

Table 1 summarizes existing network class loading mech-
anisms in terms of how they address the design issues dis-
cussed in section 1.1, along with how those issues would
be addressed by an ‘ideal’ network class loading mech-
anism. None of the existing mechanisms has all of the
properties we would like in an ideal mechanism. The
request granularity of the archive formats (Jar, Pack) is
larger than we would like. On-the-fly compression has
the desired request granularity, but requires the compres-
sion to be performed at runtime, and does not use pre-
sending or prefetching to reduce latency costs.

Jar indexes offer an intriguing possibility: we could
break the application into chunks, put each chunk into
a separate Jar file, and use the Jar index to inform the
JVM which class and resource files are contained in each
chunk. This scheme has some advantages over using a
single monolithic Jar archive. If we choose the division
of files into chunks carefully, so that only files needed
together are put in the same chunk, then we can avoid
downloading files that are not needed. We can also try to
order the files within the chunks such that they match the
client’s request order at runtime. However, this scheme
has some undesirable properties. If we want to allow a
truly arbitrary mapping of files to chunks, the size of the
Jar index will be proportional to the number of files. Also,
we are still left with the problem that the chunks are en-
coded as Jar files, so the files within the chunks are com-
pressed individually, not cumulatively.



number of net | request compress? | compress compress | pre-send/
connections granularity scope time prefetch?
‘Ideal’ 1 individual file | yes all files off-line yes
Individual files | 13 individual file | maybe* individual file | off-line? | no
Jar archive 1 archive® usually individual file | off-line yes
On-the-fly 1 individual file | yes all files runtime no
Pack 1 archive yes all files off-line yes

Table 1: Summary of existing network class loading mechanisms and an ‘ideal’ network class loading mechanism.

2 Bundling: ahybrid approach

Bundling is an approach to transferring files over a net-
work that tries to combine the benefits of individual file
downloading, Jar file downloading, and on-the-fly com-
pression. The collection of files comprising the appli-
cation is divided into groups, or bundles. Each bundle
is then compressed cumulatively using either a general-
purpose compression mechanism such as zlib, or a Java-
specific archive format such as Pack.

As in individual file downloading, bundles are trans-
ferred in response to explicit client requests. Ideally, each
bundle will consist entirely of files that are always loaded
together. In addition, the files in the bundle should be or-
dered such that they match the order of requests by the
client.

As in Jar file downloading, the bundles are precom-
pressed, so no compression needs to be performed on the
server at runtime. This allows the server to scale more
easily to a large number of clients.

As in on-the-fly compression (and unlike Jar files),
compression is performed on multiple files instead on in-
dividual files. This allows more opportunities to share re-
dundant information between files, resulting in a better
compression ratio than with individual compression.

2.1 Dividing a collection of files into bun-
dles

The main problem in applying bundling to network class
loading is determining how to divide the collection of
files needed by applications into bundles. In order to en-
sure that the client generally receives only files it needs,
we must only put two files in the same bundle if those
files are always (or almost always) needed together in the
same program execution. Furthermore, the files in the
bundle should always (or almost always) be ordered in
the same order that they will be requested by the client.
When these two properties hold, bundling has all of the
desirable properties of on-demand class loading, with the
additional benefits of compression and pre-sending.

Clearly, to achieve a good division of files into bun-
dles, we need to have knowledge of a typical program’s
class and resource loading behavior at runtime. We chose
to use class loading profiles as the source of information
about program behavior. Class loading profiles record the
order and time at which each class or resource was loaded
during execution.

2.2 Conceptual framework

We chose to view the collection of files as a fully con-
nected weighted graph. Each file is represented by a node
in the graph. The weight of an edge from file A to file B
represents the desirability of placing A and B in the same
bundle.

Given a set of profiles, there are many ways to deter-
mine the edge weights. We chose to use frequency cor-
relation as the basis for the edge weights. The frequency
correlation of two files A and B is defined as ¢/n, where
t is the number of profiles in which both A and B are
loaded, and n is the number of profiles in which either A
or B is loaded. A frequency correlation of 1.0 indicates
that A and B are always loaded together.

