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Intervals for binomial parameters

• When X ∼ Binomial(n, p) we know that

a. p̂ = X/n is the MLE for p

b. E[p̂] = p

c. Var(p̂) = p(1 − p)/n

d. p̂−p√
p̂(1−p̂)/n

follows a normal distribution for large n

• The latter fact leads to the Wald interval for p

p̂ ± Z1−α/2

√

p̂(1 − p̂)/n



Some discussion

• The Wald interval performs terribly

• Coverage probability varies wildly, sometimes being

quite low for certain values of n even when p is not

near the boundaries

Example, when p = .5 and n = 40 the actual coverage

of a 95% interval is only 92%

• When p is small or large, coverage can be quite poor

even for extremely large values of n

Example, when p = .005 and n = 1, 876 the actual cov-

erage rate of a 95% interval is only 90%



Simple fix

• A simple fix for the problem is to add two successes

and two failures

• That is let p̃ = (X + 2)/(n + 4)

• The (Agresti-Coull) interval is

p̃ ± Z1−α/2

√

p̃(1 − p̃)/ñ

• Motivation: when p is large or small, the distribution

of p̂ is skewed and it does not make sense to center the

interval at the MLE; adding the psuedo observations

pulls the center of the interval towards .5

• Later we will show that this interval is the inversion

of a hypothesis testing technique



Discussion

• After discussing hypothesis testing, we’ll talk about

other intervals for binomial proportions

• In particular, we will talk about so called exact inter-

vals that guarantee coverage larger than the desired

(nominal) value



Example
Suppose that in a random sample of an at-risk popu-

lation 13 of 20 subjects had hypertension. Estimate the

prevalence of hypertension in this population.

p̂ = .65, n = 20

p̃ = .63, ñ = 24

Z.975 = 1.96

Wald interval [.44, .86]

Agresti-Coull interval [.44, .82]

1/8 likelihood interval [.42, .84]
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Bayesian analysis

• Bayesian statistics posits a prior on the parameter of

interest

• All inferences are then performed on the distribution

of the parameter given the data, called the posterior

• In general,

Posterior ∝ Likelihood × Prior

• Therefore (as we saw in diagnostic testing) the like-

lihood is the factor by which our prior beliefs are up-

dated to produce conclusions in the light of the data



Beta priors

• The beta distribution is the default prior for parame-

ters between 0 and 1.

• The beta density depends on two parameters α and β

Γ(α + β)

Γ(α)Γ(β)
pα−1(1 − p)β−1 for 0 ≤ p ≤ 1

• The mean of the beta density is α/(α + β)

• The variance of the beta density is

αβ

(α + β)2(α + β + 1)

• The uniform density is the special case where α = β = 1
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Posterior

• Suppose that we chose values of α and β so that the

beta prior is indicative of our degree of belief regard-

ing p in the absence of data

• Then using the rule that

Posterior ∝ Likelihood × Prior

and throwing out anything that doesn’t depend on p,

we have that

Posterior ∝ px(1 − p)n−x × pα−1(1 − p)β−1

= px+α−1(1 − p)n−x+β−1

• This density is just another beta density with param-

eters α̃ = x + α and β̃ = n − x + β



Posterior mean

• Posterior mean

E[p | X ] =
α̃

α̃ + β̃

=
x + α

x + α + n − x + β

=
x + α

n + α + β

=
x

n
× n

n + α + β
+

α

α + β
× α + β

n + α + β

= MLE × π + Prior Mean × (1 − π)



• The posterior mean is a mixture of the MLE (p̂) and

the prior mean

• π goes to 1 as n gets large; for large n the data swamps

the prior

• For small n, the prior mean dominates

• Generalizes how science should ideally work; as data

becomes increasingly available, prior beliefs should

matter less and less

• With a prior that is degenerate at a value, no amount

of data can overcome the prior



Posterior variance

• The posterior variance is

Var(p | x) =
α̃β̃

(α̃ + β̃)2(α̃ + β̃ + 1)
=

(x + α)(n − x + β)

(n + α + β)2(n + α + β + 1)

• Let p̃ = (x + α)/(n + α + β) and ñ = n + α + β then we have

Var(p | x) =
p̃(1 − p̃)

ñ + 1



Discussion

• If α = β = 2 then the poterior mean is

p̃ = (x + 2)/(n + 4)

and the posterior variance is

p̃(1 − p̃)/(ñ + 1)

• This is almost exactly the mean and variance we used

for the Agresti-Coull interval



Example

• Consider the previous example where x = 13 and n = 20

• Consider a uniform prior, α = β = 1

• The posterior is proportional to (see formula above)

px+α−1(1 − p)n−x+β−1 = px(1 − p)n−x

that is, for the uniform prior, the posterior is the like-

lihood

• Consider the instance where α = β = 2 (recall this prior

is humped around the point .5) the posterior is

px+α−1(1 − p)n−x+β−1 = px+1(1 − p)n−x+1

• The “Jeffrey’s prior” which has some theoretical ben-

efits puts α = β = .5
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Bayesian credible intervals

• A Bayesian credible interval is the Bayesian analog of

a confidence interval

• A 95% credible interval, [a, b] would satisfy

P (p ∈ [a, b] | x) = .95

• The best credible intervals chop off the posterior with

a horizontal line in the same way we did for likeli-

hoods

• These are called highest posterior density (HPD) in-

tervals
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R code
Install the binom package, then the command

library(binom)

binom.bayes(13, 20, type = "highest")

gives the HPD interval. The default credible level is 95%

and the default prior is the Jeffrey’s prior.



Interpretation of confidence intervals

• Confidence interval: (Wald) [.44, .86]

• Fuzzy interpretation:

We are 95% confident that p lies between .44 to .86

• Actual intepretation:

The interval .44 to .86 was constructed such that

in repeated independent experiments, 95% of the

intervals obtained would contain p.

• Yikes!



Likelihood intervals

• Recall the 1/8 likelihood interval was [.42, .84]

• Fuzzy interpretation:

The interval [.42, .84] represents plausible values for

p.

• Actual interpretation

The interval [.42, .84] represents plausible values for

p in the sense that for each point in this interval,

there is no other point that is more than 8 times

better supported given the data.

• Yikes!



Credible intervals

• Recall the Jeffrey’s prior 95% credible interval was

[.44, .84]

• Actual interpretation

The probability that p is between .44 and .84 is 95%.