The bundling algorithm considers edges according to
an order produced by the edge comparator. We chose to
use weight as the primary criterion for the edge compara-
tor, and average distance as the secondary criterion. (The
average distance of an edge connecting files A and B is
the average distance between A and B in the input pro-
files.) This sort order helps ensure that edges connecting
files usually loaded close to each other are considered be-
fore edges connecting files usually loaded far apart.

While frequency correlation is a good measure of how
often two files are loaded together, it is not a measure of
whether those files are generally loaded near each other
in the profiles. If we put two files which are generally
loaded far apart from each other in the same bundle, if
a request is made for one of the files the other will be
loaded too early. To ensure that all of the files in a bundle
are loaded near each other, we limit the maximum bundle
spread. The bundle spread for a proposed bundle b is the



maximum over all profiles p of
lastMoment(b, p) — firstMoment(b, p) — size(b) + 1

The ‘moment’ of a file in a profile is the ordinal value in-
dicating when it was loaded relative to the other files in
the profile. (L.e., the first file in the profile is moment 0,
the second is moment 1, etc.) The best possible spread
for a bundle is 0, indicating that for any profile in the in-
put set, after any file in the bundle is requested all of the
files in the bundle will be used before any file not in the
bundle.

In addition to determining which files to bundle to-
gether, the bundling algorithm must also determine the
order of the files within each bundle. This order is de-
termined by a bundle sort comparator. We chose to use
average position as the criterion for the bundle sort com-
parator. Given a bundle b and a profile p, the position of
each file is found in relation to the other files in 4. For ex-
ample, if A is loaded in p before any other files in b, then
its position is 0. The average position of file A in a bun-
dle b is simply its average position over all input profiles.
Using average position as the criterion for the bundle sort
comparator helps ensure that files are placed in the order
in which they will be needed, based on the order in which
they occurred in the input profiles.

2.3 Bundlingalgorithm

Once the input profiles have been used to create the graph,
the bundling algorithm uses the graph to put the files into
bundles. The algorithm works as follows:

1. Initially, each file is put in a separate bundle.

2. Edges whose weight is less than the minimum edge
weight are discarded.

3. The edges are sorted according to the edge compara-
tor.

4. The edges are processed one at a time, in the order
determined in step 3. For each edge, if the files con-
nected by the edge are not already in the same bun-
dle, and if the number of files in the resulting bundle
would not exceed the maximum bundle size, and if
the resulting bundle would not exceed the maximum
bundle spread, then the bundles containing the files
are combined into a single bundle.

5. After all the edges have been processed, the files
within each resulting bundle are sorted according to
the bundle sort comparator.

Once the contents of the bundles have been deter-
mined, they are combined and compressed cumulatively.
We evaluated both zlib (at the highest compression level)
and Pack as compressed formats for the bundles.

2.4 |Implementation

The bundle class loader consists of a server and a client.

The server accepts requests for files from the client.
For each request, it sends the bundle containing the re-
quested file. Because the bundles are pre-compressed,
the server does not perform any compression at runtime.
As a result, the server has little CPU overhead.

The client consists of an implementation of
java.lang.ClassLoader. When a call to
loadClass () or loadResource () is made to
the class loader, it first checks to see if the data for the
requested class or resource has already been received.
If so, it handles the request using the data already
received. Otherwise, it sends a request for the needed
file to the server. In return, it receives a bundle from the
server containing the requested file. Because the bundle
generally contains files not explicitly requested by the
client, the client caches the data for all files received in
memory. Once the data for a class or resource has been
used by the client, its cache entry is deleted, so that the
memory can be reclaimed by the garbage collector.

The implementation of the client and server are writ-
ten in Java, consisting of 733 lines of source overall. The
total size of the client class files is approximately 20 KB.
Both client and server use only the standard Java runtime
classes in their implementation, and will work with any
JVM compatible with Sun’s JDK 1.2.

Our implementation currently supports only bundles
compressed with zlib. Future work will add support for
bundles in Pack format.

25 Latency issues

Network latency has a substantial effect on the perfor-
mance of any request-driven file transfer protocol, since
it causes a delay between the time the client issues a re-
quest for a file and the time when the data for that file
starts to arrive. This is one of the principal disadvantages
of purely on-demand transfer strategies, such as down-
loading individual files. The request latency problem is
compounded when the available bandwidth is high, since
the penalty associated with each request is the product of
the latency and the bandwidth (since the product is the
amount of data that can be transferred during one latency
period).

To decrease the penalty associated with network la-
tency, it is necessary to reduce the number of requests
issued by the client. The simplest way to do this in
bundling is to find ways to increase the bundle size. In
our experiments, we tested a range of bundling parame-
ters, with the goal of producing bundlings with a large av-
erage bundle size. Section 3 will show how well we were
able to counteract the effects of network latency.



3 Experimental results

This section describes experiments we performed to eval-
uate the effectiveness of bundling compared to other net-
work class loading mechanisms.

There are two fundamental ways to apply bundling.
First, it may be applied to the class and resource files used
by a single application, based on profiles collected from
that application. This approach is reasonable if the intent
is to optimize the transfer of files used by a single appli-
cation in isolation. The second way it can be applied is to
a library used by many applications. Applying bundling
to a library used by multiple applications is a more diffi-
cult problem than applying it to a single application, be-
cause the class loading behavior of different applications
is much less consistent than the class loading behavior of
multiple runs of a single application. (Note that there is
no absolutely rigid distinction between these approaches.
For example, an office application might have a common
library of classes as well as several ‘sub-applications’,
such as word processor, spreadsheet, etc. The loading
behavior for the classes and resources within the sub-
applications would likely be quite consistent from run to
run. However, each sub-application might use the com-
mon library in different ways, resulting in inconsistent
loading behavior within the classes and resources of the
library from run to run.)

In order to test both extremes (multiple applications
vs. single application), we generated bundlings from a
subset of JDK 1.2.2’s rt . jar, which contains the stan-
dard Java libraries used by all applications. The subset
includes AWT, Swing, and Java2D, but does not include
the ‘core’ packages (java.lang.*, java.util.*,
etc.) Since almost all interactive Java applications use
AWT, Swing, or Java2D, we felt the rt . jar subset was
a good example of a substantial library used by many ap-
plications in nontrivial ways.

The first experiment uses profiles from several applica-
tions and applets to generate bundlings for the subset of
rt.jar. Since the applications load different class files
and resources in significantly different orders, this exper-
iment represents a ‘stress test’ of the bundling algorithm.
We would like to emphasize that applying bundling to a
large, multi-purpose library is not an ideal application of
bundling, since bundling is designed to take advantage of
regularities in class loading behavior.

The second experiment uses profiles from a single
application to generate bundlings for the rt . jar sub-
set. Since there is more regularity in the class and re-
source loading behavior of a single application than in
several different applications, this experiment represents
an ideal scenario for bundling, in which we would ex-
pect its performance to come close to that of cumulative

compression in terms of the compression ratio achieved,
while avoiding the high latency delays associated with
on-demand loading.

The third experiment measures the effectiveness of the
bundlings generated in the first experiment on two appli-
cations not represented in the input profiles used to gener-
ate those bundlings. This experiment is an even less ideal
application for bundling than the first experiment; how-
ever, it does offer some insight into how the performance
of bundling may degrade when it encounters class load-
ing behavior not represented in the input profiles.

The fourth experiment measures the startup time for
one of the test applications using simulated network
bandwidth and latency. The experiment is designed to de-
termine how well bundling performs in a real JVM, as op-
posed to off-line simulations.

3.1 Bundling parameters

In generating the bundlings for the experiments, we tried
three combinations of bundling parameters:

¢ Minimum edge weight 1.0, maximum bundle size
200, maximum bundle spread 5. These bundling pa-
rameters are relatively strict, in the sense that they
forbid two files from being placed in the same bun-
dle if there were any profiles in which one was
loaded without the other. They also significantly
limit the extent to which files can be delivered ahead
of when they are needed. These parameters pro-
duced a bundling where the average bundle size was
quite small, on the order of 3 or 4 files.

¢ Minimum edge weight 0.8, maximum bundle size
1000, maximum bundle spread 200. This is a
‘looser’ set of parameters, which permits files to be
placed in the same bundle even if they aren’t always
loaded together, and also allows files to be sent sig-
nificantly ahead of when they are needed. These
parameters produced a bundling where the bundles
were larger, the average bundle size being about 12
files.

¢ Minimum edge weight 0.8, maximum bundle size
1000, maximum bundle spread 500. This is an even
looser set of parameters, which produced bundles
whose average size was about 24 files.

Note that in all cases, the maximum bundle size param-
eter was not reached, so bundle growth was only con-
strained by the minimum edge weight and maximum bun-
dle spread.

In the figures and text, the parameters used to gener-
ate a bundling are specified in the form w-m-s, where w
is the minimum edge weight, m is the maximum bundle
size, and s is the maximum bundle spread.



3.2 Network parameters

We tried two combinations of network bandwidth and
latency in our simulations. First, we tried 500,000
bytes/second bandwidth and 4 ms latency, which is typ-
ical of what one might see on a wireless local area net-
work. Second, we tried 50,000 bytes/second bandwidth
and 70 ms latency, which is typical of a high-speed wide
area network.

3.3 Measurements

Three types of data were collected.

First, for experiments 1-3, we performed a simulation
of expected arrival times for each file loaded in the test
profiles, based on network bandwidth and latency. The
idea is to assume that the client issues requests for each
file in the profile one at a time, and that the requested file
must arrive before the next file in the profile can be re-
quested. A request for a file which has not arrived yet
must be sent to the server. Only one bundle may be in
transit at any given moment, and the data for a requested
bundle starts arriving only after the latency period has
elapsed following the request, or after all bundles in tran-
sit have finished transferring, whichever is later. We take
into account the relative offsets of each file within a bun-
dle, and their sizes within the bundle. While this model
is somewhat simplistic, it does take into account the most
important factors in network class loading, since the com-
putational overhead of network class loading is generally
less significant than the network overhead. The expected
arrival time for each file in the test profile is compared
with the ‘ideal’ arrival time, which is simply the time the
file would arrive if a single bundle containing all of the
files in the profile in the correct order were downloaded.
(This is like on-the-fly compression, except that the entire
sequence of requests is ‘known’ in advance.)

Second, for the applications in experiment 1, we mea-
sured the total number of bytes transferred from server to
client. The fewer bytes transferred, the higher the com-
pression ratio and the less bandwidth consumed. Note
that even though our current implementation supports
only bundles in zlib format, we were able to accurately
measure the download sizes for Pack bundles based on
the bundle transfer behavior observed for zlib bundles.

Third, in experiment 4 we measured the startup time
for one of the test applications (Argo/UML) under simu-
lated network bandwidth and latency conditions. By run-
ning an actual JVM under realistic conditions, we are able
to see how successfully our estimates of class loading
performance (the expected arrival times described above)
predict real application performance. In particular, this
experiment takes into account other sources of overhead
in the JVM, such as loading native libraries, verifying

class files, etc.

3.4 First experiment

In the first experiment, bundlings of the rt.jar sub-
set were generated using a collection of 17 input profiles,
from the following applets and applications:

e Sun’s Java2D demo

Argo/UML, an object-oriented design tool

Sun’s Swing demo

The JDK 1.2.2 demo applets

The Jazz HiNote zoomable user interface demo
(from the University of Maryland’s Human-
Computer Interaction Lab)

o The jEdit editor, version 2.3pre2

We evaluated the bundlings produced from the input pro-
files on five applications: the Drawtest applet, the TicTac-
Toe applet, Argo/UML, the Java2D demos, and HiNote.
For all five applications, the profile used in the experi-
ment was a member of the input profiles used to generate
the bundlings.

Figures 1-5 show the expected file arrival times vs.
ideal file arrival times for the applications. In general, the
bundlings were competitive with the ideal arrival times,
although the ‘strict’ bundling 1.0-200-5 fared noticably
worse than the ‘loose’ bundlings. This shows that even
when network latency is relatively low (4 ms) itis still an
important factor.

The vertical ‘cliffs’ in the plots correspond to files be-
ing sent earlier than when they are needed; essentially,
they delay the file whose request is currently outstand-
ing. The diagonal sections (where the slope diverges
from the ideal) corresponds to request latency. The hor-
izontal ‘plateaus’ in the plots correspond to files already
received being used by the client. These satisfy their re-
quests instantaneously, since the data is already available.

Figure 6 shows the download sizes for the applications
and bundlings in experiment 1, for bundles in both zlib
and Pack formats. All of the zlib bundlings were com-
petitive with cumulative zip, although they were much
larger than an equivalent Pack archive would have been.
The ‘loose’ Pack bundlings (0.8-1000-200 and 0.8-1000-
500) were able to get quite close to the compression ratio
of a single Pack archive, while the ‘strict’ Pack bundling
(1.0-200-5) had somewhat lower compression than a sin-
gle Pack archive. All of the Pack bundlings were signifi-
cantly better than cumulative zip.
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Startup time (seconds) Number of

Minimum Maximum Number | 500,000 bytes/s | 50,000 bytes/s | unused files
edge weight | bundle spread | of bundles 4 ms latency | 70 ms latency | transferred
n/a n/a 1 22.47 4474 0

1.0 5 317 24.54 67.77 0

0.8 200 88 22.57 48.85 57

0.8 500 30 22.50 46.46 99

Table 2: Startup time for Argo/UML under simulated network bandwidth and latency.

3.5 Second experiment

In the second experiment, bundlings of the rt . jar sub-
set were generated from 5 profiles collected from a sin-
gle application, Argo/UML. Each profile exercised dif-
ferent application functionality. Then, arrival time data
were collected for a single profile (which was a member
of the profiles used to generate the bundlings).

Figure 7 shows the expected file arrival times vs. ideal
file arrival times. As expected, the bundlings achieve file
arrival times very close to the ideal file arrival times. Be-
cause of the regularity in class loading behavior in dif-
ferent runs of the same application, only a few bundles
were generated, increasing the bundle size and compres-
sionratio, and decreasing the cost associated with making
requests to the server.

(Note that bundling 0.8-1000-500 is not shown be-
cause itis identical to 0.8-1000-200 for the profiles used.)

3.6 Third experiment

In the third experiment, we measured the effectiveness
of the bundlings of the rt . jar subset produced in ex-
periment 1 on two applications not represented in the in-
put profiles used to generate those bundlings. The ap-
plications were jsolitaire (a Solitaire card game applet)
and iconpainter (an icon editor). Note that the iconpainter
used four class files not loaded in any of the original in-
put profiles; we added these to the bundlings as bundles
of size 1 (i.e., containing a single class file).

Figures 8 and 9 show the expected vs. ideal file ar-
rival times for jsolitaire and iconpainter, respectively.
The arrival times for the bundlings are somewhat further
from ideal than in experiment 1, where the profiles tested
were members of the set of profiles used to generate the
bundlings. This shows that bundling works best for appli-
cations which are represented in the input profiles used to
generate the bundlings. However, the time for all of the
files to arrive for the loose bundlings is only about 40%
later than for the ideal case. Considering that bundling
typically achieves twice the compression of Jar archives,
this overhead may be acceptable in some situations.

3.7 Fourth experiment

In the fourth experiment, we measured the amount of
time needed by the Argo/UML application to initialize
and display its user interface, using the bundle class
loader client and server for the rt . jar subset. We sim-
ulated network bandwidth by restricting the rate at which
the server sent data, and we simulated network latency
by instrumenting the server to pause for a fixed amount
of time before processing a client request. The client
and server communicated over local TCP/IP on a two-
processor Sun Ultra 60 workstation.

Table 2 shows the results. The first row of the table
gives the startup times for a single ‘ideal’ bundle consist-
ing of all of the required files in the correct order. The
other rows show the startup times for the bundlings used
in experiment 1. For the high bandwidth and low la-
tency case, the startup times for the bundlings were al-
most identical to the ideal startup time. For the lower
bandwidth, higher latency case, the ‘loose’ bundlings
performed much better than the ‘strict’ bundling, even
though some unneeded files were transferred.

4 Reated work

Pack [9] is a compressed archive format for Java class
files developed by William Pugh. While it achieves very
good compression, it has a relatively slow decompressor,
so is most useful for slow networks.

Jazz [3], developed by Quetzalcoatl Bradley, R. Nigel
Horspool, and Jan Vitek, is another compressed archive
format for Java class files. It is similar to Pack, but uses
a somewhat less aggressive compression scheme.

In [11], Tip, Laffra, Sweeney, and Streeter describe
Jax, an application extractor for Java. Jax uses a number
of whole-program analysis techniques to transform an ap-
plication’s class files to reduce its size. For example, Jax
detects and eliminates unused methods and fields. One
motivation for size reduction is reducing download time
when loading the application from a network. The tech-
niques employed by Jax are largely orthogonal to com-
pression and bundling, and would be complementary to



the techniques we present in this paper.

In [6], Krintz, Calder, and Holzle describe techniques
for reducing transfer delay by splitting classes (meth-
ods and data members) into hot and cold parts, and for
prefetching classes. The class file splitting technique
transforms classes to avoid downloading code for rarely
used methods and fields. The prefetching technique tries
to avoid request latency and transfer delay by placing re-
quests for class files prior to the ‘first-use’ points for those
classes. Because these techniques rely on the client issu-
ing an explicit request for each file, they would only by
suitable for use with individual file compression or on-
the-fly compression.

Appwerx Expresso [2] is a commercial product that re-
duces applet startup time by reordering class file and re-
sources in a Jar file and implementing a class loader that
can concurrently download and execute classes from the
Jar file.

In [7], Kuenning and Popek describe a technique for
hoarding files on a mobile computer prior to disconnec-
tion from a network. Although the problem they address
is different, their approach is similar to ours in that they
use profiles of file access by the user to group related files
together and to predict which files will be needed by the
user. However, there are substantial differences between
their techniques and ours. Their notion of ‘semantic dis-
tance’ between two files is based on the number of inter-
vening file accesses to other files in the profiles, and on
the relative orders of open and close operations on files,
while our notion of edge weight is based on the frequency
of the files being loaded in the same profile. (Because
their profiles are system-wide, they do not have the no-
tion of profiles specific to an application.) Whereas our
motivation for grouping files into bundles is to enable bet-
ter compression and for pre-sending to reduce request la-
tency, their motivation is to detect related groups of files
in order to ensure that entire ‘projects’ are hoarded, rather
than just recently used files in isolation.

5 Conclusions

We described a technique called bundling which splits a
collection of class files and resources into bundles based
on previously observed class and resource loading behav-
ior. We showed that bundling is competitive with cumu-
lative compression when the applications and profiles are
known in advance, and that it is no worse than the Jar
archive format when used on an application not included
in the training set.

One possibility for future work is to use a static dictio-
nary of commonly occurring class file data in compress-
ing the bundles. This could improve the compression ra-
tio on small bundles.

Another possibility for future work is to apply
bundling in other contexts where the transfer of se-
quences of files is required. For example, it might be
applicable in serving a collection of files to be partially
mirrored at other sites.
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Notes

!Java is a trademark of Sun Microsystems.

?Note that for on-the-fly compression to work, the
compression algorithm must have the ability to flush the
compressed stream at arbitrary points (i.e., the file bound-
aries). Zlib has this ability, but it is not implemented in
the java.util. zip package.

3For HTTP 1.1 persistent connections.
4Not implemented in Java HTTP client.
®Jar indexes can support an arbitrary request granular-

ity.
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